贫燃条件下汽车尾气净化催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国际上,具有比动力输出高、燃料利用率高、更经济、CO和HC污染小等优势的贫燃汽油发动机、柴油发动机的设计和应用呈不断上升的趋势。传统的汽车尾气净化三效催化剂在贫燃条件下是失效的。目前正在研究的某些用于贫燃条件下汽车尾气净化的分子筛催化剂,虽然活性、选择性高,但在高湿热状况下容易因分子筛的晶体结构被破坏而导致失活。一种新型的磷酸硅铝分子筛SAPO-34因具有孔结构适宜、酸性可调、耐湿热性好等优良特性而有希望成为实用的分子筛催化剂载体。本研究针对现有分子筛催化剂的不足之处,合成了SAPO-34分子筛并将其作为载体研制了用于贫燃条件下汽车尾气净化的Ag-SAPO-34、Cu-SAPO-34分子筛系列催化剂以及Ag-SAPO-34+CeO_2、Cu-SAPO-34+CeO_2、Ce/Cu/SAPO34双功能系列催化剂,着重解决了以下三个关键的问题:
     对影响合成磷酸硅铝分子筛SAPO—34的晶化温度和时间,模板剂,原料铝源和硅源,原料硅含量等工艺参数进行了系统的研究和优化,解决了合成SAPO—34的晶化过程中很容易伴生SAPO-5分子筛的问题。用水热法以优化的工艺合成了高纯度、高结晶度的SAPO-34作为贫燃条件下汽车尾气净化催化剂的新型载体,解决了以往分子筛载体耐湿热稳定性差的致命弱点。
     用离子交换法制备了Ag-SAPO-34和Cu-SAPO-34分子筛催化剂,并对其制备工艺、活性、湿热稳定性、反应机理进行了全面系统的研究,研制出具有低温活性好,而且耐湿热稳定性好的Ag-SAPO-34分子筛催化剂。该催化剂上NO转化成N_2的转化率在336℃左右达到最大值73.6%。经过高温水热处理后,催化剂的活性仅降低2.3~5.5个百分点。还研制出具有活性高、高温活性好、温度操作范围广以及耐湿热稳定性好等优良特性的Cu-SAPO-34分子筛催化剂。该催化剂上NO转化成N_2的转化率在430℃左右达到最大值75.4%。经过高温水热处理后,催化剂的活性仅降低2~5个百分点左右。在两种催化剂上,NO在B酸活性中心氧化为NO_2都是整个C_3H_6选择性还原NO反应中的关键的第一步。然后C_3H_6对NO_2的还原分别在一价Ag~+的分子筛骨架Ag,二价Cu~(2+)的分子筛骨架Cu活性中心进行,生成N_2、H_2O、COx。
     在对Ag-SAPO-34和Cu-SAPO-34分子筛催化剂全面系统研究的基础上,根据双功能催化剂的概念设计、筛选了Ag-SAPO-34+CeO_2、Cu-SAPO-34+CeO_2、
The design and application of lean-burn petrol engine and diesel engine are rising now in the world for the advantages of higher output power, more effective burning, more economy and less emission of CO and HC. The traditional three-way catalyst is ineffective under lean-burn conditions. Though the lean-burn automobile exhaust molecular sieves catalysts being studied now are active and selective, they are very easy to be inactive in the presence of vapor at high temperature for the destroy of crystal structure. A new type of silicoaluminophosphates SAPO-34 is very suitable as support of automobile exhaust catalysts under lean-burn conditions due to its suitable structure of pore, adjustable acidity and good hydrothermal stability. According to the disadvantages of molecular sieve catalysts above, SAPO-34 has been synthesized first and then Ion-Exchanged Ag-SAPO-34 and Cu-SAPO-34 catalysts as well as biflinctional catalysts of Ag-SAPO-34 + CeO_2, Cu-SAPO-34 + CeO_2 and Ce/Cu/SAPO34 have been prepared to aim to solve the following three problems:
    Based on the study and optimum of synthesized technology parameters, such as crystallizing temperature, crystallizing time, template, the source of Si and Al, the content of Si and etc., high purity and crystalline silicoaluminophosphates SAPO-34 has been synthesized successfully, and there is no by-product SAPO-5. The synthetic SAPO-34 is proved much hydrothermal stable and very suitable as support of automobile exhaust catalysts under lean-burn conditions.
