太阳能级硅冶金制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能发电具有安全可靠、无污染、分布广泛和无机械转动部件等独特优点,受到了世界各国的高度重视。同时,在目前可再生能源中光伏发电是比较成熟的技术,世界各国尤其美、日、德等发达国家先后启动了大规模的国家光伏发展计划,刺激光伏产业迅速发展。光伏产业的高速增长催生了对多晶硅的大量需求。目前,光伏产业应用过程中面临的主要障碍为成本过高以及硅材料的短缺。在不影响效率的前提下,降低硅的成本是降低硅太阳能电池成本的关键。目前,太阳能级硅生产所需的原料主要来自于微电子工业中的边角料,考虑到应用于微电子工业和光伏领域中硅材料的规模和纯度以及包含在生产工艺过程中成本的不同,为了满足光伏产业对多晶硅的迫切需求以及摆脱太阳能级硅对电子级硅的依赖,世界各国积极开展了低成本太阳能级硅生产工艺的研究。
     本文通过对冶金级硅中不同杂质存在形式与分布特点的分析,提出了一种新的冶金提纯工艺路线,具体提纯工艺路线如下:①冶金级硅的酸洗预处理→②电磁感应造渣精炼→③电子束精炼一④定向凝固。试验结果表明上述四种工艺针对硅中不同类型的杂质具有较好的去除效果。最终成功制备出纯度为5N-6N的太阳能级多晶硅铸锭。各个精炼工艺的研究结果如下:
     选用盐酸与氢氟酸进行了对比试验,结果表明:盐酸的酸洗效果要优于氢氟酸。由于氢氟酸在酸洗过程中会产生难溶性的物质,且易挥发和产生爆炸,因此本试验最终选择盐酸作为酸洗溶液。盐酸酸洗时的最优化工艺参数如下:固液比1:20,15wt%,80℃,10h,100um。酸洗后硅中杂质铝、铁和钙的去除效率分别达到75.6wt%,79.3wt%和61.7wt%。酸洗处理后硅的纯度由99%提高到99.9%左右。同时在酸洗过程中施加超声震荡,声流和声空化作用能够去除硅粒表面晶界狭缝处的杂质,因此可以提高酸洗提纯效果。但酸洗工艺对冶金级硅中的B和P等非金属杂质没有任何去除效果,而且存在酸洗极限即酸洗并不能将硅中的金属杂质全部去除。酸洗虽然仅仅作为冶金工艺中的预处理环节,但它也是一个非常重要而且是不能缺少的环节。
     重点对SiO2-CaO-Na2O和SiO2-CaO-Al2O3造渣系在不同的精炼温度,精炼时间和造渣剂成分条件下对杂质B的去除规律进行了热力学与动力学研究。研究结果表明:SiO2-CaO-Al2O3造渣系除杂效果明显好于SiO2-CaO-Na2O造渣系。在SiO2-CaO-Al2O3造渣系下,当造渣剂比重为10%时,精炼温度为1823K,精炼时间为2h,精炼后杂质B的含量由原来的15 ppmw成功地降低到2 ppmw。同时硅中金属杂质元素Al、Ca和Mg也得到了很好的去除,去除率分别达到了85.0%、50.2%和66.7%。电磁感应的搅拌作用可以对熔体产生强烈的搅拌作用,通过提高杂质在边界层内的传质系数,增强杂质在边界层内的扩散,从而可以改善和加速B的去除过程。
     采用自行设计的电子束熔炼炉对冶金级硅进行了电子束精炼研究,并对杂质的去除过程进行了热力学与动力学研究。研究结果表明:硅中金属杂质铝、钙与非金属杂质磷的挥发反应均为一阶反应,即单原子挥发反应。因此杂质元素通过气相边界层扩散到气相中的自由挥发过程为整个去除过程的控制环节。当电子束功率为20kW,时间为30min,精炼硅中主要杂质除了铁、铝和钛的含量仍大于1ppmw,其它金属杂质的含量都降到了0.1ppmw以下,尤其是杂质磷的含量降低到了0.16ppmw。本文推导出了硅中各种杂质含量与电子束功率和精炼时间的关系表达式如下:试验验证表明理论计算值与实验值基本一致。由于硅中的杂质含量与精炼时间成负指数关系,因此硅中的杂质含量与硅料的进料速度也成反比。因此为了提高生产效率,降低成本,本文选择电子束功率为30kW进行连续精炼。当出口硅中杂质磷的含量为1ppmw时,要求硅料的进料速度大约在O.1kg/min。
     采用自行设计的电子束定向凝固炉对硅的定向凝固工艺进行了详细地研究。研究结果表明:当硅熔体过热度为130K、凝固速度为3.0×10-5m/s时,采用涂有氮化硅涂层的石英陶瓷坩埚进行定向凝固得到了表面质量非常光滑,完整的多晶硅铸锭。硅锭尺寸为Φ70 mm×210 mm,且硅锭中部柱状晶晶粒尺寸宽为3~4mm,长为10-30mm。硅锭的临界提纯高度约为140mm左右,约占整个铸锭高度的66.7%。铸锭中铝、铁和钛等金属杂质的含量都控制在0.1 ppmw以下,非金属杂质硼的含量控制在0.6ppmw左右,磷含量控制在0.1 ppmw以下,碳、氧和氮的含量基本控制在10ppmw左右。多晶硅铸锭纯度达到了5N以上,铸锭中各种杂质的含量都达到了太阳能级硅对杂质所要求的范围之内。
Among renewable energy, solar power has many advantages, such as safe, reliable, clean, widely distributed, no mechanical moving parts and so on, it has been attracted the world's attention. At the same time, photovoltaic power generation is the more mature technology in renewable energy, Many countries in the world, especially the United States, Japan, Germany and other developed countries have launched a large scale photovoltaic development plan to stimulate the rapid development of photovoltaic industry. The rapid growth of photovoltaic industry gave birth to a large demand for silicon. Currently, the major faced obstacles are the high cost and the shortage of silicon in the photovoltaic industry application. Reduce the cost of silicon is the key to reduce the cost of silicon solar cells without affecting the efficiency of solar cells.
     Currently, raw materials used for the production of SoG-Si are mainly from the scraps of microelectronics industry. Taking into account the size, purity and the cost in production process of silicon used in microelectronics industry and photovoltaic field are different, meantime, in order to meet the urgent demand of PV industry for silicon and get rid of the dependence of SoG-Si on electronic grade silicon (EG-Si). Therefore, many countries begin to carry out the low cost production technology research for solar grade silicon (SoG-Si).
