滇西新生代富碱岩浆与地幔流体演化及其成矿效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江—哀牢山富碱侵入岩带是我国西部的一条呈北西向延伸、规模宏大的新生代钾质火成岩带。已有研究指出,青藏高原之下富含深部(源)流体;根据稀有气体同位素的研究,证明青藏高原的主体部分受到来自软流圈物质流的顶托,其中地幔流体作用不可避免。自晚新生代以来,金沙江—哀牢山缝合带受印度—亚欧板块碰撞和与此相伴的青藏高原整体快速抬升的影响,断裂由挤压转为拉张,显示具裂谷特点的台缘坳陷,出现断陷盆地,并伴随地幔上拱和岩浆喷发,尤其是富碱岩浆和地幔流体沿深大断裂带上侵,由此发生的构造—岩浆活动及深部地质过程,为在缝合带及邻近地区广泛发育富碱侵入岩和其中深浅来源不同的各类岩石包体,及与之相关的多金属矿床的形成提供了有利的地质—构造背景条件。
     本文通过深入研究以六合岩体为代表的富碱岩浆和地幔流体作用,创造性应用透岩浆流体和地幔流体成矿理论,重点分析解剖以马厂箐大—中型Mo-Cu-Au矿床、金顶超大型Pb-Zn矿床为典型代表所揭示的深部过程与流体作用的系列成矿效应,综合阐述富碱岩浆的形成和运移—含矿地幔流体作用与演化—壳幔混染叠加成矿三者之间的内在联系。取得的主要成果如下:
     1.根据六合岩体霓辉正长斑岩及其深源包体的岩相学鉴定发现,伴随交代蚀变,寄主岩石和各类包体中普遍发育沿粒间和矿物裂隙或解理缝贯入或穿插的呈网状和细脉浸染状分布的富铁微晶玻璃,及其以独立岩石形式产出的富铁熔浆包体,进一步利用电子探针、扫描电镜和能谱分析确认,其物质组成以超微晶硅酸盐和石英为主,含有碳硅石、含铬自然铁等地幔标型矿物,其中超微晶金属和非金属矿物之间呈熔离结构交生。综合研究认为,富铁微晶玻璃和富铁熔浆包体反映了地幔流体的熔浆性质及其与富碱岩浆不混溶的特征,是地幔流体作用现实微观踪迹物质的两种表现形式;该物质作用于寄主岩石和深源包体,引发各种交代蚀变作用,如角闪石化、硅化和绿泥石化等,并导致结晶蚀变矿物组合总体上表现为暗色矿物由辉石→角闪石→黑云母→绿泥石的退变序列。
     2.富碱斑岩和包体及其典型矿床岩(矿)石的地球化学特征表现出极大的相似性。其稀土和微量元素配分模式基本一致,即表现为LREE富集、具无或弱的负Ce和负Eu异常;蛛网图呈大致类似的“驼峰”型,总体表现大离子亲石元素相对富集,且具明显的Ta-Nb-Ti负异常而显示受到古俯冲带流体交代特点。类似的Sr、Nd、Pb同位素组成显示源区为EMⅡ型富集地幔,并与含石榴石相地幔岩石的低程度部分熔融有关。由此表明,滇西新生代富碱斑岩和包体的形成及其相关多金属系列成矿统一受控于深部地质过程与地幔流体作用。
     3.锆石U-Pb定年显示,六合岩体中花岗岩包体成岩年龄(39.2±2Ma)与主岩(霓辉正长斑岩)和马厂箐多金属矿床中赋矿斑状花岗岩年龄(36.17±0.36Ma)基本一致。基底变质锆石的206Pb/238U平均加权年龄为108.4±4.4Ma,与角闪石化金云石榴透辉岩中角闪石Ar-Ar年龄102.87±1.19Ma基本吻合,代表地幔流体交代矿物的结晶年龄,表明地幔流体交代作用过程可能在白垩纪前后延续一个相当长的时期。
     4.结合富铁熔浆包体和不同部位富铁微晶玻璃及石英包晶中发现高钾富硅碱玻璃包裹体和矿物流体包裹体中出现的不混溶相态,以及稀有气体和铅同位素显示富硅碱质流体来自与富碱岩浆同源的EMⅡ型富集地幔等的综合研究表明,富碱侵入岩中硅不饱和与硅过饱和两类岩石的成因联系和岩浆起源及其演化关系表现为:前者直接源于富集地幔的富碱岩浆的结晶产物,后者源于由富碱岩浆的底侵作用和与之伴随的地幔流体作用引发地壳深熔形成长英质岩浆,再与幔源岩浆和地幔流体一定程度混合形成的富碱长英质岩浆的结晶产物。
     5.从区域上看,与富碱岩浆共同运移,并与之互不混溶的地幔流体作用及其演化表现为,由六合岩体→马厂箐岩体→金顶矿床,其流体的超微观物质组成由以含铬自然铁、碳硅石等地幔标型矿物为特征→以富铁硅酸盐矿物为主→硫化物、碳酸盐、硅酸盐及黄铁矿与石膏伴生为标志,表现伴随其参与成矿过程中,引发交代蚀变并导致壳幔混染,流体属性由熔浆流体→超临界流体→液相流体转化,也正是这一流体作用和演化过程,促进了滇西地区新生代不同矿种在不同部位、不同围岩和温压条件下伴随不同程度壳幔混染叠加成矿。
     6.应用并引伸透岩浆流体成矿理论和地幔流体作用释义,可以认为:本文论证的地幔流体微观踪迹物质(富铁微晶玻璃和富铁熔浆包体)与富碱(长英质)岩浆共存,并共同运移,但两者由于组成和性质的差异而互不混溶;当富碱(长英质)岩浆和地幔流体系统封闭较好,地幔流体则伴随岩浆的结晶过程对富碱岩石进行同步自交代蚀变,在岩体内或其深部形成矿床,构成正岩浆成矿类型,如马厂箐斑岩型Mo矿;若在此成岩成矿过程中发生构造扰动,则地幔流体进入岩体与围岩接触带或紧邻接触带的地层围岩中进行交代蚀变成矿,构成接触带成矿类型,如马厂箐矽卡岩型Cu(Mo)矿和地层围岩中的构造破碎蚀变岩型金矿。若岩浆和流体运移的深大断裂体系发育,环境处于相对开放,则地幔流体伴随富碱岩浆的成岩过程而脱离岩浆沿分支断裂通道或拆离滑脱带进入远离岩体的不同地层岩石中,伴随与地壳岩石相互作用而引发交代蚀变,进而导致壳幔混染叠加成矿,构成远程热液成矿类型,如产出于沉积碎屑岩系中的金顶超大型铅锌矿床。
Alkaline-rich intrusive belt along the Jinshajiang-Ailaoshan is one of the largestCenozoic potassium igneous rocks belts which is stretching from northwest tosoutheast in Western China. It has been pointed out that lower Tibetan is rich in deepfluids. And the3He/4He shows that the main body of Tibetan Plateau is uplifted by theasthenospheric material flow which includes mantle fluid. Since Cenozoic era, as aresult of the Indian-Eurasian plate collision and uplift, the nature of faults istransformed from extrusion to pull-apart and the platform edge is depression whichinduces the formation of faulted basins. And thus the tectonic-magma active and deepgeologic process provide a favorable condition to the mantle upwarp and magmaeruption, especially alkaline-rich melt and mantle fluid moving along the deep faults.
     Based on the studies of alkaline-rich intrusive rock from Liuhe County, YunnanProvince and metallogenic theory on trans-magma and mantle fluid, the main attentionis put on the Machangqing large-middle Mo-Cu-Au deposit and Jinding super-largePb-Zn deposit in order to reveal the metallogenic effect in deep geologic process andthe relationship among the formation and transportation of alkaline-magma, evolutionof ore-forming mantle fluid and crust-mantle overlapping mineralization. The researchfruits are listed as followed:
     1.Petrologic studies of the aegirine syenite porphyry and deep-sourced xenolithssuggest the existence of Fe-rich glass. The Fe-rich glass develops in the space betweenmineral grains and along the cleavages. The electron microprobe, scanning electronmicroscope and energy spectrum confirm the Fe-rich melt xenoliths are mainlycomposed of ultra-microlite silicates and quartz, as well as moissanite and Cr-bearing native iron. The moissanite and Cr-bearing native iron are considered to be mantlesourced, while the ultra-microlite metal and non-metal substances shows unmxingtexture. The Fe-rich glass and Fe-rich melt xenoliths are the products of meltcharacteristic of mantle fluid and unmixing features of alkaline-rich magma, as well asthe two manifestations of microscopic traces of mantle fluid. As a result of theinteractions between mantle fluid and host rocks, amphinolization, silication andchloritization developed as well as the degrading succession of dark minerals frompyroxene→amphibole→biotite→chlorite.
     2.Geochemical similarity among alkaline-rich magma, deep xenoliths and typicalpre deposits is noticeable. REE patterns and spider diagram of trace elements are almostthe same. LREE are enriched, while the negative Ce and Eu abnormalities are notsignificant. The spider diagram of trace elements is like a “camel back”. Large ionlithophile elements (LILE) are relatively enriched, while the depletion of Ta-Nb-Tisuggests the fluid metasomatism from palaeo-subduction zone. Sr, Nd and Pb isotopegeochemistry compositions show that the mantle fluid origins from EM Ⅱmantle whichis related to the low degree partial melt of the garnet mantle rocks. The formation ofalkaline-rich intrusive rocks and related deep xenolths, as well as the metal ore depositsare controlled by the deep geologic process and mantle fluid.
     3.Geochronologic studies of zircon U-Pb reveal that granite xenoliths from Liuheaegirine syenite porphyry formed at39.2±2Ma, which is similar to their host rocks andore-bearing porphyritic granites (36.17±0.36Ma) from Machangqing large-middleMo-Cu-Au deposit.206Pb/238U weighted average age of metamorphic zircon frombasement is108.4±4.4Ma, which is close to the amphibole Ar-Ar ages (102.87±1.19Ma)of amphinolized phlogopite-garnet canaanite.206Pb/238U weighted average age ofmetamorphic zircon and amphibole Ar-Ar age of amphinolized phlogopite-garnetcanaanite stand for the crystallized time of mantle fluid metasomatic minerals andimply that mantle fluid is active since Cretaceous Era.