    The activities, preparation technology, hydrothermal stability and reaction mechanism of Ion-Exchanged Ag-SAPO-34 and Cu-SAPO-34 catalysts have been studied in details. The Ag-SAPO-34 catalyst which is active at low temperature and much hydrothermal stable has been prepared, on which the highest conversion of NO to N_2 is 73.6% at the temperature of 336℃. And the conversion only decreases by 2.3-5.5 percents after being treated hydrothermally. The Cu-SAPO-34 catalyst which has high activity, wide operating temperature range and excellent hydrothermal stability has been prepared too, on which the highest conversion of NO to N_2 is 75.4% at the temperature of 430℃. And the conversion only decrease by 2-5 percents after being treated
引文
[1] M. V. Twigg. Emission Control Technology at Detroit, Platinum Metals Rev. 1998, 42(2): 56—58
    [2] B. J. Cooper. Challenges in Emission Control Catalysis for the Next Decade. Platinum Metals Rev. 1994, 38(3): 101 — 111
    [3] 轻型汽车排放标准,GB14761.(1—7)—99,中华人民共和国国家标准环保分册
    [4] 李勤.现代内燃机排气污染物的测量与控制.第一版.机械工业出.1998:10—17
    [5] By T. J. Ttruex, R. A. Seales, D. C. Sun. Catalysts for nitrogen oxides control under lean-burn conditions. Platinum Metals Rev. 1992, 36(1): 2—11
    [6] A. Fritz. The current state of research on automotive lean NO_x catalysis. Applied Catalysis B: Environment. 1997, 13(1): 1—25
    [7] J. N. Armor. Catalytic removal of nitrogen oxides: where are the opportunities ?. Catalysis Today. 1995, 26( 2): 99— 105
    [8] V. I. Parvulescu, P. Grange, B. Dlemon. Catalytic removal of NO. Catalysis Today. 1998, 46( 4): 233 —316
    [9] 黄传荣,谭宇新,毛以朝.La—Co—Ce-Pd催化剂性能的研究.现代化工.1997,17(12):23-25
    [10] 谭宇新,黄传荣,甘士凡,王永刚.新型汽车尾气净化催化剂的研究.环境科学.1998,19(3):18-21
    [11] 谭宇新,黄传荣,王乐夫.低贵金属含稀土复合型汽车排气净化催化剂的研究.环境工程.1999,17(2):25-27
    [12] 王乐夫,徐建昌,谭宇新.贫燃条件下低碳烃催化还原NOx研究进展.天然气化工.1998,23(6):46-49
    [13] 谭宇新,王乐夫,纪红兵,付晔.贫燃条件下汽车尾气净化催化剂的研究.上海环科学.1999,18(9):397—399
    [14] V. Tomasic. Catalytic reduction NOx over Cu/ZSM-5 catalyst. Applied Catalysis B: Environment. 1998, 18(4): 233 —240
    [15] Akira Shichi et al. Catalyst effectiveness factor of cobalt-exchanged mordenites for the selective catalytic reduction of NO with hydrocarbons.??Applied Catalysis B: Environment. 1998, 17(2): 107— 113
    [16] Torre-Abreu et al. Copper-exchanged mordenites as active catalysts for NO selective catalytic reduction by propene under oxidizing conditions: Effect of Si/Al ratio. copper content and Bronsted acidity. Applied Catalysis B: Environment. 1997, 13(3): 251 —264
    [17] C. A. Querini. Catalytic Combustion of Diesel soot Particles. Activity and Characterization of Co/MgO and Co. K/MgO Catalysts. Applied Catalysis B: Environment. 1998, 15(1): 5 —19
    [18] J. C. Frost, G. Smedler. Control of NOx emissions in diesel powered light vehicles. Catalysis Today. 1995, 26(3): 207-214
    [19] Akira Obuchi, Isamu Kaneko, Junko Oi, et al.. A practical scale evaluation of catalysts for the selective reduction of NOx with organic substances using a diesel exhaust. Applied Catalysts B: Environmental. 1998, 15(1): 37-47