     A new metallurgical purification route is proposed and the specific purification process route is as follows:①Acid pretreatment of metallurgical grade silicon (MG-Si),②Electromagnetic induction slag refining,③Electron beam refining and④Directional solidification based on the analysis for the presence forms and distribution of different impurities in MG-Si. The results show that the above four refining process have better removal effect for different types of impurities in silicon. SoG-Si ingot with the final purity of 5N-6N has been prepared successfully. The results of each refining process are as follows:
     Hydrochloric acid and hydrofluoric acid were used in this paper. Contrast test results showed that acid effect under hydrochloric acid was better than that of hydrofluoric acid. Not only pickling process would produce insoluble material under hydrofluoric acid but also hydrofluoric acid was easy to volatile and exploded. So hydrochloric acid was selected as the final pickling solution. Optimize process parameters under hydrochloric acid were as follows: solid-liquid ratio 1:20,15wt%,80,10h, 100um.Under above conditions, the main impurities removal efficiency of aluminum, iron and calcium in silicon reached 75.6wt%,79.3wt% and 61.7wt%, respectively. The purity of silicon increased from 99% to 99.9% after acid pickling. Ultrasound vibration was used during pickling process and acoustic streaming and acoustic cavitation could remove impurities which were not fully exposed at the slit of grain boundary, so it could increase the effect of acid pickling. But there was no removal effect for B, P and other non-metallic impurities in MG-Si with pickling process and pickling could not remove all metal impurities in silicon because pickling limit. Although pickling only just as a pretreatment process, it was a very important and indispensable link.
     The effect of different refining temperature, time and slag agent components on the removal rules of boron was mainly studied under SiO2-CaO-Na2O and SiO2-CaO-Al2O3 systems. Meantime, the thermodynamics and kinetics of the removal rules of boron was also discussed. The results showed that impurities removal effect under SiO2-CaO-Al2O3 slag system was better than that of SiO2-CaO-Na2O slag system. The content of boron elements in silicon was successfully reduced from the original 15 ppmw to 2 ppmw under SiO2-CaO-Al2O3 slag system. Refining process parameters were as follows:slag dosage was 10wt%, temperature was 1823K and time was 2h. At the same time, metal impurities Al, Ca and Mg were also well removed and the removal efficiency of them reached 85.0%,50.2%, and 66.7%, respectively. Electromagnetic induction slag refining could improve and accelerate the removal process of boron because the mass transfer coefficient of impurity elements in the boundary layer was strengthened by electromagnetic stirring.