     4. Combined with the noble gas isotope and Pb isotope of alkaline-rich intrusiverocks, immiscible phase of high potassium silicon-alkaline-rich glass inclusions andfluid inclusions from quartz peritecticum reveal that the silicon-alkaline-rich fluidorigins from EMⅡ mantle. Alkaline-rich intrusive rocks can be divided into two types,the one is silicon-undersaturation type, and the other one is silicon-oversaturation type.The former is the direct product of alkaline-rich magma derived from enriched mantle;the latter is the hybrid product of alkaline-rich magma and felsic magma. Thealkaline-rich magma under-plating leads to the crustal anatexis, during which process, the felsic magma formed.
     5.Judging from the regional geologic backgrounds, from Liuhe aegirine syeniteporphyry→Machangqing large-middle Mo-Cu-Au deposit→Jinding super-large Pb-Zndeposit, compositions of mantle fluid change from ultra-microlite glass containingmoissanite and Cr-bearing native iron→Fe-rich silicates→sulfides, carbonates,silicates, and pyrite and gypsum. The composition changes reveal the nature of mantlefluid varies during the evolution process, from melt→supercriticalfluid→hydrothermal fluid. No other than this mantle fluid process induces theformation of Cenozoic mineralization in Western Yunnan Province.
     6.Applied and explicated the metallogenic theory on trans-magma and mantlefluid, it is believed that microscopic traces of mantle fluid (Fe-rich glass and Fe-richmelt xenoliths) and alkaline-rich magma (felsic magma) move synchronously, howeverunmixing due to the difference of compositions and nature. When the fluid and magmais well trapped, the alkali-rich porphyry is synchronically self-replaced and alterated bythe mantle fluid in the process of alakali-rich magma crystallizztion, and theotrthomagmatic deposit formed in magma body or its deep-seat, and the typical depositis Machangqing porphyry Mo-deposit; if tectonic perturbation happens, the mantlefulid would enter into the contact zone between magmatic rocks and wall rocks or strataclose to the contact zone, leads the formation of contact-metasomatic type deposit.The typical deposit is Machangqing porphyry Cu-deposit, which exists in skarn-marblezone, while porphyry Au-deposit exists mainly in atrsta rocks; if the deep faults are welldeveloped, and environment is relatively open, the ore-forming mantle fluid will flowfar from alkali-rich magma along the branch fractures and enter into different strata androcks, just as epithermal deposit form, which is Jinding supper-large Pb-Zn deposit.
引文
白嘉芬,王长怀,纳荣仙.1985.云南金顶铅锌矿床地质特征及成因初探[J].矿床地质,4(1):1-9.
    白文吉,杨经绥,方青松,等.2001.寻找超高压地幔矿物的存储库——豆荚状铬铁矿[J].地学前缘,8(3):111-121.
    白文吉,杨经绥,方青松,等.2004.西藏蛇绿岩地幔中的主要自然金属矿物[J].地学前缘,11(1):179-187.
    毕献武,胡瑞忠.1998.哀牢山金矿带成矿流体稀土元素地球化学[J].地质论评,44(3):264-269.
    毕献武,胡瑞忠,何明友.1996.哀牢山金矿带ESR年龄及其地质意义[J].科学通报,41(4):1301-1303.
    毕献武,胡瑞忠,彭建堂,等.2005.姚安和马厂箐富碱侵入岩体的地球化学特征[J].岩石学报,21(1):113-124.
    毕献武,胡瑞忠,叶造军,等.1999. A型花岗岩类与铜成矿关系研究——以马厂箐铜矿为例[J].中国科学D辑,29(6):489—495.
    边千韬.1998.扬子克拉通南缘低速柱与超大型矿床[J].中国科学D辑,28(增刊):92-96.
    蔡永文.2010.云南马厂箐铜钼金多金属矿床成因探讨[D].成都理工大学,硕士学位论文,1-50.
    曹荣龙.1996.地幔流体的前缘研究.地学前缘,3(3-4):161-171.
    曹荣龙,朱寿华.1995.地幔流体与成矿作用[J].地球科学进展,10(4):323-329.
    曹荣龙,朱华寿,王俊文.1994.白云鄂博铁-稀土矿床的物质来源和成因理论问题[J].中国科学B辑,24(12):1298-1307.
    陈衍景,李诺.2009.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J].岩石学报,25(10):2477—250.
    陈毓川,裴荣富,宋天锐,等.1998.中国矿床成矿系列初论[M].北京:地质出版社:1-104.
    楚亚婷,刘显凡,赵甫峰,卢秋霞,李春辉.2011.滇西马厂箐钼铜金矿床中赋矿斑状花岗岩定年及其地质意义[J].矿物学报(增刊),(S1):567-769
    从柏林,王清晨.2000.大陆深俯冲作用研究引发的新思维[J].自然科学进展,10(9):777-782.
    丛峰,林仕良,唐红,等.2010.滇西梁河三叠纪花岗岩的错石微量元素、U-Pb和Hf同位素组成.地质学报,84(8):1155-1164.
    崔银亮,陈贤圣,张映旭,等.2002.滇西新生代与富碱斑岩有关的金矿床成矿特征和成矿条件[J].大地构造与成矿学,26(4):404-408.
    邓万明.1998c.青藏高原北部新生代板内火山岩[M].北京:地质出版社:1-180.
    邓万明,黄萱,钟大赉.1998a.滇西金沙江带北段的富碱斑岩及其与板内变形的关系[J].中国科学D辑,28(2):111-117.
    邓万明,黄萱,钟大赉.1998b.滇西新生代富碱斑岩的岩石特征与成因[J].地质科学,33(4):412-425.
    邓万明,钟大赉.1997.壳-幔过渡带及其在岩石圈构造演化中的地质意义[J].科学通报,
    42(23):2474-2481.邓晋福,莫宣学,赵海玲,等.1998.壳幔物质与深部过程[J].地学前缘,
    5(3):67-175.
    邓晋福,赵海玲,莫宣学,等.1996.中国大陆根—柱构筑:大陆动力学的钥匙[M].北京:地
    质出版社.
    丁清峰,孙丰月.2001.地幔流体研究进展[J].地质科技情报,20(3):21-26.
    丁振举,姚书振.1997.地幔流体及其成矿作用[J].地质科技情报,16(1):72-76.
    丁振举,姚书振,刘丛强,等.2003.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J].岩石学报,19(4):792-798.
    杜乐天.1983.碱交代作用的地球化学共性和归类[J].矿床地质,2(1):33-41.
    杜乐天.1986.碱交代作用的地球化学原理[J].中国科学B辑,(1):81-90.
    杜乐天.1988.幔汁H-A-C-O-N-S流体[J].大地构造与成矿学,12(1):87-94.
    杜乐天.1996a.羟碱流体地球化学原理——重论热液作用和岩浆作用[M].北京:科学出版社,:1-552.
    杜乐天.1996b.地壳流体与地幔流体间的关系[J].地学前缘,3(3-4):172-180.
    杜乐天.1998.地幔流体与玄武岩及碱性岩岩浆成因[J].地学前缘,5(3):145-157.
    杜乐天.2009.幔汁(HACONS流体)地球内动因探索[J].地球学报,30(6):739-748.
    杜星星,樊祺诚.2011.汉诺坝地幔捕掳体中富硅熔体的成因及其意义[J].岩石学报,27(5):1267-1274.
    范宏瑞,谢奕汉,王凯怡,等.2001.碳酸岩流体及其稀土成矿作用[J].地学前缘,8(4):289-295.
    樊祺诚,杜星星,隋建立,等.2010.汉诺坝-阳原火成碳酸岩成因探讨[J].岩石学报,26(11):3189-3194.
    樊祺诚,杜星星,隋建立,等.2011.大兴安岭地幔橄榄岩中熔体的多样性及其成因[J].岩石学报,27(5):1262-1266.
    樊祺诚,刘若新,彭礼贵.1992.我国东南沿海地区地幔流体性质及其意义[J].科学通报,37(17):1584-1587.
    樊祺诚,刘若新,杨瑞英.1993.地幔橄榄岩矿物中富稀土元素的CO2流体包裹体及其地球化学意义[J].岩石学报,9(4):411-417.
    樊祺诚,隋建立,徐平,等.2005.中国东部地幔矿物中富硅、碱熔融包裹体:对岩石圈演化的启示[J].中国科学D辑(地球科学),35(10):907-913.
    葛良胜.2007.滇西北富碱岩浆活动与金多金属成矿系统[D].北京:中国地质大学(北京).
    葛良胜,王文成,李汉光,等.2005.滇西北富碱岩体与金矿成矿[M].北京:地震出版社.
    葛良胜,邹依林,李振华,等.2002.云南马厂箐(铜、钼)金矿床地质特征及成因研究[J].地质与勘探,38(5):11-17.
    龚日祥,卢成忠.2008.浙西晚中生代富碱高钾花岗岩类的岩石地球化学特征及构造意义[J].岩石学报,24(10):2343-2351.
    顾雪祥,刘丽,董树义,等.2010.山东沂南金铜铁矿床中的液态不混溶作用与成矿流体包裹体和氢氧同位素证据[J].矿床地质,29(1):43–57.
    郭晓东.2009.云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因[D].北京:中国地质大学(北京).
    郭晓东,侯增谦,陈祥,等.2009.云南马厂箐富碱斑岩埃达克岩性质的厘定及其成矿意义[J].岩石矿物学杂志,28(4):375-386.
    郭晓东,牛翠祎,王治华,等.2011a.滇西马厂箐岩体及其中深源包体地球化学特征[J].吉林大学学报(地球科学版),41(SUP1):141-153.
    郭晓东,王治华,屈文俊.2008.云南省马厂箐斑岩型铜、钼矿辉钼矿Re-Os年龄及其地质意义[A].第九届全国矿床会议论文集:453-454.
    郭晓东,王治华,王梁,等.2011b.滇西马厂箐斑岩型铜-钼-金矿集区成岩成矿时代探讨[J].地质论评,57(5):659-669.
    郭晓东,王治华,王梁,等.2011c.云南马厂箐岩体(似)斑状花岗岩锆石LA-ICP-MS U-Pb年龄及地质意义[J].中国地质,38(3):610-622.
    郭晓东,王治华,王欣,等.2010.云南省马厂箐Cu-Mo-Au矿床花岗斑岩成矿地质证据[J].矿床地质,29(5):890-902.