    [20] G. P. Ansell, P. S. Bennett, J. P. Cox, et al.. The development of a model capable of predicting diesel lean NOx catalyst performance under transient conditions. Applied Catalysts B: Environmental. 1996, 10(2): 183-201
    [21] 谭宇新,王乐夫,黄传荣,付晔.贫燃条件下汽车尾气净化新型催化剂—耐湿热双功能催化剂.现代化工.2000,20(3):19-22
    [22] R. Burch, E. Halpin, J. A. Sullivan. A comparison of the selective catalytic reduction of NO_x over Al_2O_3 and sulphated Al_2O_3 using CH_3OH and C_3H_8 as reductants. Applied Catalysis B: Environment. 1998, 17(2): 115— 129
    [23] Masakazu Iwamoto, Hidenori Yahiro. Novel catalytic decomposition and reduction of NO. Catalysis Today. 1994, 22 (1): 5—18
    [24] Teuvo Maunula, Yoshiaki Kintaichi. Megumu Inaba, et al. Enhanceed activity of In and Ga-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in lean conditions. Applied Catalysis B: Environment. 1998, 15(4): 291—304
    [25] H. Hamada. Selective reduction of NO by hydrocarbons and oxygenated hydrocarbons over metal oxide catalysts. Catalysis Today. 1994, 22 (1): 21—40
    [26] Xiankuan Zhang, Arden B. Walters, M. Albert Vannice. NO adsorption decomposition and reduction by methane over rare earth oxides. Journal of Catalysis. 1995, 155(4): 290—302[27] T. Y. Chou, C. H. Leu, C. T. Yeh. Effects of the addition of lanthana on the thermal stability of alumina-supported palladium. Catalysis Today. 1995, 26 (1): 21—40
    [28] T. E. Hoost. et al. FTIR spectroscopy of nitric oxide adsorption on Pd/Al_2O_3: Evidence of metal-support interaction. Journal of Catalysis. 1995, 155(4): 303—311
    [29] Satoshi. Kameoka et al. Reactivity of surface isocyanate species with NO, O_2and NO+O_2 in selective reduction of NOx over Ag/Al_2O_3 and Al_2O_3. Catalysis Letter. 1998, 55(4): 211 — 215
    [30] Mark. D. Fokema, Fokema, Jckie Y. Ying. The selective reduction of nitric oxides with methane over scandium oxide, yttrium oxide and lanthanum oxide. Applied Catalysis B: Environment. 1998, 18(1): 71—77
    [31] S. J. Huang et al. The adsorption and reaction , of NO, CH_4and O_2 on La_2O_3 and Sr-promoted La_2O_3. Applied Catalysis B: Environment. 1998, 17(2): 183—193
    [32] R. Burch, D. Ottery. The selective reduction of nitrogen oxides by higher hydrocarbons under lean-burn conditions. Applied Catalysis B: Environment. 1997, 13(2): 105— 111
    [33] Leandro W. Konopny, Alfredo Juan, Daniel E. Damiani. Preparation and characterization of γ-Al_2O_3 supported Pd-Mo catalysts. Applied Catalysis B: Enviroment. 1998, 15(2): 115-127
    [34] T. E. Hoost, R. J. Kudia, K. M. Collins, et al.. Charaterization of Ag/γ- Al_2O_3 catalysts and their lean-NOx properties. Applied Catalysis B: Environment. 1998, 13(1): 59-67
    [35] Jesus Blanco, Ana Bahamonde, Esperanza Alvarea, et al. Two-bed catalytic system for NOx/SOx removal. Catalysis Today. 1998, 42(1): 85-92
    [36] H. Mahzoul, J. F. Brilhac, P. Gilot. Experimental and mechanistic study of NOx adsorption over NOx trap catalysts. Applied Catalysis B: Environmental. 1999, 20(1): 97-55
    [37] Hideaki Hamada, Yoshiaki Kintaichi, Motoi Sasaki, et al.. Transition metalpromoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane. Applied Catalysis. 1991, 75(1): L1-L8