     In this paper, MG-Si was refined by electron beam melting furnace which designed by us and the thermodynamics and kinetics of impurities removal were also discussed. The results showed that the volatile reactions of metal impurities aluminum and calcium and nonmetallic impurities phosphorus were all first order reaction (that is a single atom of volatile reaction). Therefore, the free volatile process of impurity elements spread from the gas boundary layer to gas phase was the control link of whole volatilization process. The content of main metallic impurities besides iron, aluminum and titanium in silicon all reduced to below 0.1 ppmw, especially the content of phosphorus reduced to 0.16 ppmw when the electron beam power was 20kW and refining time was 30 minutes. The expression of impurity content in silicon as electron beam power and refinement time was derived as follows: The calculated value was consistent with the experimental value. Impurity content in silicon was inversely proportional to the feed speed because the relationship between impurity content and refining time was a negative exponential. Therefore, in order to increase productivity and reduced costs, electron beam power used in this paper was 30kW for continuous refined. The required speed of the feed silicon was about 0.1kg/min when the phosphorus content in export molten silicon was lppmw.
     Silicon directional solidification process was studied in detail in this paper via utilizing an electron beam directional solidification furnace which designed by ourselves. The results showed that a silicon ingot with very smooth surface quality and no defect was obtained by the use of quartz ceramic crucible coated with silicon nitride coating when the superheat of silicon melt was 130K and the directional solidification rate was 3.0×10-5m/s. Ingot with the diameter of 70 mm and the length of 210mm and the grain size of columnar crystal at the central of silicon ingot with the width of 3~4mm and the length of 10~30mm was obtained. Critical purification height of silicon ingot was about 140mm which was approximately 66.7% of the total ingot height. The contents of aluminum, iron and titanium and other metal impurities in ingot were controlled below 0.1ppmw, the content of boron and phosphorus was below 0.6ppmw and 0.1ppmw, the content of carbon, oxygen and nitrogen were basic controlled below 10ppmw. The purity of silicon ingot had reached more than 5N and various impurities content in silicon ingot had reached the required impurity range of solar grade silicon.
引文
[1]Ferrazza F. Large size multicrystalline silicon ingots [J]. Solar Energy Materials and Solar Cells.2002, (72):77-81.
    [2]Yang H, Wang H,Yu H, et al. Status of photovoltaic industry in China [J].EnergyPolicy.2003, (31):703-707.
    [3]Zhao Y. The present status and future of photovoltaic in China [J]. Solar energy materials and solar cells.2001,(67):663-671.
    [4]Dour G, Ehret E, Laugier A. Continuous solidification of photovoltaic multicrystalline silicon from an inductive cold crucible [J]. Journal of crystal growth.1998, (193):230-240.
    [5]Flamant G, Kurtcuoglu V, Murray J et al. Purification of metallurgical grade silicon by a solar process [J]. Solar Energy Materials and Solar Cells.2006, (90):2099-2106.
    [6]陈立泉。我国新能源材料的战略思考[C],2003年新材料发展趋势研讨会编,香港,2003,68-70.
    [7]何祚庥。中国可再生能源战略[J]。特区实践与理论,2006,(4):23-26。
    [8]郭志球等。太阳电池研究进展[J]。材料导报。2006,(3):41-43。
    [9]王晓莺.21世纪能源开发的新亮点—年产3MW多晶硅太阳电池应用系统示范工程[J]。电器工业,2002,(9):54-56。
    [10]李俊峰,时璟丽。国内外可再生能源政策综述与进一步促进我国可再生能源发展的建议[J].可再生能源。2006,(1):1-6。
    [11]Szlufcik J, Nijs J, Mertens R, Van Overstraeten R. High efficiency crystalline silicon solar cells for industrial application [J]. Semiconductor Devices.1996,(2733):556-562.
    [12]Hartiti B, Slaoui A, Muller JC, et al. Multicrystalline silicon solar cells processed by rapid thermal processing [C].23rd IEEE Photovoltaic Specialists Conference.1993:10-14.
    [13]吴建荣,杜丕一,韩高荣.非晶硅太阳能电池研究现状[J].材料导报.1999,(13):38-39.