    洪大卫,王涛,童英.2007.中国花岗岩概述[J].地质论评,53(增刊):9-16.
    何龙清,陈开旭,余凤鸣,等.2004.云南兰坪盆地推覆构造及其控矿作用[J].地质与勘探,40(4):7-12.
    何明勤,杨世瑜,陈昌勇,等.2004a.滇西小龙潭-马厂箐地区铜多金属矿床地质地球化学及成因研究[M].北京:地质出版社.
    何明勤,杨世瑜,刘家军,等.2004b.云南祥云金厂箐金(铜)矿床的成矿流体特征及流体来源[J].矿物岩石,24(2):35-40.
    何明友,胡瑞忠.深部流体——老王寨金矿含矿流体来源的一种可能性[J].地质地球化学,1996,24(2):27-31.
    和文言,莫宣学,喻学惠,等.2011.滇西马厂箐斑岩型铜钼(金)矿床成岩成矿时代研究[J].地学前缘,18(1):207-215.
    侯增谦,王二七,莫宣学,等.2008.青藏高原碰撞造山与成矿作用[M].北京:地质出版社:1-980.
    侯增谦,赵志丹,高永丰,等.2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山——岩浆作用的证据[J].岩石学报,22(4):761-774.
    侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,2004,31(1):1-14.
    胡瑞忠,毕献武, Turner G,等.1997a马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系[J].中国科学D辑,27(6):503-508.
    胡瑞忠,毕献武, Turner G,等.1999.哀牢山金矿带金成矿流体He和Ar同位素地球化学[J].中国科学D辑,29(4):321-330.
    胡瑞忠,毕献武,邵树勋,等.1997b.云南马厂箐铜矿床氦同位素组成研究[J].科学通报,42(14):1542-1545.
    胡书敏,张荣华,张雪彤.2006.上地幔超高压流体的金刚石压砧实验研究[J].地质学报,80(10):1588-1597.
    黄智龙,刘丛强.1999.云南老王寨金矿区煌斑岩成因及其与金矿化的关系[M].北京:地质出版社:82-97.
    贾福聚.2010.云南老君山成矿区成矿系列及成矿规律研究[D].昆明:昆明理工大学.
    蒋福珍,陆洋,方剑.2001.三江地区不同场源重力场特征及其与构造、地震的关系[J].地壳形变与地震,21(2):51-58.
    阚荣举.1992.云南地球物理文集[M].昆明:云南大学出版社.
    阚荣举,林中洋.1986.云南地壳上地幔构造的初步研究[J].中国地震,2(4):50-61.
    李保华,顾雪祥,付绍洪,等.2010.贵州水银洞金矿床成矿流体不混溶的包裹体证据[J].地学前缘,17(2):286-294.
    李春辉,刘显凡,赵甫峰,等.2011.金顶超大型铅锌矿床中的地幔流体现实踪迹与壳幔混染叠加成矿机制[J].地学前缘,18(1):194-206.
    李福春,朱金初,金章东.2000.熔融包裹体研究的最新进展[J].世界地质,19(1):8-14.
    黎彤.1985.岩石圈及其结构层的元素丰度[J].地质学报,59(3):219-227.
    李献华,周汉文,韦刚健,等.2002.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约[J].地球化学,31(1):26-34.
    李亚林,王成善,尹海生,等.2006.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报,80:1118-1130.
    李志明,廖宗廷,刘家军,等.2006.兰坪盆地金顶超大型铅锌矿床成矿年龄探讨[J].地质找矿论丛,21(1):23-27.
    梁华英,谢应雯,张玉泉,等.2004.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例[J].自然科学进展,14(1):116-120.
    林传勇,史兰斌,陈孝德,等.1994.幔源包体中富K, Na玻璃体:上地幔流体的证据[J].科学通报,39(9):820-823.
    林清茶.2007.哀牢山—金沙江钾质碱性岩带地球化学特征及其构造意义[D].北京:中国科学院研究生院.
    林清茶,夏斌,张玉泉,等.2005.哀牢山—金沙江碱性岩带南段云南金平八一村钾质碱性花岗岩锆石SHRIMP U-Pb年龄[J].地质通报,24(5):420-423.
    刘斌,沈坤.1999.流体包裹体热力学[M].北京:地质出版社:1-290.
    刘丛强,黄智龙,李和平,等.2001a.地幔流体及其成矿作用[J].地学前缘,8(4):231-243.
    刘丛强,苏根利,李和平,等.2001b.地幔流体作用—地幔捕虏体中流体包裹体的研究[J].地学前缘,8(3):83-93.
    刘福田,刘建华,何建坤,等.2000.滇西特提斯造山带下扬子地块的俯冲板片[J].科学通报,45(1):79-84.
    刘若新.1992.中国新生代火山岩年代学与地球化学[M].北京:地震出版社:1-427.
    刘若新,樊祺诚.1992.地幔橄榄石流体包裹体中的微量元素[J].岩石学报,8(2):185-189.
    刘显凡.1999.富碱斑岩特征及其成岩成矿地球化学机制研究——以云南中甸-丽江-大理地区为例[D].中国科学院地球化学研究所.
    刘显凡,蔡永文,卢秋霞,等.2010.滇西地区富碱斑岩中地幔流体作用踪迹及其成矿作用意义[J].地学前缘,17(1):114-136.
    刘显凡,刘家铎,阳正熙,等.2002a.富碱斑岩中超镁铁深源包体岩石的矿物学特征[J].矿物学报,22(3):289-295.
    刘显凡,刘家铎,张成江,等.2002b.地幔流体交代作用的系列成矿效应[J].矿床地质,21(增刊):1002-1004.
    刘显凡,刘家铎,张成江,等.2003.富碱斑岩中超镁铁深源包体岩石的元素地球化学分析[J].矿物岩石,23(3):39-43.
    刘显凡,刘家铎,张成江,等.2004.滇西富碱斑岩型矿床岩体和矿脉同位素地球化学研究[J].矿物岩石地球化学通报,23(1):32-39.
    刘显凡,卢秋霞,宋祥峰,等.2007.云南六合霓辉正长斑岩中特殊包体岩石的发现及其意义[J].矿物学报,27(3/4):249-254.
    刘显凡,宋祥峰,卢秋霞,等.2006a.地幔流体在滇西富碱斑岩成岩成矿过程中的作用——地质年代学和同位素地球化学制约[J].吉林大学学报(地球科学版),36(4):503-510.
    刘显凡,陶专,卢秋霞,等.2006b.云南金顶超大型铅锌矿床地幔流体成矿作用探讨[J].矿床地质,25(增刊):79-82.
    刘显凡,赵甫峰,陶专,等.2009a.云南剑川金河岩体中地幔流体交代特征及其成矿作用意义[J].矿床地质,28(2):185-194.
    刘显凡,朱赖民,赵甫峰,等.2009b.南秦岭杨家坝多金属矿区中的碳酸岩岩相学及成矿地球化学[J].岩石学报,25(5):1216-1224.
    刘英俊.1984.元素地球化学[M].北京:科学出版社:1–281.
    路凤香.1989.地幔岩石学[M].武汉:中国地质大学出版社.
    卢焕章.1990.流体熔融包裹体[J].地球化学,19(3):225–229.
    卢焕章.2008a.地幔岩中流体包裹体研究[J].岩石学报,24(9):1954-1960.
    卢焕章.2008b. CO2流体与金矿化:流体包裹体的证据[J].地球化学,37(4):321-328.
    卢焕章.2011流体不混溶和流体包裹体[J].岩石学报,27(5):1253-1261.
    卢焕章,范宏瑞,倪培,等.2004.流体包裹体[M].北京:科学出版社:1–487.
    罗照华,梁涛,陈必河,等.2007b.板内构造运动与成矿[J].岩石学报,23(8):1945-1956.
    罗照华,卢欣祥,陈必河,等著.2009.透岩浆流体成矿作用导论[M].北京:地质出版社:1-177.
    罗照华,卢欣祥,郭少峰,等.2008a.透岩浆流体成矿体系[J].岩石学报,24(12):2669-2678.
    罗照华,卢欣祥,刘翠,等.2011.岩浆热液成矿理论的失败:原因和出路[J].吉林大学学报(地球科学版),41(1):2-11.
    罗照华等,卢欣祥,王秉璋,等.2008b.造山后脉岩组合与内生成矿作用[J].地学前缘,15(4):1-12.
    罗照华,莫宣学,侯增谦,等.2006.青藏高原新生代形成演化的整合模型——来自火成岩的约束[J].地学前缘,13(4):196-211.
    罗照华,莫宣学,卢欣祥,等.2007a.透岩浆流体成矿作用——理论分析与野外证据[J].地学前缘,14(3):165-183.
    吕伯西,钱祥贵.2000.滇西三江地区新生代碱性系列岩浆岩构造类型[J].云南地质,19(3):232-243.
    吕伯西,王增,张能德,等.1993.三江地区花岗岩类及其成矿专属性[M].北京:地质出版:1-220.
    毛景文,李晓峰.2004.深部流体及其与成矿成藏关系研究现状[J].矿床地质,23(4):520-532.
    毛景文,李荫清.2001.河北省东坪碲化物金矿流体包裹体研究:地幔流体与成矿关系[J].矿床地质,20(1):23–36.
    毛景文,李晓峰,张荣华,等.2005.深部流体成矿系统[M].北京:中国大地出版社:1-365.
    毛景文,张作衡,张招崇,等.1999.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义[J].地质论评,45(4):412-417.
    莫宣学,邓晋福,董方浏,等.2001.三江造山带火山岩构造组合及其意义[J].高校地质学报,7(2):121-138.
    莫宣学,赵志丹,邓晋福,等.2004.青藏高原中新生代火成岩的深部探针意义:若干新成果与新认识[M].见:陈运泰,滕吉文,阚荣举等主编.中国大陆地震学与地球内部物理学研究进展.北京:地震出版社:449-461.
    莫宣学,赵志丹,邓晋福,等.2007.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示[J].现代地质,21(2):255-264.
    莫宣学,赵志丹,喻学惠,等.2009.青藏高原新生代碰撞——后碰撞火成岩[M].北京:地质出版社:1-396.
    牟传龙,余谦.2004.金顶铅锌矿床相关地质问题及成因探讨[J].矿物岩石,24(1):48-51.