    [38] D. Guillaume, S. Gautier, I. Despujol, et al.. Characterization of acid sites on γ-??alumina and chlorinated γ-alumina by ~(31)P NMR of adsorbed trimathylphosphine. Catalysis Letters. 1997, 43(3): 213-218
    [39] R. Burch, Anita Ramli. A comparative investigation of the reduction of NO by CH_4 ON Pt, Pd and Rh catalysts. Applied Catalysis B: Environmental. 1998, 15(1): 49-62
    [40] Hirofumi Ohtsuka, Takeshi Tabata, Osamu Okada, et al.. A study on the roles of Cobalt species in NOx reduction by propane on Co-Beta. Catalysis Today. 1998, 42(1): 45-50
    [41] Tatsuo Miyadera. Selective reduction of NOx by ethanol on catalysts composed of Ag/Al_2O_3 and Cu/TiO_2 without formation of harmful by-products. Applied Catalysts B: Environmental. 1998, 16(2); 155-164
    [42] N. E. Bogdanchilova, S. Fuentes, M Avalos-Borja, M. H. Farias, et al.. Structural properties of Pd catalysts supported on Al_2O_3-La_2O_3 prepared by Sol-gel method. Applied Catalysts B: Environmental. 1998, 17(3): 221-231
    [43] Ken-ichi Shimizu, Atsuchi Satsuma, Tadashi Hattori. Selctive catalytic reduction of NO by hydrocarbons on Ga_2O_3/Al_2O_3 catalysts. Applied Catalysts B: Environmental. 1998, 16(4): 319-326
    [44] G. Delahay, E. Ensugue, B. Coq, et al.. Selective catalytic reduction of nitric oxide by n-decane on Cu/sulfated-zirconia catalysts in oxygen rich atmosphere. Journal of Catalysts. 1998, 175(1): 7-15
    [45] Eiichi Kikuchi et al. Selective reduction of nitric oxide with methane on In/H-ZSM-5-based catalysts. Catalysis Surveys from japan. 1997, 1(3) : 227—237
    [46] Adelman et al. Effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts. Applied Catalysis B: Environmental. 1997, 14(1): 1-11
    [47] E. Hums. Is advanced SCR technology at a standstill? A provacation for the academic community and catalyst manufactures. Catalysis Today. 1998, 42(1): 25-35
    [48] Chikafumi Yokoyama, Makoto Misono. Catalytic reduction of nitrogen oxides by propenen in the presence of oxygen over cerium Ion-Exchanged Zeolites. Journal of Catalysis. 1996, 160(1): 95-105
    [49] Hideaki Hamada, The 2rd Euopean-Japan workshop on fundamental aspects of catalysis for de-NOx and combustion. Catalysis Surveys from Japan. 1997,??1(3): 263-264
    [50] Kazunari Domen. International forum on Environmental catalysis'97 (IFEC'97). Catalysis Surveys from Japan. 1997, 1(3): 265-266
    [51] Hai-Ying Chen, Wolfgang M H. Sachtler. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor. Catalysis Today. 1998, 42(1): 73-83
    [52] K Masuka, K Shinoda, T. Kato, et al.. Activity enhancement of Ag/mordenite catalysts by addition of palladium for the removal of nitrogen oxides from diesel engine exhaust gas. Applied Catalysis B: Environmental. 1998, 15(1): 29-35
    [53] Zhijiang. Li, Maria Flytzani-Stephanopoulos. Effects of water vapor and sulfur dioxide on the performance of Co-Ag-ZSM5 tbr the SCR of NO with CH_4. Applied Catalysis B: Environmental. 1999, 22(1): 35-47
    [54] Masakazu Iwamoto, Tetsu Zengyo, Angel M. Hernandez, et al.. Intermediate addition of reductant between an oxidation and, a reduction catalyst for highly selective reduction of NO in excess oxygerL Applied Catalysts B: Environmental. 1998, 17(3): 259-266