    [14]Sahai.R, Milnes A.G. Heterojunction solar cell calculations [J].Solid-State Electron.1970, (9):13-15.
    [15]Geisz J.F, Friedman D.J, III-N-V semiconductors for solar photovoltaic applications [J].Semicond. Sci.Technol. (UK),2002,17(8):769-777.
    [16]吴季怀,郝三存,林建明等.染料敏化Ti02纳米晶太阳能电池研究进展[J].华侨大学学报.2003,24(4):335-344.
    [17]邓志杰,王雁.化合物半导体光伏电池研究进展[J].世界有色金属.2000,(8):4-6.
    [18]徐明生,季振国,阙端麟.有机太阳能电池研究进展[J].材料科学与工程,2000,]8(3):92-100.
    [19]2007中国太阳能电池硅材料行业调研报告.中国电子材料行业协会编制,P74.
    [20]魏凤,朱宝玉,张晓黎,辛礼.太阳电池应用和研究的发展[J].光伏与工程.55-56.
    [21]2007中国太阳能电池硅材料行业调研报告.中国电子材料行业协会编制,P72-74
    [22]A. Muller, M. Ghosh, R. Sonnenschein, P. Woditsch.Silicon for photovoltaic applications [J]. Materials Science and Engineering B.2006, (134):257-262.
    [23]赵玉文,崔容强.我国太阳能光伏产业现状及发展[C]。2003年中国太阳能学会学术年会论文集.
    [24]丘克强,龙桂花,陈少纯.对发展我国太阳能级多晶硅低成本制备技术的战略思考与选择[J].新材料产业.2008,(6):20-28.
    [25]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学.2000,(12):34-29.
    [26]何凯.硅石制备晶体硅[J].中国非金属矿工业导刊.2005,(51):48-50.
    [27]汤传斌.粒状多晶硅生产概况[J].稀有稀土金属.2001,(3):29-31.
    [28]张鸣剑,李润源,代红云.太阳能多晶硅制备新技术研发进展[J].新材料产业.2008,(6):29-33.
    [29]龙桂花,吴彬,韩松,丘克强.太阳能级多晶硅生产技术发展现状及展望[J].中国有色金属 学报.2008,(18):387-396.
    [30]鲁瑾,李清岩.中国光伏产业引人注目多晶硅短缺仍在持续[J].中国电子报.2007.
    [31]Peter K, Enebakk E, Friestad K et al. Investigation of multicrystalline silicon solar cells from solar grade silicon feeds tock [C].The20th EUPVSEC, Barcelona, Spain,2005.
    [32]Waermes A.N, Ovrelid E.J, Raaness 0.S, Paul B, Geerligs L.J, Wyers G.P, Santens S, Wiersm A.B. The solsilc route to low cost solar grade silicon[C].The 2nd Solar Silicon Conference Munich,2005.
    [33]Yuge N, Hanazawa K, Hiwasa S, et al. Removal of metal impurities in molten silicon by directional solidification with electron beam heating [J].Japan Institute of Metals.2003,67(10):575-582.
    [34]KhattakC.P, JoyceD.B, SchmidF. A simple process to remove boron from metallurgical grade silicon [J].Solar Energy Materials & Solar Cells.2002,74(4):77-89.
    [35]Einhaus R, Sarti D, Hassler C, et al. Purification of Low Quality Silicon Feedstock.AK [C]. The 28th IEEE Photovoltaic Specialists Conference.2000,15-22.
    [36]Baba H, Hanazawa H, Yuge N. Development of NEDO Melt purification Process for Solar Grade Silicon by Pilot Plant [J].UK:Glasgow.2000:1675-1678.
    [37]Yuge N, Hanazawa K, Kato Y. Evaporation of phosphorus in molten silicon by an electron beam irradiation method [J]. Materials Transactions-JIM,2004,45:850-857.
    [38]屈平,白木,周洁.中国多晶硅发展处于起步阶段[J].电器工业.2008,(5):24-29.
    [39]鲁瑾,李清岩.中国光伏产业引人注目多晶硅短缺仍在持续[J].中国电子报.2007.
    [40]何允平.冶金法太阳能级多晶硅的制取[J].应用科技.2009,17(2):19-21.
    [41]K. Kaneko and D. Landaud, Emix, Gieres, France and P. Gillon, CNRS, Grenoble. Cost estimates of silicon manufacture by metallurgy [J]. Festure.2002, (12):8-10.