    倪培, A H RANKIN,周进.2003.白云鄂博地区碳酸岩墙及岩墙旁侧石英岩中的包裹体研究[J].岩石学报,19(2):297-306.
    倪师军,刘显凡,金景福,等.1997.滇黔桂三角区微细浸染型金矿成矿流体地球化学[M].成都:成都科技大学出版社:88-97.
    P.亨德森编.1989.稀土元素地球化学[M].北京:地质出版社:11-19.
    彭建堂,毕献武,胡瑞忠,等.2005.滇西马厂箐斑岩铜(钼)矿床成岩成矿时限的厘定[J].矿物学报,25(1):69-74.
    覃功炯,朱上庆.1991.金顶铅锌矿床模式及找矿预测[J].云南地质,10(2):145-190.
    邱家骧主编.2002.岩浆岩岩石学[M].北京:地质出版社.
    邱检生,徐夕生,蒋少涌.2003.地壳深俯冲与富钾火山岩成因[J].地学前缘,10(3):191-200.
    任康绪.2003.碱性岩研究进展评述[J].化工矿床地质,25(3):151-163.
    沈渭洲主编.1987.稳定同位素地质[M].北京:原子能出版社:1-425.
    施加辛,易凤煌,文启錞.1983.兰坪金顶铅锌矿床的岩矿特征及成因[J].云南地质,2(3):179-185.
    宋祥峰.2007.地幔流体交代作用的岩相学和岩石化学特征——以滇西富碱斑岩及其中包体岩石研究为例[D].成都:成都理工大学,硕士研究生学位论文.
    宋祥峰,刘显凡,陶专,等.2006.滇西富碱斑岩及其中包体岩石的地幔流体交代作用特征[J].矿物岩石,26(4):19-25.
    宋祥峰,刘显凡,陶专,等.2007.地幔流体的交代作用——来自碱性正长岩及其深源岩石包体的证据[J].岩石矿物学杂志,26(4):310-314.
    宋玉财,胡文瑄,金之钧,等.2006.山东昌乐刚玉巨晶中的流体和熔融包裹体及其流体组分特征[J].地球化学,35(4):377–387.
    孙丰月,石准立.1995.试论幔源C-H-O流体与大陆板内某些地质作用[J].地学前缘,2(1-2):167-174.
    孙景贵,赵俊康,陈军强,等.2007.延边小西南岔富金铜矿床的成矿机理研究:矿物流体包裹体的稀有气体同位素地球化学证据[J].中国科学D辑,37(12):1588-1598
    滕吉文,姚敬金,江昌洲,等.2009.地壳深部岩浆岩岩基体与大型、超大型金属矿床的形成及找矿效应[J].岩石学报,25(5):1009-1038.
    滕彦国,刘家铎,张成江,等.2000.兰坪盆地深源流体成矿的地质-地球化学信息[J].地质找矿论丛,15(4):314-319
    万哨凯,夏斌,张玉泉.2005.老君山正长岩锆石SHRIMP定年[J].大地构造与成矿学,29(4):522-526.
    王安建,高兰,刘俊来,等.2007.论兰坪金顶超大型铅锌矿容矿角砾岩的成因[J].地质学报,81(4):891-897.
    王登红,屈文俊,李志伟,等.2004.金沙江-红河成矿带斑岩铜钼矿的成矿集中期: Re-Os同位素定年[J].中国科学D辑(地球科学),34(4):345-349.
    王登红,杨建民,薛春纪.2001.西南三江—大渡河地区喜马拉雅期金成矿作用的同位素年代学证据.见:陈毓川主编,喜马拉雅期内生成矿作用研究[M].北京:地质出版社:84-95.
    王国芝,胡瑞忠,王成善,等.2001.云南金顶超大型铅锌矿床的成矿地质背景[J].矿物学报,21(4):571-577.汪缉安,徐青,张文仁.1990.云南大地热流及地热地质问题[J].地震地质,12(4):367-377.
    王建,李建平,王江海.2003.滇西大理一剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用地球化学研究[J].岩石学报,19(1):61-70.
    王江海,漆亮,尹安,等.2001.云南老王寨金矿区煌斑岩的侵位年龄和铂族元素地球化学[J].中国科学D辑,31(增刊):122-127.
    王江海,颜文,常向阳,等.1998.陆相热水沉积作用[M].北京:地质出版社:1-132.
    王京彬,李朝阳.1991.金顶超大型铅锌矿床REE地球化学研究[J].地球化学,12(4):359-365.
    王京彬,李朝阳,陈晓忠.1990.金顶超大型铅锌矿喷流沉积证据及成矿物质来源[J].矿物岩石地球化学通报,(02):120-122.
    王义昭,熊家镛,林尧明.1988.云南地质构造的若干特点[J].云南地质,7(2):105-110.
    王治华,郭晓东,陈祥,等.2010a.云南祥云马厂箐富碱斑岩体的地球化学特征及其形成的构造环境[J].地质论评,56(1):125-134.
    王治华,郭晓冬,葛良胜,等.2009.云南祥云马厂箐富碱斑岩体的地球化学特征[J].地质与勘探,45(4):343-351.
    王治华,郭晓东,葛良胜,等.2011a.云南马厂箐铜多金属矿床的成岩成矿时代及成矿动力学背景[J].矿床地质,30(1):45-56.
    王治华,郭晓东,葛良胜,等.2011b.云南马厂箐富碱斑岩体的稀土元素地球化学特征[J].矿产与地质,25(1):63-68.
    王治华,潘爱军,郭晓东,等.2010b.云南马厂箐多金属矿床地质地球化学特征及成矿机制探讨[J].地球化学,39(6):553-565.
    韦栋梁,夏斌,张玉泉,等.2005.滇西卓潘-六合碱性岩的辉石成分及其岩石化学特征.矿物岩石,25(2):15-19.
    魏启荣,沈上越,莫宣学,等.2003.三江中段两古陆铅同位素地球化学边界的厘定[J].岩石矿物学杂志,22(2):143-149.
    魏启荣,王江海.2004a.青藏东缘六合一香多镁铁质深源包体的平衡P-T条件及其指示意义[J].地球科学进展,19(5):722-731.
    魏启荣,王江海.2004b.青藏东缘六合—香多镁铁质深源包体的岩石学和矿物学研究[J].矿物岩石,24(1):17-28.
    温春齐,蔡建明,刘文周,等.1995.金顶铅锌矿床流体包裹体地球化学特征[J].矿物岩石,15(4):78-84.
    温春齐,多吉.2009.矿床学研究方法[M].成都:四川科学技术出版社:1-230.
    吴淦国,吴习东.1989.云南金顶铅锌矿床构造演化及矿化富集规律初探[J].地球科学,14(5):476-485.
    吴开兴.2005.滇西新生代富碱火成岩及其与金成矿关系研究——以北衙金矿为例[D].贵阳:中国科学院地球化学研究所.
    吴冉.2011.云南马厂箐铜钼金多金属矿床系列成矿成因分析[D].成都理工大学,硕士学位论文,1-67.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.
    夏斌,耿庆荣,张玉泉.2007.滇西鹤庆地区六合透辉石正长斑岩锆石SHRIMP U-Pb年龄及其意义[J].地质通报,26(6):692-697.
    夏斌,林清茶,张玉泉.2005.哀牢山—金沙江岩带透辉石花岗岩锆石SHRIMP U-Pb年龄及地质意义——以玉召块、马头湾和十里村岩体为例[J].大地构造与成矿学,29(1):35-43.
    夏斌,刘立文,张玉泉,等.2011.云南马厂箐钾质碱性花岗岩特征和锆石U-Pb年龄[J].大地构造与成矿,35(3):452-456.
    夏林圻.2002.岩浆岩中的熔体包裹体[J].地学前沿,9(2):403-414.
    夏萍,徐义刚.2004.滇西岩石圈地幔域分区和富集机制:新生代两类超钾质火山岩的对比研究[J].中国科学D辑,34(12):1118-1128.
    谢应雯,张玉泉.1987.横断山不同成因类型花岗岩类岩石中黑云母的标型特征[J].矿物学报,7(3):245-254.
    向才英,周真恒.2000.云南地震活动与岩石圈热结构的关系[J].中国地震,16(3):263-272.
    肖化云,刘丛强,黄智龙.2001.金刚石包裹体中的古地幔信息[J].地球科学进展,16(2):244–250.
    肖庆辉,李树臣.1995.当代地质前沿的重大问题[M].北京:地质出版社:1-67.
    徐九华,谢玉玲,王丽君,等.2003.地幔矿物CO2流体包裹体的微量元素特征[J].岩石学报,19(2):307-311.
    徐受民.2007.滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系[D].中国地质大学.
    许文良,王冬艳,王清海,等.2004.鲁西纯橄岩捕虏体中富硅质熔(流)体的交代作用:对中生代岩石圈地幔减薄的意义[J].地质学报,78(1):72-79.
    徐学义.1996.地幔交代作用与地幔流体[J].地质科技情报,15(1):1-6.
    徐学义,黄月华,夏林圻,等.1997.岚皋金云母角闪辉石岩类捕虏体:地幔交代作用的证据[J].岩石学报,13(1):1-13.
    徐兴旺,蔡新平,宋保昌,等.2006.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制[J].岩石学报,22(3):631-642.
    徐义刚.1993.适用于幔源包体的地质温度计[J].岩石学报,9(2):167-179.
    薛春纪,陈毓川,杨建民,等.滇西兰坪盆地构造体制和成矿背景分析[J].矿床地质,2002,21(1):36-44.
    薛春纪,王登红,杨建民,等.1999.兰坪金顶-白秧坪成矿流体中发现地幔He-壳幔流体成矿证据[J].地球学报,20(SU):385-389.
    杨经绥,徐向珍,李源,等.2011.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出[J].岩石学报,27(11):3171-3178.
    杨雷,金之钧.2001.深部流体中氢的油气成藏效应初探[J].地学前缘,8(4):337-341.
    杨世瑜,江祝伟.1991.云南弥渡马厂箐金矿区构造体系控矿特征及成矿预测.昆明工学院科研报告.内部资料.
    阳正熙, Anthony E, Williams-Jones,等.2001.四川牦牛坪稀土矿床矿物流体包裹体研究[J].矿物岩石,21(2):26-33.
    叶庆同,胡云中,杨岳清,等.1992.三江地区区域地球化学背景和金银铅锌成矿作用[M].北京:地质出版社:1-240.