    [55] R. T. Yang, N. Tharappiwattananon, R. Q. Long. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen. Applied Catalysts B: Environmental. 1998, 19(3): 289-304
    [56] Ming-Cheng Wu, Nelson A. Kelly. Clean-air catalyst system for on-road applications: Ⅰ. Evaluation of potential catalysts. Applied Catalysts B: Environmental. 1998, 18(1): 79-91
    [57] K. Masuda, et al.. Activity enhancement of Ag/mordenite catalysts by addition of palladium for the removal of nitrogen oxides from disel engine exhaust gas. Applied Catalysts B: Environmental. 1998, 15(1): 29-35
    [58] C. Pophal, T. Yogo, K. Yamada, et al.. Selective catalytic reduction of nitrous oxide over Fe-MFI in the presence of propene as reductant. Applied Catalysts B: Environmental. 1998, 16(2): 177-186
    [59] M. Kogel. Simultaneous catalytic reduction of NO and N_2O using Fe-MFI prepared by solid-state ion exchange. Catalysis Letters. 1998, 51(1): 23-25
    [60] C. Torre- Abreu, M. F. Ribeiro, C. Henriques, et al.. Copper-exchanged mordenites as active catalysts for NO selective catalytic reduction by propene under oxidizing conditions: effect of Si/Al ratio, copper content and Bronsed acidity. Applied??Catalysts B: Environmental. 1997, 13(3): 251-264
    [61] J. Y. Yan, H. H. Kung, W. M H. Sachtler, et al.. Synergistic effect in lean NOx reduction by CH_4 over Co/Al_2O_3 and H-Zeolite catalysts. Journal of Catalysis. 1998, 175(3): 294-301
    [62] Christopher J. Loughran, Daniel E. Resasco. Bifunctionality of palladium-based catalysts in the reduction of nitric oxide by methane in the presence of oxygen. Applied Catalysts B: Environmental. 1995, 7(2): 113-126
    [63] Makoto Misono, Yoshifumi Hirao, Chikafumi Yokoyama. Reduction of nitrogen oxides with hydrocarbons catalyzed by bifunctional catalysts. Catalysis Today. 1997, 38(2): 157-162
    [64] Chikafumi Yokoyama, Makoto Misono. Catalytic reduction of NO by propene in the presence of oxygen over mechanically mixed metal oxides and Ce-ZSM-5. Catalysis Letters. 1994, 29(1): 1-6
    [65] A. Yu. Stakheev, C. W. Lee, S. J. Park, et al.. NO_2 formation and its effect on the selective catalytic reduction of NO over Co/ZSM-5. Catalysis Letters. 1996, 38(3): 271-278
    [66] Masaru Ogura, Yukihiro Sugiura, Masayoshi Hayashi, et al.. Reduction of nitric oxide with methane on Pd/Co/H-ZSM-5 catalysts: cooperative effects of Pd and Co. Catalysis Letters. 1996, 42(2): 185-189
    [67] J. T. Miller, E. Glusker, R. Peddi, et al.. The role of acid sites in cobalt zeolite catalysts for seletive catalytic reduction of NOx. Catalysis Letters. 1998, 51(1): 15-22
    [68] Megumu Inaba, Yoshiaki Kintaichi, Hideaki Hamada. Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propene. Catalysis Letters. 1996, 36(3): 223-227
    [69] Makoto Misono. Catalytic reduction of nitrogen oxides by bifunctional catalysts. CATTECH. 1998, 7(1): 53—69
    [70] J. C. Menezo et al. Catalytic reduction of NO by propene in the presence of oxygen and water over La_(0. 59)Sr_(0. 39)MnO_3—alumina mixtures. Applied Catalysis B: Environment. 1998, 15(1): 11 — 14