    [42]A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin, P.R. Mei. New processes for the production of solar grade polycrystalline silicon:A review [J]. Solar Energy Materials & Solar Cells.2008, (92):418-424.
    [43]Barthey B.R. and Gretella M.C. Solar Grade Silicon [J].J.Mater.Sci.1982, (17):3077-3096.
    [44]Kapur V.K.and Choudary U.V. Silicon Purification [P]. US Patent.4388286,1983.
    [45]Chu, T.L, Van der Leeden, G.A. and Yoo H.I. Purification and Characterization of Metallurgical Silicon [J]. J. Electrochem. Soc.1978,125(4):661-665.
    [46]Hunt L.P. Compositional Analysis of Silicon for Solar Cells [J]. J.Electrochem.Soc.1984, 131(8):1891-1896.
    [47]何允平.工业硅生产和冶金法太阳能级多晶硅的制取[J].新材料产业.2009(4):52-56.
    [48]材料科学技术百科全书编辑委员会编.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995
    [49]J.R.Davis, R.H. Hopkins, A. Rothagi. Materials and New Processing Technologies for Photovoltaics [J]. Proc. Electrochem. Soc.New York.1982,82 (8):14
    [50]S. Pizzini. Bulk solar grade silicon:how chemistry and physics play to get a benevolent microstructured material [J]. Appl Phys A.2009, (96):171-188.
    [51]K. Honda, T. Nakanishi, A. Ohsaka, N. Toyokura. Catastrophic breakdown in silicon oxides:The effect of Fe impurities at the SiO2-Si interface [J].J. Appl. Phys.1987, (62):1960-1964.
    [52]W.Wijaranakula.Iron Precipitation at oxygen related bulk defects in Czochralski silicon [J]. J.Appl.Phys.1996, (79):4450-4455.
    [53]M.Seibt and W.Schroeter. Precipitation behaviour of nickel in silicon [J].Phil. Mag.A.1989, (59):337-341.
    [54]D.Yang, L.Li, X.Ma, R.Fan, D.Que, and H.J.Moeller.Oxygen related centers in multicrystalline silicon [J]. Solar Energy Materials & Solar Cells.2000, (62):37-42.
    [55]俞征峰.铸造多晶硅材料中氧缺陷的研究[D].杭州:浙江大学,2004.
    [56]杨德仁.硅中氧沉淀的研究[J].浙江大学材料科学与工程学报.1990,(2):13-15
    [57]万群,李玉珍,徐宝琨等.多晶硅中碳化物及其米源的研究[J].半导体学报.1984,(5)4:360-368
    [58]T Nozaki, Y.Yatsurugi and N.Akiyama. Concentration and Behavior of Carbon in Semiconductor Silicon [J]. J. Electrochem. Soc.1970, (117):1566-1568.
    [59]F.Shimura. Carbon enhancement effect on oxygen precipitation in Czochralski silicon [J]. J.Appl.Phys.1986,(59):3251-3254.
    [60]王莉蓉,杨德仁,应啸.太阳电池用直拉硅单晶中碳对氧沉淀的作用[J].太阳能学报.2002,(23):129-133.
    [61]L.Murin and Y.P.Markevch. Effect of carbon on thermal double donor formation in silicon [J]. Mater.Sci.Forum.1995, (196-200):1315-1320.
    [62]阙端麟,陈修治.硅材料科学与技术[M].杭州:浙江大学出版社,2001.
    [63]杨德仁.半导体材料[M].北京:机械工业出版社,2005.
    [64]刘培东.硅中碳、氮、氧及其相互作用[D].杭州:浙江大学,2003.
    [65]Chen J, Sekiguchi T, Yang D R, et al. Electron beam induced current study of grain boundaries in multicrystalline silicon [J].J.Appl.Phys.2004, (96):5490-5493
    [66]陈君,杨德仁,席珍强.铸造多晶硅晶界的EBSD和EBIC研究[J].太阳能学报.2006,27(4):364-367
    [67]钟根香,周浪,周潘兵,万跃鹏.定向凝固多晶硅的结晶组织及晶体缺陷与杂质研究[J].材料导报.2008,22(12):14-18.
    [68]K.Fujiwara, W.Pan, K.Sawada, M.Tokairin, N.Usami, Y.Nose, A.Nomura, T.Shishido, K.Nakajima. Directional growth method to obtain high quality polycrystalline silicon from its melt [J]. J.Cryst.Growth.2006, (292):282-285.
