甲醇制烯烃催化剂SAPO-34分子筛的合成与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇制烯烃(MTO)反应是最有希望替代常规石油路线生产低碳烯烃的新兴工艺路线。作为MTO反应的核心,催化剂的合成成为人们研究的重点。SAPO-34分子筛以其极高的甲醇转化率和优异的乙烯、丙烯选择性成为目前MTO反应最好的催化剂。然而由于SAPO-34分子筛受到其微孔的限制,孔道容易被积碳堵塞从而造成较短的催化剂寿命。因此有效的提高SAPO-34分子筛的催化剂寿命对于推进MTO反应工业化有着极其重要的意义。本论文致力于研究SAPO-34分子筛的合成和改性,从而达到提高催化剂寿命的目的。
     论文考察了吗啉(MOR)、三乙胺(TEA)和四乙基氢氧化胺(TEAOH)三种模板剂以及气相转移(VPT)法对于SAPO-34分子筛合成的影响。目的是找到一种廉价,简单和稳定的SAPO-34分子筛合成配方,为其改性提供良好的基础。结果表面:(1)三种模板剂合成的催化剂晶粒大小由大到小为MOR-SAPO-34>TEA-SAPO-34>TEAOH-SAPO-34;(2)催化剂寿命由长到短为TEAOH-SAPO-34≈TEA-SAPO-34>MOR-SAPO-34;(3)尽管以TEAOH为模板合成SAPO-34分子筛寿命最长,但是由于TEAOH价格昂贵不适合应用,因此,以TEA为模板合成SAPO-34分子筛更适合于工业和实验室应用。(4)以VPT法合成的SAPO-34分子筛,因为缺少分散介质造成晶化度低,寿命短。
     论文考察了Mg、Co、Ni和Mn四种金属离子对提高催化剂寿命的影响,初步探讨了多级孔道SAPO-34分子筛的合成以及在MTO反应中的应用。结果表明:(1)在Mg,Co,Ni和Mn四种金属离子改性的MeSAPO-34分子筛中Mn离子的加入可使分子筛的酸性降低,乙烯、丙烯的选择性提高并表现出最长的寿命。(2)在350,400,450和500℃四种温度下,MnSAPO-34分子筛在400℃下催化剂寿命最长为7.25小时。(3)Mn/Al_2O_3=0.01时催化剂寿命最长并且有良好的乙烯、丙烯的选择性。(4)硅烷偶联剂TPOAC可以作为导向介孔生成的模板剂,合成的多级孔道SAPO-34分子筛与常规的SAPO-34分子筛相比寿命有所增加,但乙烯、丙烯的选择性会有降低。
     本论文还考察了SAPO-34分子筛的再生性能。结果表明三次再生后的SAPO-34分子筛无论是寿命还是乙烯、丙烯的选择性都与新鲜的SAPO-34分子筛非常接近,说明SAPO-34分子筛有良好的再生性能。
Methanol to olefin (MTO), as a potential method instead of conventional oil route, has received wide attention in the past years. The key issue for the MTO reaction is to develop new catalyst with higher lifetime, higher selectivity to olefin, higher conversion and stability. SAPO-34 molecular sieve is a potential catalyst for MTO reaction, because of its high conversion of methanol and selectivity to ethane and propene. However, fast deactivation has been reported due to coke formation. In this paper, the synthesis and modification of SAPO-34 molecular sieve were studied to prolong the lifetime of the catalyst.
     The experiments were carried out to investigate the effect of Vapor Phase Transport (VPT) method and different templates such as MOR, TEA and TEAOH on SAPO-34 synthesis. The results show that the crystal grain size of catalyst synthesized with different templates is in the order: MOR-SAPO-34> TEA-SAPO-34>TEAOH-SAPO-34; the lifetime is in the the order: TEAOH-SAPO-34^TEA-SAPO-34>MOR-SAPO-34; The lifetime of SAPO-34 synthesized by VPT method is short due to without dispersion medium in the system.
     The experiments were carried out to investigate the effect of metal ions such as Mg, Co, Ni and Mn on lifetime of catalyst. The results show that MeSAPO-34 modified by Mg, Co, Ni or Mn metal ion has low acidity of catalyst and high of the selectivity to ethane; at different temperature, the lifetime of MnSAPO-34 shows the longest lifetime, 7.25 h, at 400℃; the MnSAPO-34 with Mn/Al_2O_3 being 0.01 shows the best selectivities to ethane and propene. In the studies, a hierarchical porous SAPO-34, synthesized with silane coupling agent TPOAC as mesopore structure directing agent, was also used for MTO reaction. Compared to the conventional SAPO-34, the hierarchical porous SAPO-34 molecular sieve has a longer lifetime, while lower selectivities to ethane and propene.
     The reproducibility of SAPO-34 was studied. The catalyst can be regenerated through simply calcinations in air at 550℃. The performance of regenerated SAPO-34 after 3 times is very similar to the fresh SAPO-34.
引文
[1]齐国帧.甲醇制烯烃(MTO)反应过程研究.博士学位论文.上海:华东理工大学,2006.
    [2]陈香生,刘昱,,陈俊武..煤基甲醇制烯烃(MTO)工艺生产低碳烯烃的工程技术及投资分析.煤化工.2005.120(5):6-11.
    [3]刘红星,谢在库,张成芳等.SAPO-34分子筛研究新进展.工业催化.2002,10(4):49-54.
    [4]Stocker M.Catalysis:Methanol to Hydrocarbons.Micrp.Mesop.Metar.1999,29:1.
    [5]Vora B V,et al.Conversion of methanol to ethylene and propylene UOP/Hydro MTO process.4th International Gas Conversion Symposium,South Africa,1995.