    [71] T. E. Hoost, K. Otto, K. A. Laframboise. FTIR spectroscopy of nitric oxide adsorption on Pd/Al_2O_3: Evidence of metal-support interaction. Journal of Catalysis. 1995, 155(4): 303-311[72] Francois Garin, Paule Girard, Sandrine Ringler, et al. Mechanistic studies of NOx reduction reactions under oxidative atmosphere on alumina supported 1 wt% and 1 wt% Pt-0. 5% Zn catalysts (part Ⅰ). Applied Catalysts B: Environmental. 1999, 20(2): 205-218
    [73] Sandrine Ringler, Paule Girard, Gilbert Maire, et al. Mechanistic studies of NOx reduction reactions under oxidative atmosphere on alumina supported 0. 2wt% platinum catalyst treated under microwave(part Ⅱ). Applied Catalysts B: Environmental. 1999, m 20(3): 219-233
    [74] I. V. Yentekakis, R. M. Lambert, M. S. Tikhov, et al. Promotion by sodium in emission control catalysis: A kinetic and spectroscopic study of the Pd-catalyzed redcution of NO by propene. Journal of Catalysis. 1998, 176(1): 82-92
    [75] Masaaki Haneda, Yoshiaki Kintaichi, Megunu Inaba, et al. Infrared study of catalytic reduction of nitrogen monoxide by propene over Ag/TiO_2-ZrO_2. Catalysis Today. 1998, 42(2): 127-135
    [76] E. E. Miro, g. Imoberdorf, J. Vassallo, et al.. SCR of NOx with CH_3OH on Hmordenite: mechanism and reaction intermediates. Applied Catalysts B: Environmental. 1999, 22(4): 305-318
    [77] Filip Acke, Magnus Skoglundh. Difference in reaction mechanisms for the selective reduction of NO under oxygen excess over Pt based catalysts using propane or propene as reduing agent. Applied Catalysts B: Environmental. 1999, 22(1): L1-L3
    [78] Till Gerlach, Uta Illgen, Michael bartoszek, et al.. Reduction of nitrogen dioxide by prepene over acidic mordenites: influence of acid site concentration, formation of by-products and mechanism. Applied Catalysts B: Environmental. 1999, 22(3): 268-278
    [79] Till Gerlach, Frank-walter Schutze, Monfred Boerns. An FTIR study on the mechanism of the reduction between nitrogen dioxide and propene over acidic mordenites. Journal of catalysis. 1999, 185(2): 131-137
    [80] F. C. Meunier, J. P. Breen, V. Zuzaniuk, et al.. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts. Journal of Catalysis. 1999, 187(5): 493-505
    [81] R. Burch, P. Fornasiero, T. C. Watling. Kinetics and mechanism of the reduction of NO by n-octane over Pt/Al_2O_3 under Lean-Burn conditions. Journal of Catalysis.??1998, 176(3): 204-214
    [82] Dmitiri B. Lukyanov, E. A. Lombardo, Gustave A. Sill, et al.. selective catalytic reduction (SCR) of NO with methane over Co ZSM-5 and HZSM-5 Zeolites: On the role of free radicals and competitive oxidation reactions. Journal of Catalysis. 1996, 163(5): 447-456
    [83] Satoshi Kameoka, Tarik Chafik, Yuji Ukisu, et al.. Reactivity of surface isocyanate species with NO, O_2 and NO+O_2 in selective reduction of NOx over Ag/Al_2O_3 and Al_2O_3 catalysts. Catalysis Letters. 1998, 55(3): 211-215
    [84] Lok B M, Messina C A, Lyle P R, et al.. Crystalline Silicoaluminophosphate. US Patent. 1984, 4440871
    [85] Lok B M, Messina C A, Lyle P R, et al.. Silicoaluminophosphate molecular sieves: another new class of microporous inorganic solids. J Am Chem Soc. 1984, 106(3): 6092-6093