    伊海生,林金辉,赵西西,等.2008.西藏高原沱沱河盆地渐新世-中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探[J].沉积学报,26(1):1-10.
    应立娟,王登红,唐菊兴,等.2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,84(8):1165-1174.
    於崇文.2003.地球系统的复杂性(上、下册)[M].北京:地质出版社,1135.
    於崇文.2006.矿床在混沌能边缘分形生在(上)[M].合肥:安徽教育出版社,705
    喻学惠.1995.地幔交代作用:研究进展、问题及对策[J].地球科学进展,10(4):330-335.
    喻学惠,莫宣学,曾普胜,等.2006.云南马关地区新生代碧玄岩中地幔包体研究[J].岩石学报,22(3):621-630.
    喻学惠,莫宣学,赵欣.2008a.滇西“三江”地区新生代火山岩,富碱斑岩及深源岩石包体.见:莫宣学,赵志丹,喻学惠等著.青藏高原地质构造与大陆动力学研究丛书:青藏高原中新生代构造岩浆作用.广州:广东省科技出版社.
    喻学惠,肖晓牛,杨贵来,等.2008b.滇西“三江”南段几个花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报,24(2):377-383.
    喻学惠,赵志丹,莫宣学,等.2005.甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义[J].科学通报,50(23):2638-2643.
    曾普胜,侯增谦,高永峰,等.2006.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用[J].地质论评,52(1):72-84.
    曾普胜,莫宣学,喻学惠.2002.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J].岩石矿物学杂志,21(3):231-241.
    张乾.1991.云南金顶矿床成因研究[J].地质找矿论丛,6(2):47-58.
    张乾.1993.云南金顶超大型铅锌矿床的铅同位素组成及铅来源探讨[J].地质与勘探,29(5):21-28.
    张乾,潘永军,刘家军,等.2002.滇西地区上地幔铅同位素组成的确定及其应用[J].地质地球化学.30(3):1-6
    翟裕生,邓军,崔彬.1999.成矿系统和综合地质异常[J].现代地质,13(1):99-104.
    张安棣,谢锡林,郭立鹤,等.1991.金刚石找矿指示矿物研究及数据库[M].北京:科学出版社:122.
    张鸿翔,黄智龙.2000.地幔流体的迁移及影响因素[J].地质地球化学,28(4):53-57.
    张玉泉,谢应雯.1997.哀牢山—金沙江富碱侵入岩年代学和Nd, Sr同位素特征[J].中国科学D辑,27(4):289-293.
    张玉泉,谢应雯,李献华,等.2000.青藏高原东部钾玄岩系列岩浆岩同位素特征:岩石及其构造意义[J].中国科学,30:493-498.
    张玉泉,谢应雯,涂光炽.1987.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究[J].岩石学报,(1):17-26.
    张兆忠.1981.云南姚安碱性岩中环带状正长石[J].地质科学,16(2):171-175.
    赵甫峰.2009.南秦岭杨家坝多金属矿田深部地质与成矿地球化学示踪[D].成都理工大学,硕士学位论文,1-48.
    赵甫峰,刘显凡,楚亚婷,等.2011.六合正长斑岩中花岗岩包体U-Pb定年及地质意义[J].地质学报,85(10),1574-1584
    赵甫峰,刘显凡,楚亚婷,等.2011.滇西富碱斑岩中特殊包体岩石的流体包裹体幔源不混溶特征[J].地球化学,40(4):305-323.
    赵甫峰,刘显凡,朱赖民,等.2010.陕西省略阳县杨家坝多金属矿区成矿作用地球化学示踪[J].岩石学报,26(5):1465-1478.
    赵甫峰,刘显凡,朱赖民,等.2009.陕西省略阳县杨家坝多金属矿田成矿流体地球化学示踪[J].吉林大学学报:地球科学版,39(3):415-424.
    赵淮.1995.中甸-大理-金平地区与喜马拉雅期斑岩有关的铅-铜-钼-金矿床成矿模式[J].云南地质,14(4):333-341.
    赵磊,路风香,任迎新,等.1993.在华北地台金伯利岩中新发现的几种矿物及其意义[J].岩石矿物学杂志,12(3):284-288.
    赵欣,莫宣学,喻学惠,等.2003.滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义[J].地学前缘,10(3):93-104.
    赵欣,喻学惠,莫宣学,等.2004.滇西新生代富碱斑岩及其深源包体的岩石学和地球学化特征[J].现代地质,18:217-228.
    赵兴元.1989.云南金顶铅锌矿床稳定同位素地球化学特征[J].地球科学,14(5):495-502.
    赵振华.1994a.富碱侵入岩—窥探地幔成分的窗口[C].见:中国矿物岩石地球化学研究新进展[M].欧阳自远主编.兰州:兰州大学出版社,113-114.
    赵振华,熊小林,王强,等.2002.我国富碱火成岩及有关的大型-超大型金铜矿床成矿作用[J].中国科学(D),23(增刊):1-10.
    赵振华.周玲棣.1994b.我国某些富碱侵入岩的稀土元素地球化学[J].中国科学(B),24(10):1109-1120.
    郑海飞,冯家麟.1987.汉诺坝玄武岩包体中的微晶玻璃及其意义[J].地质论评,33(1):12-21.
    郑建平,路凤香,郭晖,等.1994.金刚石中流体包裹体的研究[J].科学通报,39(3):253-256.
    郑永飞.1999.地幔稳定同位素地球化学[A].见:郑永飞,主编.化学地球动力学[C].北京:科学出版社,62-118.
    郑永飞.2004.深俯冲大陆板块折返过程中的流体活动[J].科学通报,49(10):917-929.
    钟大赉,丁林,刘福田.2000.造山带岩石层多向层架构造及其对新生代岩浆活动制约—以三江及邻区为例[J].中国科学(D辑),30(增刊):1-8.
    中国科学院矿床地球化学开放研究实验室.1997.矿床地球化学[M].北京:地质出版社:1–538.
    周德进,鄂莫岚,徐平,等.1995.雷琼新生代玄武岩中地幔岩包体矿物中的流体-熔体包裹体的REE组成特征[J].岩石学报,11(4):434-440.
    周建雄,陈振宇.2007.电子探针下锆石阴极发光的研究.成都:电子科技大学出版社,1-104.
    朱炳泉.1998.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:地质出版社.
    朱炳泉,常向阳,王慧芬.1995.华南-扬子地球化学边界及其对超大型矿床形成的控制[J].中国科学(B),25(9):1004-1008.
    朱介寿,曹家敏,蔡学林,等.2002.东亚及西太平洋边缘高分辨率面波层析成像[J].地球物理学报,45(5):646-664.
    朱赖民,张国伟,郭波,等.2008.东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J].地质学报,82(2):204-220.
    朱永峰.1995.应用网络理论研究地幔流体的形成机制[J].北京大学学报(自然科学版),31(4):468-472.
    Ahmad S N, Rose A W.1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, NewMexico [J]. Econ Geol,75(2):229–250.
    Andersen T, Neumann E R.2001. Fluid inclusions in mantle Xenoliths[J]. lithos,55:301-320.
    Bailey D K.1970. Volatile flux, heat focusing and the generation magma[J]. Geo1.J.Spec.,2:177-186.
    Bailey D K.1987. Mantle metasomatism-perspective and prospect[J], eds. by Fitton J C&UptonB G J:Alkaline Igneous Rocks. Geol. Soc. Spe. Pub.,(30):1-13.
    Ban, M., Witt-Eickshen, G., Klein, M., Seck, H. A.,2005. The origin of glasses in hydrousmantle xenoliths from the West Eifel, Germany:incongruent break down of amphibole.Contributions to Mineralogy and Petrology148,511-523.
    Batchelor R A, Bowden P.1985. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters. Chemical Geology,48:43-55.
    Bea F, Arzamastsev A, Montero P.2001. Aonmalous alkaline rocks of Soustov, Kola:Evidengceof mantle-drived matasomatic fluids crustal material[J]. Contributions to Mineralogy andPetrology,140(5):554-566.
    Bell D R, Gregoire M, Grove T L, et. al.2005. Silica and volatile-element metasomatism ofArchean mantle:a xenolith-scale example from the Kaapvaal Craton[J]. Contributions toMineralogy and Petrology,150(3):251-267.
    Berndt M E, Allen D E, Seyfried Jr W E.1996. Reduction of CO2during serpentinization ofolivine at300℃and500bar[J]. Geology,24(4):351-354.
    Bjorlykke A, Sangster D F.1981. An overview of sandstone lead deposits and their relation tored-bed copper and carbonated hosted lead-zinc deposits[J]. Econ. Geol.,76:179-213.
    Bolfan-Casanova N.2005. Water in the Earth’s mantle[J]. Mineralogical Magazine,69(3):229-257.
    Bradley D C, Leach D L.2003. Tectonic controls of Mississippi Valley-type lead-zincmineralization in orogenic forelands[J]. Minerlium Deposita,38:652-667.
    Brian F, Windley S, Maruyama et al.2010. Delamination/thinning of sub-continental lithosphericmantle under eastern China; The role of water and multiple subduction[J]. In Alfred Kroenerspecial issue; PartII)American Journal of Science,310(10):1250-1293.
    Brown G C, Thorpe R S, Webb P C.1984. The geochemical characteristics of granitoids incontrasting arcs and comments on magma sources[J]. Ged. Soc. London,141:413-426.
    Cecile GautheronT, Manuel Moreira, Claude Alle`gre.2005. He, Ne and Ar composition of theEuropean lithospheric mantle[J]. Chemical Geology,217:97-112
    Chi G, Savard M M1998. Basin fluid flow models related to Zn-Pb mineralization in the southernmargin of the Maritime basin, Eastern Canada[J]. Econ, geol.,93:896-910.
    Chung S S, Lee T L, Lo C H, Wang P L, Chen C Y, Yem N T, Hoa T T and Wu G Y.1997.Interplate extension prior to continental extrusion along the Ailaoshan-Ren River shear zone[J].geology,25:311-314.
    Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q.2003.Adakite from continental collision zones:Melting of thickened lower crust beneath southernTibet[J].31:1021-1024.
    Chung S L, Lo C H, Lee T Y, Zhang Y Q, Xie Y W, Li X H, Wang K L, Wang P L.1998.Diachronous uplift of the Tibet plateau staring40Myr ago[J]. Nature,394(6695):769-773.