    [6]Vora B V,pujado P R,Andersen J M,et al.Production of polyolefins from natural gas and integration with gas to liquids facilities.6th World Congress of Chemical Engineering,Melbourne,Australia,2001.
    [7]Rothaemel M,HoltmannH D.MTP,methanol to propylene,lurgi's Way.Creating value from light olefins Production and Conversion.Hamburg.2001.
    [8]Cai G Y,Liu Z M,Shi R M et al.Light alkenes from syngas via dimether.Appl.Cata.A:General.1995 125:29-38.
    [9]蔡光宇,刘中民.合成气经由一甲醚制取低碳烯烃田.天然气化工.1994,19(5):26-300.
    [10]蔡光宇,孙承林,刘中民等.一种由甲醇或—甲醚制取乙烯、内烯等低碳烯烃方法.CN1166478A.1997.
    [11]刘中民.合成气经由二甲醚或甲醇制取低碳烯烃.油气加工.1998,8(1):6-120.
    [12]Liu Z M,Sun C L,Wang G Wet al.New progress in R&D of lower olefins synthesis.Fuel Processing Technology.2000,62:161-172.
    [13]Liu Z M,Liang 3,Methanol to olefin conversion catalysts.Solid State & Material Science.1999,4:80-84.
    [14]昌志辉.MTO过程的研究及其应用,中国C1化工与洁净煤技术应用国际研讨会论文集,石河子,2005.
    [15]李新生,徐杰,林励吾.催化新反应与新材料.河南:河南科技技术出版社,1996.[16]van den Berg J P,Wolthuizen J P,van Hooff J H C.Proceedings 5th International Zeolite.London,1980,649.
    [17]Dahl I M,Kolboe S.On the reaction mechanism for propene formation in the MTO reaction over SAPO-34.Catal.Letter.1993,20:3299-3336.
    [18]Dahl I M,Kolboe S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34,1:isotopic labelling studies of the co-reaction of ethene and methanol.J.Catal.1994,149:458-464.
    [19]Dahl I M,Kolboe S.On the reaction mechanism for Hydrocarbon formation from methanol over SAPO-34,2:isotopic labelling studies of the co-reaction of propene and methanol.J.Catal.1996,161:304-309.
    [20]Salvador P,Kladnig W.J.Chem.Soc.Faraday Trans.1977,73:1153.
    [21]Schwartz A B,Ciric J.Advanced Catalysis,1968,18:259.
    [22]Froment G F,Dehertog W J H,Marchi A J.A review of the literature.Catalysis.1992,9:1.
    [23]Sawa M,Niwa M,Murakami Y.Chem.Lett.1987,8:1637.
    [24]Kljueva N V,Tien N D,Ione K G,Acta Phys.Chem.1985,31:525.
    [25]Chang C D,Silvestri A J.The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts.J.Cata1.,1977,47:249-259.
    [26]Kaeding W W,Butter S A.Production of chemicals from methanol:I.Low molecular weight olefins.J.Catal.,1980,61:155-164,
    [27]Mcintosh R J,Seddon D.The properties of magnesium and zinc oxide treated zsm-5catalysts for onversion of methanol into olefin-rich products.Appl.Catal.,1983,6:307-314.
    [28]Inui T,Matsuda H,Yamase O,Nagata H.Highly selective synthesis of light olefins from methanol on a novel Fe-silicate.J.Catal.,1986.98:491-501.
    [29]张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究.博士学位论文.大连:中国科学院大连化学物理研究所.2007
    [30]Prakash A M,Unnikrishnan S.Synthesis of SAPO-34 High Silicon Incorporation in the Presence of Morpholine as Template.J.Chem.Soc.Fraday Trans,1994,90(15):2291-2296.
    [31]马涛.甲醇制烯烃反应工艺和动力学研究.硕士学位论文.上海:华东理工大学硕士论文.2004.
    [32]徐如人,庞文琴等.分子筛于多孔材料化学.北京:科学出版社,2004.
    [33]何长青,刘中民,杨立新等..燃料化学学报,1994,8(3):207.
    [34]刘红星,谢在库,张成芳等.用TEAOH-C_4H_9NO复合模板剂合成SAPO-34分子筛的研究Ⅰ.SAPO-34分子筛的合成与表征.催化学报.2004,25(9):702-706.
    [35]刘红星,谢在库,张成芳等.用TEAOH-C4H9NO复合模板剂合成SAPO-34分子筛的研究Ⅱ.SAPO-34分子筛的表面酸性和催化性能.催化学报.2004,25(9):707-710.
    [36]Tan J,Liu Z M,Bao X H et al.Crystallization and Si incorporation mechanisms of SAPO-34.Micro.Meso.Mater..2002,53:97-108.
    [37]Briend M,Peltre M J et al.Stud Surf Sci Catal.1995,84:613.
    [38]Satre G,Lewis D W et al.J.Phy.Chem.B.1997,101(27):5251.
    [39]Barger P T.US,5248647,1991.
    [40]Hocevar S,Levec J.J.Catal.,1992,135:518.
    [41]Inui T.Stud Surf Sci Catal,1997,105:1441.
    [42]Inui T,Kang M.Catal.Letter,1998,53:171.
    [43] Kang M. Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s). J. Mole.Catal. A. 2000,160(2):437-444.
    