    [69]R.Y.Wang, W.H.Lu and L.M.Hogan. Faceted Growth of Silicon Crystals in Al-Si Alloys [J]. Metall.Mater.Trans.A.1997, (28):1233-1235.
    [70]K.Fujiwara, K.Nakajima, T.Ujihara, N.Usami, G.Sazaki, H.Hasegawa, S.Mizuguchi and K.Nakajima. In situ observations of crystal growth behavior of silicon melt [J].J.Cryst.Growth.2002, (243):275-278.
    [71]Morita K, Miki T. Thermodynamics of Solar Grade Silicon Refining [J]. Rome:International Meeting on Thermodynamics of Alloys.2002, (9):8-13.
    [72]吴亚萍,张剑,高学鹏,李廷举.多晶硅的真空感应熔炼及定向凝固研究[J].特种铸造及有色金属.2006,(12):792-794.
    [73]Khattack C P, Joyce D B, Schmid F. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon [J]. Massachusetts Salem.2001,4.
    [74]Yuge N, Hanazawa K, Nishikawa K, et al. Removal of phosphorus, aluminum and calcium by evaporation in molten silicon (in Japanese) [J]. Japan Inst. Metals.1997, (61):1086-1093.
    [75]Pires J C S, Otubo J, Braga A F B, et al. The purification of metallurgical grade silicon by electron beam melting [J]. Journal of Materials Processing Technology.2005, (169):21-25.
    [76]Sakata T, Miki T, Morita K. Removal of Iron and Titanium in Poly-Crystalline Silicon by Acid Leaching [J]. Jpn Inst Metals.2002, (66):459-465.
    [77]K. Morita, T.Miki. Thermodynamics of solar grade silicon refining [J].Intermetallics.2003, (11):1111-1117.
    [78]Kichiya S, Tomonori K and Nobuo S. Removal of Boron from Metallurgical grade Silicon by Applying the Plasma Treatment [J]. ISIJ International.1992, (32):630-634.
    [79]Wu jijun, Ma wenhui,yang Bin, Dai yongnian, K.MORITA.Boron removal from metallurgical grade silicon by oxidizing refining[J].Nonferrous Met. Soc. China 19(2009)463-467.
    [80]LUO Da Wei, ZHANG Guo Liang, ZHANG Jian, LI Jun and LI Ting ju. Principle and Research Progress on Preparation Solar Grade Silicon by Metallurgical Route [J]. Foundry Technology, 2008, (12):1721-1726.
    [81]陈圣贤,汪钉崇.多晶硅铸锭石英陶瓷坩埚及涂层[C].第十届中国太阳能光伏会议.常州,2008.
    [82]张剑.冶金提纯法制备太阳能级多晶硅研究[D].大连:大连理工大学.2009.
    [83]Tucker N.P. Alloys of iron research, Part VII, Preparation of high purity silicon [J]. J.Iron Steel Ind.,1927, (15):412-414.
    [84]Voos W. Production of High Grade Silicon [P].U.S.Patent,2972521,1961.
    [85]ChuT.L, ChuS.S. Partial Purification of Metallurgical Silicon by Acid Extraction [J]. J.Electrochem.Soc.1983, (30):455.
    [86]Dietl J. Hydrometallurgical purification of metallurgical grade silicon [J].Solar Cells.1983, (10):145-154.
    [87]Santos I.C, Gonalves A.P, Santos C.S, Almeida M, Afonso M.H and Cruz M.J. Purification of Metallurgical Grade Silicon by Acid Leaching [J]. Hydrometallurgy.1990, (23):237-246.
    [88]Kotval P.S.Process for the production of refined metallurgical silicon [P].U.S.Patent. 4195067.1997.
    [89]Margarido R, Bastos M.H et al.The Structural Effect on the Kinetics of Acid Leaching Refining of Fe-Si Alloys [J]. Materials Chemistry and Physics.1994, (38):342-347.
    [90]Margarido R, Figueiredo M.O, Martins J.P and Bastos M.H. Kinetics of Cid Leaching Refining of an Industrial Fe-Si Alloy [J]. Hydrometallurgy.1993, (34):1-11.
    [91]于站良.冶金级硅直接制备太阳能级硅预处理实验研究[D].昆明:昆明理工大学,2007.