    Clark M. K. and L. H. Royden.2000. Topographic ooze:Building the eastern margin of Tibet bylower crustal flow[J]. Geology,28(8):703-706.
    Clendenin C W and Duane M J.1990. Focused fluid flow and Ozark Mississippi Valley-typedeposit[J]. Geology,18:116-119.
    Clive O, Roberto M, Philip R K et. al.2011. Mantle to surface degassing of alkalic magmas atErebus volcano, Antarctica[J]. Earth and Planetary Science Letters,306:261-271.
    Collins W J, Beams S D, White A J R and Chappell B W.1982. Nature and origin of A-typegranite with particular reference to southeastern Australia[J]. Contrib. Mineral. Petrol.,80(2):189-200.
    Coltorti M, Beccaluva L, Bonadiman C.2004. Amphibole genesisvia metasomatic reaction withclinopyroxene in mantle xenoliths from Victoria Land, Antarctica[J]. Lithos,75(12):115-139.
    Coltorti M, Beccaluva L, Bonadiman C, Salvini L and Siena F.2000. Glasses in mantle xenolithsas geochemical indicators of metasomatic agents[J]. Earth and Planetary Science Letters,183:303-320.
    Crofu F, Hanchar J M, Hoskin P W O, Kinny P.2003. Atlas of zircon textures. Reviews inMineralogy and Geochemistry,53:469-500.
    Daniels L R M, Gurney J J, Harte B.1996. A crustal mineral in a mantle diamond[J]. Nature,379:153-156.
    Davies G R and Lloyd F E.1988. Pb-Sr-Nd isotope and trace element data bearing on the origin ofthe potassic subcontinental lithosphere beneath southwest Ugande. In:Proc.4Th. Int. KimberliteConf. Perth. Western Australia. Blackwell Scientific:784-794.
    Dewey J F, Shackleton R M, Chang C, et al.1989. The tectonic evolution of the TibetanPlateau[M]. Philosophical Translations of the Royal Society, London. A327.379-413.
    Dobrzhinetskaya L F, Green H W, Wang S.1996. Alp Arami:A peridotite massif from depthsof more than300kilometers[J]. Science,271:1841-1845.
    Doss L and Murthy V R.1980. A Nd isotopic study of the Kerguelen Islands:Inferences onenriched oceanic mantle sources[J]. Earth and Planet. Sci. Lett,48:268-276.
    Dowson J B.1984. Constrasting types of upper-mantle metasomatism? In:Kornpobst J ed.Kimberlites Ⅱ:The Mantle and Crust-Mantle Relationships[M]. Amsterdam:Elsevier:289-294.
    England P and Molnar P.2000. Right-lateral shear and rotation as the explanation for strike-slipfaulting in eastern Tibet[J]. Nature,344:140-142.
    Fan Q C, Lin RX, Xu P and L in ZR.1997. Mid-acidic silicate melt found in continental mantle ofeastern China. Chinese Sciences Bulleting,42(10):879-880.
    Frey M.1978. Progressive low-grade metamorphism of a black shale formation, central SwissAlps, with special reference to pyrophyllite and margarite bearing assemblages[J]. Journal ofPetrology,19(1):95-135.
    Frezzotti M L.2001. Silicate-melt inclusions in magmatic rocks:Applications to petrology. Lithos55:273-299.
    Garven G.1985. The ore of regional fluid flow in the genesis of the pine Point deposit WesternCanadian Sedimentary basin[J]. Economic Geology,80:307-324.
    Garven G.1986. A hydrogeological model for the genesis of the giant oil sands deposit of theWestern Canada sedimentary basin(abstract)[J]. American Geophysical Union Transaction,67:273.
    Garven G.1995. Continental-scale groundwater flow and geological processes[J]. Annual Reviewof Earth and Planetary Sciences,23:89-117.
    Gregory M Y, Kamenetsky V, David H G, et al.1997. Glasses in mantle xeneliths from westernVictoria Australia, and their relevance to mantle processes[J]. Earth and Planetary Letters,148:433-446.
    Grieco G, Ferrario A, Quadt A, Koeppel V, Mathez E A.2001. The zircon-bearing chromitites ofthe phlogopite peridotite of Finero (Ivrea Zone, Southern Alps); evidence and geochronology ofa metasomatized mantle slab. Journal of Petrology,42(1):89-101.
    Guo Z F, Hertogen J, Liu J Q, Pasteels P, Boven A, Punzalan L, He H Y, Luo X J, Zhang W H.2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China;petrological and geochemical constraints on petrogenesis[J]. Journal of Petrology,46(1):33-78.
    Guo Zhengfu, Marjorie Wilson, Liu Jiaqi. Post-collisional adakite in south Tibet; Products ofpartial melting of subduction-modified lower crust[J]. Lithos,2007,96(1-2):205-224.
    Hacker B and Liou J G.1998.When Continents Collide: Geodynamics and Geochemistry ofUltrahigh—Pressure Rocks[M]. Dordrecht:Kluwer Academic Publishers,1-336.
    Hall D L, Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ Geol,83(1):197–202.
    Hansteen T H, Andersen T, Neumann E R, et al.1991. Fluid and silicate glass inclusion inultramafic and mafic xenoliths from Hierro, Canary Islands:implication for mantlemetasomatism[J]. Contrib Mineral Petrol,107(2):242-254.
    Harris P G and Middlemost E A K.1969. The evolution of kimberlites[J]. Lithos,3:77-88.
    Harrison D, Burnard1P, Turner G.1999. Noble gas behaviour and composition in themantle:constraints from the Iceland Plume[J]. Earth Planet Sci Lett,171:199-207.
    Hart B.1987. Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenolithsform the kimberlite pipe·Lesotho. In:Menzies M A, Hawkesworh C J eds. Mantle Metasomatism. Academic Press,125-153.
    Hart S R.1988. Heteroge-neous mantle domains:Signa-tures, genesis and mixing chro-nologies.Earth Sci. Lett.,90:273-296.
    He L Q, Song Y C, Chen K X, et al.2009. Thrust-controlled, sediment-hosted, HimalayanPb-Zn-Cu-Ag deposits in Lanping foreland fold belt, eastern margin of Tibetan Plateau[J]. OreGeological Reviews,36:106-132.
    Hirn A, Jiang M, Sapin et al.1995. Seismic anisotropy as an indicator of mantle flow beneath theHimalayas and Tibet[J]. Nature,375:471-574.
    Hill R J, Zhang E T, Katz B J, et al.2007. Modeling of gas generation from the Barnett Shale, FortWorth Basin, Texas[J]. AAPG Bulletin,91(4):501-521.
    Hoch M, Rehkamper M, Tobschall H J.2001. Sr, Nd, Pb and O isotopes of minettes fromSchirmacher Oasis, East Antarctica:A case of mantle metasomatism involving subductedcontinental material[J]. Journal of Petrology,42(7):1387-1400.
    Hoke L, Lamb S, Hilton D R.2000. Southern limit of mantle-derived geothermal heliumemissions in Tibet:imlications for lithospheric structure[J]. Earth and Planetary Science Letters,180:297-308.
    Hollister, L. S and Crawford. M. L.1981. Fluid inclusions:Applications to Petrology.Mineralogical Association of Canada. Short Course Handbook, vol.6:1-304
    Hoskin Paul W O, Ireland Trevor R.2000. Rare earth element chemistry of zircon and its use as aprovenance indicator[J]. Geology,28:627-630.
    Hoskin Paul W O, Schaltegger U.2003. The composition of zircon and igneous and metamorphicpetrogenesis. Reviews in Mineralogy and Geochemistry,53:27-62.
    Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X.2004. Origin of adakitic intrusives generatedduring mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary ScienceLetters,220:139-155.
    Hou Z Q, Ma H W, Zaw K, Zhang Y Q, Wang M J, Wang Z, Pan G T, Tang R L.2003. TheHimalayan Yulong porphyry copper belt:Product of large-scalestrike-slip faulting in easternTibet[J]. Economic Geology,98:125-145.
    Hou Z Q, Xie Y L, Xu W Y, Li Y Q, Zaw K, Beaudoin G, Rui Z Y, Huang W, Luobu C R.2006.Yulong deposit, Ease Tibet:A high-Sulfidation Cu-Au prophyry copper deposit in the easternIndo-Asian collision zone[J]. Interational Geology Reviews,48:1-24.
    Hou Z Q, Zaw K, Li Y H, Zhang Q L, Urade T and Zeng Z G.2005. Contribution of magmaticfluid to the active hydrothermal system in the JADE field, Okinawa trough:Evidence fromfluids inclusions, oxygen and helium isotopes[J]. International Geology Review,47:420-437.
    Hou Z Q, Zaw K, Pan G T, Mo X X, Xu, Q, Hu Y Z, Li X Z.2007. Sanjiang Tethyanmetallogenesis in S. W. China:Tectonic seeting, metallogenic epochs and deposit types[J]. OreGeology Reviews,31:48-87
    Hou ZQ, Zhao Z D, Gao Y F et al.2006. Tearing and dischronal subduction of the Indiancontinental slab:Evidence from Cenozoic Gangdese volcano-magamtic rocks in south Tibet[J].Acta Petrologica Sinica,22(4):761-774.
    Hou Z Q, Zhong D L, Deng W M, Khin Zaw.2005. A tectonic model for porphyrycopper-molybdenum-gold deposits in the eastern Indo-Asian collision zone[M]. In:Porter, T. M.(ed.), Super Prohpyry&Gold Deposits-A Global Perspective. PGC Publishing, Adelaide,423-440.
    Huang W C, Ni J F, Tilmann F, et al.2000. Seismic polarization anistropy beneach the centralTibetan Plateau[J]. J. Geophyysical Reasearch,105(B12):27979-27989.
    Huston D L, Stevens B, Southgate P N, Muhling P and Wybron L.2006. Austaralian Zn-Pb-Agore-froming system:A review and analysis[J]. Econ. Geol.,101:1117-1157.
    Jacob D E, Andreas Kronz and Viljoen K S..2004. Cohenite, native iron and troilite inclusions ingarnets from polycrystalline diamond aggregates[J]. Contributions to Mineralogy andPetrology,146(5):566-576.