    [86] 付晔,王乐夫,谭宇新.SAPO分子筛的研究现状及应用前景.化学反应工程与工艺.2000,16(1):55-59
    [87] 谭涓,何长青,刘中民.SAPO-34分子筛研究进展.天然气化工.1999,24(2):47-53
    [88] Poshusta J C, Tuan V A, Falconer J L, et al. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial and Engineering Chemistry Research. 1998, 37(10) : 3924-3929
    [89] Popova M, Minchev C, Kanazirev V. Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium. Appl Catal. 1998, 169 : 227-235
    [90] Philippou A, Salehirad F, Luigi D P , et al . Investigation of surface methoxy groups on SAPO-34— a combined magic-angle turning NMR experimental approach with theoretical studies . Journal of the Chemical Society - Faraday Transaction. 1998, 94(18): 2851-2856
    [91] 王定一,李景林荫道,范闽光.SAPO-34分子筛的合成及用于乙醇脱水的研究.催化学报.1992,13(3):234-236
    [92] Li H X, Davis M E. Treatments of AlPO_4-5 and SAPO-5 molecular sieves with silicon tetrachloride vapor. J Phys Chem. 1992, 96(4) : 331-339
    [93] Yoshihide Watanabe et al . Multinuclear NMR Studies on the Thermal??Stability of SAPO-34. Journal of Catalysis. 1993, 143(2): 430-436
    [94] Nishiguchi, Hiroyasu, Kimur. Selective reduaion of NO_x with C_3H_6over Cu incorporated into silicoaluminophosphate. Research on Chemical intermediates. 1998, 24(4) : 391-399
    [95] Tatsumi. Ishihara, Masaru. Kagawa, Fumiaki. Hamada, et al. Thermostable Molecular Sieves. Silicoaluminophosphate (SAPO)-34. for the Removal of NOx with C_3H_6 in the Coexistence of O_2. H_2O. and SO_2. Ind. Eng. Chem. Res.. 1997, 36(1): 17-22
    [96] Tatsumi Ishihara, Masaru. Kagawa, Fumiaki. Hamada, et al. Coper Ion-Exchanged SAPO-34 as a Thermostable Catalyst for Selective Reduction of NO with C_3H_6. Journal of Catalysis. 1997, 169(1): 93-102
    [97] Akolekar D B, Bhargava S K, Foger K. FTIR investigations of the adsorption and disproportionation of NO on Cu-exchanged silicoaluminophosphate of type 34. Journal of the Chemical Society-Faraday Transaction. 1998, 94(1) : 155-160
    [98] 刘中民,黄兴云,何长青等.SAPO-34分子筛的热稳定性及湿热稳定性.催化学报.1996,17(6):540-543
    [99] 罗伯特D.布朗.最新仪器分析技术全书.北京大学化学系.第一版.化学工业出版社.1990:541-553
    [100] 黄仲涛,林维明,庞先,王乐夫.工业催化剂开发与设计.第一版.华南理工大学出版社.1991:175-239
    [101] 吴越.催化化学.第一版.科学出版社.1995:1072-1077
    [102] 吉林大学化学系.催化作用基础.第一版.科学出版社.1980:375-378
    [103] 吴清辉.表面化学与多相催化.第一版.化学工业出版社.1991:254-265
    [104] Russell N. Dietz, Gas chromatographic determination of nitric oxide on treated molecular sieve. Analytical Chemistry. 1968, 40(10): 1576-1578
    [105] A. Amirnazmi J. E. Benson, M Boudart. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. Journal of Catalysis. 1973, 30(1): 55-65
    [106] Bernard E. Saltzman. Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Analytical Chemistry. 1954, 26(12): 1949-1955
    [107] 张叔良,易大年,吴天明.红外光谱分析与新技术.第一版.中国医药科技出版社..1993:116-119
    [108] 须沁华.SAPO分子筛.石油化工.1988,17(4):186-192
    [109] Barthomeuf Denise, Nato ASI Ser, Ser C. Topological model for the compared??acidity of SAPOs and SiAl zeolites. NATO ASI Ser. 1994, 444(4) : 375-380