    [92]罗大伟,张国梁,张剑,李军,李廷举.冶金法制备太阳能级硅的原理及研究进展[J].铸造技术.2008,(12):1721-1726.
    [93]Nakamura N, Baba H, Sakaguchi Y and Kato Y. Boron removal in molten silicon by a steam added plasma melting method [J].Materials Transactions.2004, (45):858-864.
    [94]Morvan D and AmourouxJ. Preparation of Photovoltaic Silicon by Purification of Metallurgical Grade Silicon with a Reactive Plasma Process [J].Plasma Chemistry and Plasma Processing.1981, (1):397-418.
    [95]H.M. Liaw and F.S.daragona.Purification of metallurgical grade silicon by slagging and impurity redistribution [J].Solar Cells.1983, (10):109-118.
    [96]Ryouji Noguchil, Kichiya Suzuki, Fumitaka Tsukihashi and Nobuo Sano. Thermodynamics of boron in silicon melt [J]. Metallurgical and materials transactions B.1994, (25):903-907.
    [97]Torsten Weiss and Klaus Schwerdtfeger. Chemical equilibria between silicon and slag melt [J]. Metallurgical and materials transactions B.1994, (25):497-504.
    [98]Leandro Augusto, Viana Teixeira and Kazuki Morita. Removal of boron from molten silicon using CaO-SiO2 based slags [J].ISIJ International.2009, (49):783-787.
    [99]Bale.C.W, Chartrand.P, Degterov. S.A, Eriksson, G.Hack, K.Mahfoud, R.B.MelanonJ.PeltonA.D. Petersen S.FactSage thermochemical software and databases [J].Calphad.2002, (26):189-228.
    [100]唱鹤鸣,样晓平,张德惠.感应炉熔炼与特种铸造技术[M].北京:冶金工业出版社,2002.
    [101]Leandro Augusto, Viana Teixeira et al. Behavior and state of boron in CaO-SiO2 slags during refining of solar grade silicon [J].ISIJ International.2009, (49):777-782.
    [102]M. Tanahashi et al.J. Mining. Distribution Behavior of Boron between SiO2-saturated NaO0.5-CaO-SiO2 Flux and Molten Silicon [J]. Mater.Process.Inst.Jpn.2002, (118):497-505.
    [103]Nakajima, Kazuo Usami, Noritaka.Crystal Growth of Silicon for Solar Cells [M], Hardcove,2009.
    [104]T.A. Engh. Principles of Metal Refining [M].Oxford Science, Oxford,2002.
    [105]Alper A.N. Phase diagrams materials science and technology [M].N Y:Academic press,1970.
    [106]韩明荣,张生芹,陈建斌.冶金原理[M].北京:冶金工业出版社,2008.
    [107]王新国,丁伟中,沈虹,张静江.金属硅的氧化精炼[J].中国有色金属学报.2002,(12):827-831.
    [108]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [109]J.R.Davis, A.Rohatgi, R.H. Hopkins, P.D. Blais, P. R.Choudhury, J.R. Mccormick, and H.C.Mollenkopf.Impurities in Solar Cells [J].IEEE.Trans.Electrodev.1980,(ED 27):677-687.
    [110]R.H. Hopkins and A. Rohatgi.Impurity effects in silicon for high efficiency solar cells [J].J.Cryst.Growth.1986, (75):67-79.
    [111]Takahiro M, Kazuki M and Nobuo S. Thermodynamics of Phosphorus in Molten Silicon [J]. Metallurgical and materials transactions B.1996,(27B):937-941
    [112]张树林.真空冶金装置(二):第二讲真空电子束炉[J].真空科学与技术.1984,(3):217-226.
    [113]宋宜梅,李少林,钟庆华.电子束技术在工业领域的应用[J].广西机械.2003(1):17-21
    [114]李正邦.特种冶金新进展[J].中国冶金.2002,(1):19-21.
    [115]Kazuhiro H, Noriyoshi Y and Yoshiei K. Evaporation of phosphorus in molten silicon by an electron beam irradiation method [J]. Materials Transactions.2004(45):844-849.
    [116]Takahiro M, Kazuki M and Nobuo S.Thermodynamics of Phosphorus in Molten Silicon. Metallurgical and materials transactions B,1996(27B):937-941.
    [117]Takahiro M, Kazuki M and Nobuo S. Thermodynamic Properties of Titanium and Iron in Molten Silicon [J]. Metallurgical and materials transactions.1997, (28B):861-867.