    Jane S, and Zachary D S.2011. Chlorine istope evidence for multi-component mantle metasoma-tism in the Ivrea Zone[J]. Earth and Planetary Science Letters,2011,310:429-440
    Jiang Y H, Jiang S Y, Ling H F, Dai B Z.2006. Low-degree melting of a metasomatizedlithoshperic mantle for the origin of Cenozoic Yulong monzogranite-porphyry, eastTibet:Geochemical and Sr-Nd-Hf isotopic constraints[J]. Earth and Planetery Science Letters,241:617-633.
    Jiang Y H, Ling H F, Jiang S Y, Zhou X R, Rui X J, Yang W Z.2002. Enrichment ofmantle-derived fluids in the formation process of granites:evidence from the Himalayan granitesaround Kunjirap in the Western Qinghai-Xizang Plateau. Acta Geologica Sinica(EnglishEdition),76(3):343-350.
    Jürgen Gose, Esther Schm dicke, and Roland Stalder.2011. Water in mantle orthopyroxene–novisible change in defect water during serpentinization[J]. European Journal of Mineralogy,23:529-536.
    Kaminsky F.2012. Mineralogy of the lower mantle:A review of ‘super-deep’ mineral inclusionsin diamond[J]. Earth-Science Reviews,110:127-147
    Kaneoka I, Takaoka N.1985. Noble—gas state in the earth’s interior-some constrains on thepresent state[J]. ChemicalGeology,52:75-95.
    Katz B J, Mancini E A and Kitchka A A.2008. A review and technical summary of the AAPGHedberg Research Conference on “Origin of petroleum-Biogenic and/or abiogenic and itssignificance in hydrocarbon exploration and production”[J]. AAPG Bulletin,92(5):549-556.
    Kenedy B M, Hiyagon H, Reynolds J H.1990. Crustal neon:a striking uniformity[J]. Earth PlanetSci Lett.98:277-286
    Kesler S E.1997. Metallogenic evolution of convergent margins:selected ore deposit models[J].Ore Geology Reviews,12(3):153-171.
    Kogarko L N, Henderson C M B, Pacheco H.1995. Primary Ca-rich carbonatite magma andcarbonate-silicate-sulfide liquid immiscibility in the upper-mantle[J]. Contributions toMineralogy and Petrology,121(3):267-274.
    Krogh E J.1988. The garnet-clinopyroxene Fe-Mg geothermometer—A reinterpretation ofexisting experimental data[J]. Contrib Mineral Petrol,99:44-48.
    Kylet J R, Li N, Jackson K G.2002. Jinding:A giant Tertiary sandstone-hosted Zn-Pb deposit,Yunnan, China [J]. Society of Economic Geologists,50:9-16.
    Ladenberger Anna, Peter Lazor and Marek Michalik.2009. CO2fluid inclusions in mantlexenoliths from Lower Silesia (WS Poland):formation conditions and decompression history[J].Eur, J. Mineral,21:751-761.
    Le Maitre R W, Bateman P, Dudek A et al., A classification of igneous rocks and glossary of terms.Oxford:Blackwell,1989
    Leach D L and Rowan E L.1986. Genetic link between Ouachita fold belt tectonism and theMississippi Valley-type deposits of the Ozarks[J]. Geology,14:931-935.
    Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J and Walters S.2005. Sediment-hosted lead-zinc deposits; a global perspective[J]. Econ. Geol.,100thAnniversary Volume:561-607.
    Lee W J and Wyllie P J1994. Experimental data bearing on liquid immiscibility, crystalfractionation, and the origin of calciocarbonatites and natrocarbonatites[J] Geology Review,36:819-979.
    Leloup P H, Lacassin R, Tapponnier R, Zhong D, Liu X, Zhang L and Ji S.1995. Knematics ofTertiary left-lateral shearing at the lithospheric-scale in the Ailao Shan-Red River shear zone(Yunnan china)[J]. Tectonophysics,251:3-84.
    Lensky N G, Niebo R W, Holloway J R, et al.2006. Bubble nucleation as a trigger for xenolithentrapment in the mantle melts[J]. Earth and Planetary Science Letters,245:278-288.
    Lin CY, Xu YG, Shi LB, Mercier JCC, Ross JV, Ch en XD and Zhang XO.1994. K-and Na-richglasses inm an tle xeno liths from Y itong, J ilin Province, China:Evidence for upper mantlefluids. Chinese Science Bullet in,13:52-57.
    Litvinovsky B A, Podladchikov Y Y.1993. Crustal anatexis during the influx of mantle volatiles.Lithos,30(2):93-107.
    LIU F-T, LIU J-H, HE J-K, et al.2000. The subducted slab of the Yangtze continental blockbeneath the Tethyan orogen in western Yunnan [J]. Chi Sci Bull,45:466-469.
    Liu M, Cui X J and Liu F T.2004. Cenozoic rifting and volcanism in eastern China:A mantledynamic link to the Indo-Asian collision[J]. Tectonophysics,393:29-42.
    Liu X F, Song X F, Lu Q X, Tao Z, Long X R and Zhao F F.2009. Special Xenoliths in anAegirine-Augite Syenite Porphyry in Liuhe, Yunnan, China:Discovery and Implications[J].Acta Geologica Sinica(English Edition),83(2):258-265.
    Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al.1999. Deep Xenoliths in alkalic porphyry, Liuhe,Yunnan, and implications to petrogenesis of porphyry and associated mineralizations[J].Science in China (Series D),42(6):627-635.
    Lloyd F E, Arima M and Edgar A D.1985. Partial melting of a phlogopite-clinopyroxenite nodulefrom south-west Ugande:an experimental study bearing on the origin of of highly potassiccontinental rift volcanics[J]. Contrib, Miner. Petrol.,91:321-329.
    Ludwig K R.2003. User’s manual for A Geochronology Toolkit for Microsoft Excel. BerkeleyGeochronology Centre Spec. Pub. la, Berkeley, CA, USA.
    Mao. D.1987. Melt inclusions in basalts, Ross Island Antarctica. In American National CurrentResearch on Fluid Inclusions Conference Volume.290-295.
    Martin C E, Carlson R W, Shirey S B, et al.1994. Os isotopic variation in basalts from HaleakalaVolcano, Maui, Hawaii; a record of magmatic processes in oceanic mantle and crust[J]. Earthand Planetary Science Letters,128(3-4):287-301.
    Meen.1990. Elevation of potassium content of basaltic magma by fractional crystallization:theeffect of pressure[J]. Contirb Mine. Petrol,104:309-331.
    Menzies M A, Hawkesworth C J.1987. Mantle metasomatism[M]. London Orlando San DiegoNew York:Academic Press,1-464.
    Mercier J C.1976. Single-pyroxene geothermometry and geobarometry[J]. Amer. Miner.,61:91-104.
    Middlemost E A K.1975. The basalt clan[J]. Earth-Science-Reviews,11(4):337-364.
    Misra K C.2000. Understanding mineral deposits[M]. London:Kluwer Academic Publishers.1-845.
    Mo X X, Zhao Z D, Deng J F et al.2006. Petrology and geochemistry of postcollisional volcanicrocks from the Tibetan plateau:Implications for lithosphere heterogeneity and collision-inducedasthenospheric mantle flow, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics andmagmatism in the Mediterranean region and Asia:Geological Society of America Special Paper,409:507-530.
    Muller D. Rock N M S and Groves D I.1992. Geochemical discrimination between shoshoniticand potassic volcanic rocks in different tectonic settings:a pilot study[J]. Mineralogy andPetrology,46:259-289.
    Nakai S, Halliday A N, Kesker S F, Jones H D, Kyle J R and Lane T E.1990. Rb-Sr dating ofsphalerites from Tennessee and the genesis of Mississippi valley type ore deposit[J].Nature(London),346:354-357.
    Navon O, Hutcheon I D and Rossman G R.1988. Mantle derived fluid in diamondmicro-inclusions[J]. Nature,335(27):784-789.
    Neumann E R and Wulff-Pedersen E.1997. The origin of highly silicic glass in mantle xenolithsfrom the Canary Islands. Journal of Petrology,38(11):1513-1539.
    Norman D I, Kyle P R, Baron C.1989. Analysis of trace elements including rare earth elements influid inclusion liquid[J]. Econ. Geol.,84(1):162-166.
    O’Hara M J and Yoder H S.1967. Formation and fractionation of basic magmas at high pressure,Scottish J[J]. Geol.,3:67-117.
    Ozima M, Podosek F A.2002. Noble gas geochemistry[M]. Cam-bridge University Press.1-217.
    Peccerillo R, Taylor S R.1976. Geochemistry of eocene calc-alkaline volcanic rocks from theKastmonu area, Northern Turkey[J]. Contrib. Mineral Petrol,58:63-81.
    Polat A, Brian J F, Iain M S et al.2012. Geochemistry of ultramafic rocks and hornblendite veinsin the Fisken sset layered anorthosite complex, SW Greenland:Evidence for hydrous uppermantle in the Archean[J]. Precambrian Research,(article in press).
    Rickard Sundvall and Roland Stalder.2011. Water in upper mantle pyroxene megacrysts andxenocrysts:A survey study American Mineralogist,96:1215-1227.
    Roedder E, Coombs D S.1967. Immiscibility in granitic melts, indicated by fluid inclusions inejected granitic blocks from Ascension island [J]. J Petrol,8(3):417–449.
    Roedder E.1984. Fluid inclusions [J]. Reviews Mineral,12:644.
    Roedder E.1992. Fluid inclusion evidence for immiscibility in magmatic differentiation [J].Geochim Cosmochim Acta,56(1):5–20.
    Rollinson H..1993. Using Geochemical Data:Evaluation, Presentation, Interpretation[M].London:Longman:352
    Rossman G R, Wei’s D, Wasserburg G J.1987. Rb, Sr, Nd and Sm concentration in quartz[J].Geochim. Cosmochim. Acta,51(9):2325-2329.
    Royden, L. H., B. C. Burchiefl and R. W. King.1997. Surface deformation and lower crustal flowin eastern Tibet[J]. Science,276:788-790.
    Rubatto D.2002. Zircon trace element geochemistry:partitioning with garnet and the link betweenU-Pb ages and metamorphism. Chemical Geology,184:123-138
    Rubatto D, Gebauer D.2000.Use of cathodoluminescence for U-Pb zircon dating by ionmicroprobe; some examples from the Western Alps[M]. Cathodoluminescence in geosciences,373-400.