    [44] Inui T, Kang M. Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion. Appl. Catal A-Gen. 1997,164(1-2): 211-223.
    
    [45] Kang M, Park J Y. Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals-(I) effect of factors on the gel formation. J. Mol. Catal. A -Chem, 1999,150(1-2) :195-203.
    
    [46] Inoue M, Dhupatemiya P, Inui T et al. Micro. Meso. Mater., 1999,28:19.
    
    [47] Niekerk M J V, Fletcher J C, O'Cornor C T. Appl Catal, 1996,138:135.
    
    [48] Sastre G, Lewis D W, Catlow C R A.Mechanisms of silicon incorporation in alurainophosphate molecular sieve. J. Mol. Catal. A-Chem,1997,119(1-3):349-356.
    
    [49] Barthomeuf D. Topological Model for the Compared Acidity of SAPOs and Sial Zeolites.Zeolites, 1994,14(6): 394-401.
    
    [50] Vomscheid R, Briend M, Peltre M J, Man P P et al. The Role of the Template in Directing the Si Distribution in SAPO Zeolites. J. Phys. Chem., 1994,98(38):9614-9618.
    
    [51] 高滋.沸石催化与分离技术.北京:中国石化出版社, 1999.
    
    [52] Jule A R. Zeolite chemistry and catalysis, 1976.
    
    [53] Corma A.Nemeth L T, Renz M et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-viliger oxidations. Nature. 2001,41:423-425.
    
    [54] Corma A, State of the art and future challenges of zeolites as catalysts. Journal of Catalysis. 2003, 216:298-312.
    
    [55] Kresge C T, Leonowicz M E, Roth W J et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature. 1992, 359: 710-712.
    
    [56] Mercier L and Pinnavaia T J. Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation.Adv. Mater. 1997, 9: 500.
    
    [57] Davis M E. Ordered porous materials for emerging applications. Nature, 2002,417:813-821.
    
    [58]Janssen A H, Koster A J, Jong K P. On the Shape of the Mesopores in Zeolite Y: A Three-Dimensional Transmission ElectronMicroscopy Study Combined with Texture Analysis.J. Phys. Chem. B 2002, 106: 11905-11909.
    
    [59] Fang Y M, Hu H Q. An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure. J. Am. Chem. Soc.2006, 128, 10636-10637.
    
    [60] Wang H , Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores. Angew. Chem. Int. Ed. 2006, 45: 7603-7606.
    [61]Choi M,Cho H S,Srivastava R et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.Nature materials.2006,5:718-723.
    [62]Lok B M,Messina C A,Patton R Let al.US,4440871,1982.
    [63]Xu W,Dong J,Li et al.A nova1 method for the preparation of zeolites ZSM-5.J.Chem.Soc.1990:755.
    [64]Rao P,Prasad R H,Leon y et al.Synthesis of BEA by Dry Gel Conversion and Its Crystallization.Microp.Hesop.Mater.1998,21:305-313.
    [65]Matsukata M,Osaki T,Ogura M et al.Crystallization Behavior of Zeolites Beta during Steam Assisted Crystallization of Dry Gel.Microp.Mesop.Mater.2002,56:1-10.
    [66]Dubois D R,Obrzut D L,Liu J.Conversion of methanol to olefins over cobalt-,manganese- and nickel-incorporated SAPO-34 molecular sieves.Fule Processing Technology.2003,83:203-218.
    [67]张春虹,郑嘉明,杨长喆等.硅磷酸铝分子筛(SAPO-5)的合成.化学工业与工程.23(2):133-137.
    [68]Kikhtyanin O V,Mastikhin V M,Ione K G,Appl.Catal.1988,42:1.
    [69]李贺香,马鸿文,王芳等.利用粉煤灰制备多孔氧化硅的实验.现代地质.2006,20(3):399-404.
    [70]张芳,刘有智,谢五喜.开孔剂对多空氧化铝支撑体的影响.化学工业与工程技术.2005,26(1):25.
    [71]方明山.PLA/SiO_2杂化微球及载药性能研究与PVA/SiO_2杂化微球的制备.硕士学位论文.合肥:合肥工业大学,2006.
    [72]Choi M,Srivastava R,Ryoo R.Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks.Chem.Comm.2006,4380-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700