    [118]Takahiro M,Kazuki M and Nobuo S.Thermodynamic properties of aluminum, magnesium and calcium in molten silicon [J].Metallurgical and materials transactions.1998,(29B):1043-1049.
    [119]Kenneth C. Mills and Lee Courtney. Thermophysical properties of silicon [J].ISIJ International. 2000, (40):S130-138.
    [120]Takashi I and Masafumi M. Purification of metallurgical silicon for solar grade silicon by electron beam button melting [J].ISIJ International.1992, (32):635-642.
    [121]J.C.S.Pires, J.Otubo, A.F.B. Braga, P.R. Mei.The purification of metallurgical grade silicon by electron beam melting [J]. Journal of Materials Processing Technology.2005, (169):16-20.
    [122]L.C.Barbosa.Zone refining of silicon. Faculdade de Engenharia de Campinas [D], Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil,1981.
    [123]H.J.Moller.Semiconductors for solar cell applications [J].Progress in Materials Science.1991(35): 205-418.
    [124]M.Olette. Mem. Sci. Rev. Met,1960(57):467-80.
    [125]E.T.Turkdogan. Physical Chemistry of High Temperature Technology [M]. Academic Press, New York,1980.
    [126]苏彦庆,郭景杰,刘贵仲.有色合金真空熔炼过程熔体质量控制[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [127]邵象华.真空熔炼的物理化学[J].金属学报.1964,(7):85-103.
    [128]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [129]傅恒志,郭景杰,刘林等.先进材料定向凝固[M].北京:科学出版社,2008.
    [130]吴洪,阎红,王丹.区域熔炼法制备高纯度金属[J].化学工程.2001,(03):16-17.
    [131]S.X.Chen.The applications of the ceramic crucible in purified materials and ingot of Polysilicon [J]. Solar energy.2008, (2):23-24.
    [132]P.S.Ravishankar.Liquid Encapsulated Bridgman (LEB) method for directional solidification of silicon using calcium chloride [J]Journal of Crystal Growth.1989, (94):62-68.
    [133]P.Prakash, P.K.Singh et al. Use of silicon oxynitride as a graphite mold releasing coating for the growth of shaped multicrystalline silicon crystals [J].Journal of Crystal Growth.1994, (144):41-47.
    [134]C.S.Smith and L.Guttman. Measurement of Internal Boundaries in Three Dimensional Structures by Random Sectioning [J].Trans.AIME.1953, (197):81-83
    [135]Noriyoshi Y, Kazuhiro H et al.Removal of Metal Impurities in Molten Silicon by Directional Solidification with Electron Beam Heating [J].Materials Transactions.2004,45(3):850-857.
    [136]FA Trumbore. Solid solubility of impurity elements in germanium and silicon Bell [J]. Syst.Tech.J.1960, (39):205-233.
    [137]材料科学技术委员会编.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995.
    [138]N.Yuge, Y.Sakaguchi, H.Terashima and F.Aratani. Purification of silicon by directional solidification [J]. J.Japan.Inst.Metals.1997, (61):1094-1100.
    [139]Hirofumi M, Seiko N, Masayuki O et al.Effect of Twin Growth on Unidirectional Solidification Control of Multicrystal Silicon for Solar Cells [J]. Materials Transactions.2005, (46):935-943.
    [140]K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose and K. Nakajima. Formation mechanism of parallel twins related to si facetted dendrite growth [J].Scripta Mater.2007, (57):81-83.
    [141]K.A.Jackson.Growth and perfection of crystals [M]. Wiley. New York,1958,319.
    [142]K.Fujiwara, S.Tsumura, M.Tokairin, K.Kutsukake, N.Usami, S.Uda and K.Nakajima.Growth behavior of faceted Si crystals at grain boundary formation [J]. J.Cryst. Growth.2009, (312):19-23.
    [143]K.Nagashio and K.Kuribayashi.Growth mechanism of twin related and twin free facet Si dendrites [J].Acta Mater.2005, (53):3021-3023.
    [144]D.R.Hamilton and R.G.Seidensticker. Propagation Mechanism of Germanium Dendrites [J]. J.Appl.Phys.1960,(31):1165-1168.
    [145]K.Fujiwara, K.Nakajima, T.Ujihara et al. In situ observations of crystal growth behavior of silicon melt [J]. J.Cryst.Growth.2002, (243):275-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700