    Saloshi K, George H.1999. Dipping low-velocity layer in mid-lower mantle:evidence forgeochemical heterogeneity[J]. Science,283(5409):1888-1891.
    Sanders A D, Tarney J, Weaver S D.1980. Transverse geochemical variations across the AntarcticPeninsula:implications for the genesis of calc-alkaline magmas Earth and Planet[J]. Sci lett,46(3)::344-360.
    Sangster D F.1990. Mississippi Valley-type and Sedex lead-zinc deposit—a comparativeexamination[J]. Institution of Mining and Metallurgy Transactions, Section B, Applied EarthSciences,99:21-42.
    Scambelluri M, Vannucci R, Stefano A D, et al.2009. CO2fluid and silicate glass as monitors ofalkali baslt/perido-dite interdoaction in the mantle wedge beneath Gobernado Gregores,Southern Patagonia[J]. Lithos,107:121-133.
    Schiano P, Clocchiatti R.1994a. Cogenetic silica-rich melts trapped in mantle minerals inKerguelen ultramafic xenoliths:implications for metasomatism in the oceanic upper mantle.Earth Planet Sci Lett,123:167-178.
    Schiano P, Clocchiatti R.1994b. Worldwide occurrence of silica-rich melts in subcontinental andsub-oceanic mantle minerals[J]. Nature,1994b,368(6472):621-624.
    Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W.1995. Hydrous,silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas [J].Nature,377(6550):595–600.
    Schneider M E, Eggler D H.1986. Fluids in equilibrium with peri-dotite minerals:implicationfrom mantle metasomatism [J]. Geochim. Cosmochim. Acta,50(3):711-724.
    Schrauder M and Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds fromJwaneng, Botswana[J]. Geochmica et Cosmochimca Acta,1994,58(2):761-771.
    Scoates J S and Mitchell J N.2000. The evolution of troctolitic and high Al basaltic magmas inProterzoic anorthosite plutonic suites and implications for the Voisey’ s Bay massive Ni-Cusulfide deposit[J]. Economic Geology,95:677-710.
    Sharapov V N.2005. Evolution of mantle-crust fluid systems[J]. Russian Geology and Geophysics,46(5):451-461.
    Shaw, C. S. J., Klüegel, A.,2002. The pressure and temperature conditions and timing of glassformation in mantle-derived xenoliths from Baarley, West Eifel, Germany:the case foramphibole breakdown, lava infiltration and mineral-melt reaction. Mineralogy and Petrology74:163-187.
    Shmulovich K I and Churakov.1998. Natural fluid phases at high temperatures and lowpressures[J]. Journal of Geochemical Exploration,62(1-3):183-191.
    Shmulovich K I, Yardleyb W D and Conchar G G.1995. Fluids in the crust[M]. Moscow:Chapmanand Hall Press.
    Soblev N V and Shatsky V S.1990. Diamond inclusions in garnets from metamorphic rocks[J].Nature,343:742-746.
    Spera F J.1987. Dynamics of translithospheric migration of metasomatic fluid and alkalinemagma[A]. Menzies M A, et al, eds. Mantle Metasomatism[C]. London:Academic PressGeology Series:1-20.
    Spurlin M S, Yin A, Horton B K, Zhou J Y and Wang J H.2005. Structural evolution of theYushu-Nangqian region and its relationship to syncollisional igneous activity, east-centralTibet[J]. GSA Bulletin,177:1293-1317.
    Stephen E. Haggerty and Paul B Toft.1985. Native iron in the continental lower crust; petrologicaland geophysical implications[J]. Science,229(4714):647-649.
    Stuart F M, Burard P G, Talor R P.1995. Resolving mantle and crustal contributions to ancienthydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization,South Karea[J]. Geochim Cosmochim Acta.59:4663-4673
    Stuart F M, Turner G, Duckworth R C, et al. Helium isotopes as tracers of trapped hydrothermalfluids in ocean-floor sulifides [J]. Geology,1994,22:823-826
    Sverjensky D A.1986. Genesis of Mississippi valley-type lead-zinc deposits[J]. Annual Review ofEarth and Planetary Sciences,14:177-179.
    Sverjensky D A.1987. Calculation of the thermodynamic properties of apueous species and thesolubilities of minerals in supercritical electrolyte solutions[J]. Review of Mineralogy,177-209.
    Sverjensky D A.1989. Chemcial evolution of basinal brines that formed sediment-hostedCu-Pb-Zn deposits[J]. Geol. Ass. Canada Spec. Paper,36:127-134.
    Tapponnier P, Peltzer G, Le Dain A Y, Armijo R and Cobbold P.1982. Propagating extrusiontectonics in Asia:new insights from simple plasticine experiments[J]. Geology,10(7):611-616.
    Tapponnier, P., Z. Q. Xu, and F. Roger.2001. Oblique stepwise rise and growth of the TibetPlateau[J]. Science,294:1671-1677.
    Thomas S, Claude J A.1982. Terrestial xenology[J]. Earth Planet Sci Lett.60:389-286
    Torsten Graupner, Samuel Niedermann, Ulf Kempe, et al.2006. Origin of ore fluids in theMuruntau gold system:Constraints from noble gas, carbon isotope and halogen data [J].Geochimica et Cosmochimica Acta,70:5356–5370
    Touret J, Bottinga Y.1979. Equation of state for carbon dioxide:Application to carbonicinclusions [J]. Bull Mineral,102(5/6):577–583.
    Tu Guangzhi.1998. The nique nature in ore composition, geological background and metallogenicmechanism of non-conventional superlarge ore deposits:A preliminary discussion[J]. Science inChina (Series D),41(Sup.):1-6.
    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Calsteren P V, Deng WM.1996. Post-collision, shoshonitic volcanism on the Tibetan plateau:Implications forconvective thinning of the lithosphere and the source of ocean island basalts[J]. Journal ofPetrology,37:45-71.
    Turner G, Burnard P G, Ford J L, et al.1993. Tracing fluid sources and interaction. Phil Trans RSoc Lond A,344:127—140
    Unsworth M J, Jones A G, Wei W B, et al.2005. Crustal rheology of the Himalaya and SouthernTibet inferred from magnetotelluric data[J]. Nature,438:78-81.
    Valeria M, William L G and Suzanne Y O.2011. Lithospheric mantle evolution beneath northeastAustralia[J]. Lithos,125:405-422
    Walker R J, Carlson R W, Shirey S B, et al.1989. Os, Sr, Nd, and Pb isotope systematics ofsouthern African peridotite xenoliths; implications for the chemical evolution of subcontinentalmantle[J]. Geochimica et Cosmochimica Acta,53(7):1583-1595.
    Wang E Q and Buechfiel B C.1997. Interpretation of Cenozoic tectonics in the right-lateralaccommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J].International Geology Review,39:191-219.
    Wang J H, Yin An, Harrison T M, Grove M, Zhang Y Q, Xie G H.2001. A tectonic model forCenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and PlanetaryScience Letters,188(1-2):123-133.
    Wang X F, Metcalfe I, Jian P, He L Q, Wang C S.2000. The Jinshajiang-Ailaoshan suture zone,China:tectonostratigraphy, age and evolution[J]. Asian Sci.,18:675-690.
    Wulff-Pedersen E, Neumann E R, Jensen B B.1996. The upper mantle under La Palma,Canary Islands:Formation of Si-K-Na-rich melt and its importance as a metasomatic agent[J]. Contrib Mineral Petrol,125(2/3):113–139.
    Wyllie P J.1984. Sources of granitoid magmas at convergent plate boundaries[J]. Phvs Earth PlantInterior,35(1-3):12-18
    Wyllie P J.1987. Metasomatism and fluid generation in mantle xenoliths, In:Nixon P H (ed).Mantle Xenoliths[M]. John Wiley&Sons Ltd:599-622.
    Xu Jiu-hua, Xie Yu-ling. Sulfide-melt inclusions in mantle xenoliths from the Changbaishandistrict, Jilin Province, China [J]. Acta Petrol Sinica,2007,23(1):117–124.
    Xu J H, Xie Y L, Wang L J, et. al.2003. Rare earth elements in CO2-fluid inclusions in mantlelherzolite[J]. Journal of University of Science and Technology Beijing,10(3):8-12.
    Xu S, Okay A L, Ji S et a1.1992. Diamond from the Dabie Shan Metamorphic rocks and itsimplication for tectonic setting[J]. Science,256:80-82.
    Xue C J, Chen Y C, Wang D H, et al.2003. Geology and isotopic composition of helium, neon,xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan,China[J]. Science in China (Ser. D),33(4):315-322(English edition)
    Xue C J, Zeng R, Liu S W, et al.2007. Geologic, fluid inclusion and isotopic characteristics ofJinding Pb-Zn deposit, western Yunnan, South China;A review [J]. Ore Geological Reviews,31:337-359.
    Yajima L and Doi Ms.1988. Sinterability of submicron β-SiC Pounder synthesed by carbothermalreduction of silica[J]. Silican Carbide Ceramics-2:39-49.
    Yang Xiaozhi, Xia Qunke, Etienne Deloule, Luigi Dallai, Fan Qicheng, and Feng Min.2008.Water in minerals of the continental lithospheric mantle and overlying lower crust; acomparative study of peridotite and granulite xenoliths from the North China Craton[J].Chemical Geology,256(1-2):33-45.
    Yin An, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review ofEarth and Planetary Sciences,2000,28:211-280.
    Yu H M, Xia Q K, Dallai L, et. al.2005. Oxygen isotope and trace element compositions ofperidotite xenolitlis from Nushan volcano, SE China and implications for mantlemetasomatism[J]. Acta Petrologica Sinica,21(3):829-838.
    Yuan Hong-lin, Gao Shan, Liu Xiao-ming, Li Hui-ming, Detlef Guenther, and WU Fu-yuan.2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductivelycoupled plasma-mass spectrometry. Geostanards and Geoanalytical Research,28(3):353-370.
    Zartman R E and Doe B R.1981. Plumbotectonics-the model Tectonophysics[J].75:135-162.
    Zinngrebe E and Foley SF.1995. Metasomatism is mantle xenoliths from Gees, West Eife,
    Germany:Evidence for the genesis of calcalkaline glasses and metasomatic Ca-enrichment.Contrib. Mineral Petrol,122:79-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700