    [110] Sergei A Zubkov. Leonid M Kustov, Vadim B Kazansky . Investigation of hydroxyl groups in crystalline silicoaluminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. J Chem Soc Faraday Trans. 1991, 87(6) : 876-900
    [111] Marchese L, Chen J, Wright P A, et al. Formation of H_3O~+ at the bronsted site in SAPO-34 catalysts. Journal of Physical Chemistry. 1993, 97(31) : 8109-8122
    [112] 何长青,刘中民,蔡光宇 等.SAPO-34分子筛表面酸性质的研究.分子催化.1996,10(1):48-54
    [113] Delcampo AES, Gayubo AG, Gonzalez, et al. Surface acidity of SAPO-34 silicoaluminophosphate. Industrial and Engineering Chemistry Research. 1996, 53 : 325-328
    [114] Vomscheid R, Briend M, Peltre M J, et al. The role of the template in directing the Si distribution in SAPO zeolites. J Phys Chem. 1994, 98(6) : 9614-9618
    [115] Parakash AM, Unnikrishnan S. Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. J Chem Soc Faraday Trans. 1994, 90(15): 2291-2296
    [116] 何长青,刘中民,蔡光宇 等.二乙胺法合成磷硅铝分子筛.中国发明专利申请.1994,CN 1096496
    [117] Bodo Zibrowius, Elke Loffler Michael Hunger. Multinuclear MAS NMR and IR spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites. 1992, 12(2) : 167-174
    [118] 何长青,刘中民,蔡光宇 等.三乙胺法合成磷硅铝分子筛SAPO-34的研究.天然气化工.1993,18:14-18
    [119] 刘中民,蔡光宇,何长青 等.三乙胺法合成磷硅分子筛.中国发明专利申请.1994,CN1088483
    [120] Dumttriu E, Azzouz A, Hulea V. Synthesis characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent. Microporous Materials. 1997, 10(1): 1-12
    [121] 肖天存,王海涛,苏继新 等.模板剂种类、浓度、硅源对SAPO-5分子筛结构性质的影响.分子催化.1998,12(4):246-252
    [122] 李宏愿,梁娟,汪荣慧 等.硅磷酸铝分子筛SAPO-34的合成.石油化??工.1987,16(6):340-346
    [123] 何长青,刘中民,蔡光宇 等.双模板剂法合成SAPO分子筛.中国发明专利申请.1995,CN1106715
    [124] Sunil Ashtekar, Satyanarayana V V Chilukuri, Dipak K Chakrabarty. Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: A study of silicon incorporation. J Phys Chem. 1994, 98(6): 4878-4883
    [125] Ojo A F, Duyer J, Malley P J, et al. Synthesis and Properties of SAPO-5 Molecular Sieves: Silicon incorporation into the framwork. J Chem Soc Farad Trans. 1992, 88(2) : 105-112
    [126] Wang Xingqiao, Liu Xingsha, Song Tianyou, et al. Substitution of Si in SAPO-5. Chem Phys Lett. 1989, 157(1) : 85-89
    [127] Wang R, Lin C F, Ho Y S, et al. Silicon species in a SAPO-5 molecular sieves. Applied Catalysis. 1991, 72(1) : 39-45
    [128] Sastre G, Lewis D W, Catlow C R A. Mechanisms of silicon incorporation in aluminophosphate molecular sieves. Journal of Molecular Catalysis . 1996 , 119(1): 349-356
    [129] 肖天存,王海涛,苏继新 等.凝胶中硅含量对SAPO-5分子筛合成及其性能的影响.分子催化.1998,12(8):367-374
    [130] 谭涓,刘中民,何长青.SAPO-34分子筛晶化机理的研究.催化学报.1998,19(5):436-441
    [131] Martens J A, Mertens M, Grobet P J, et al . Synthesis and characterization of silian- rich SAPO-5. Stud Surf Sci Catal. 1988, 37(2): 97-106
    [132] M Popova, Ch. Minchev, V. Kanazirev. Methanol converstion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminum. Applied Catalysis A: General. 1998, 169(3): 227-235
    [133] 郑燕芙,杨廷录,周小虹.制备条件对SAPO-34分子筛结构及MTO活性的影响.燃料化学学报.1999,27(2):139-143
    [134] Chikafumi Yokoyama, Makoto Misono. Catalytic reduction of nitrogen oxides by propene in the presence of oxygen over cerium Ion-Exchange zeolites. Journal of Catalysis. 1994, 150(1): 9-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700