准一维SiC和Si_3N_4纳米材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准一维SiC和Si_3N_4纳米材料普遍具有优异的力学性能、光学性能和电学性能,在复合材料增强体和纳米元器件等领域都有着广泛的应用前景。然而,现有的工艺方法难以实现结构控制与高产率制备,严重制约着它们的研究和应用。因此,准一维SiC和Si_3N_4纳米材料的可控生长与高产率制备,是亟待解决的瓶颈问题。本文从反应热力学与动力学出发,对准一维SiC和Si_3N_4纳米材料进行设计,首先合成出非晶态SiO_2/C纳米复合粉体作为前驱体原料,然后分别在Ar和N_2气氛中进行热处理,成功实现了具有不同结构的准一维SiC和Si_3N_4纳米材料的可控生长与高产率制备。针对一般原料转化率较低的问题,设计并合成出一种高效的新型原料。选
     用硅溶胶和蔗糖为原料,经过溶胶凝胶和热分解工艺获得黑色的非晶态SiO_2/C纳米复合粉体。其中,纳米复合粉体的颗粒为30~50nm,具有碳包覆二氧化硅的纳米结构。非晶态SiO_2/C纳米复合粉体在1109℃时即开始发生碳热还原反应,1290℃时反应放出大量的SiO和CO气体,热处理温度比热力学的计算值降低至少300℃。在不引入任何添加剂的情况下,将SiO_2/C粉末直接置于Ar气氛中进行热处理,热处理温度为1200℃时生长出SiC纳米线;将粉体直接在N_2气氛中热处理,1300℃时生长出Si_3N_4纳米纤维。SiO_2/C粉末具有较高的反应活性,是合成准一维SiC和Si_3N_4纳米材料的理想前驱体。
     在Ar气氛中对前驱体进行热处理制备准一维SiC纳米材料,系统地研究其生长规律,并对各种结构进行表征。当初始Ar压强0.1~0.5MPa,在1200~1550℃温度区间内对非晶态SiO_2/C纳米复合粉体直接热处理,然后缓慢降温,即可获得平直的SiC纳米线。纳米线的生长具有如下规律:SiC纳米线的直径受Ar气压强的影响较大,气压越高纳米线的直径越小,直径可以在50~1000nm的范围内进行控制;SiC纳米线的长度受热处理温度和时间的影响较大,随着温度的升高和时间的延长纳米线的长度增加,长度可以在几微米至几厘米的范围进行控制;SiC纳米线的产率受到SiO_2/C粉末配比和热处理温度的影响较大,SiO_2/C粉末中C:Si比和温度的提高均有利于产率的提高。当初始Ar压强为0.3 MPa,在1550℃对C与Si的摩尔比为3:1的SiO_2/C粉末进行热处理并保温4h时,SiC纳米线可以形成无纺布,纳米线的平均直径为100~120nm、长度可达几个厘米。SiC纳米线具有良好的发光性能,可在246 nm至595 nm的波长范围内发射荧光;纳米线的电导率为0.141 S·cm-1,明显优于碳化硅块体材料;单根纳米线的拉伸强度最高可达31GPa。
     当初始Ar压强0.5~1.0MPa,在1650~1800℃温度区间内对非晶态SiO_2/C纳米复合粉体直接热处理可获得具有串状结构的SiC纳米线。串状结构为β-SiC单晶,中心杆(或线)的直径50~150nm,外围的串直径100~500nm,长度分布在几十微米至几个毫米范围内。在气氛浓度较大的环境中,气相生长出的SiC纳米线带有大量的层错缺陷,这些缺陷位置利于SiC晶体的外延生长,从而在纳米线上生长出SiC晶片,自组装生长成独特的串状结构。通过控制热处理温度和Ar压强,实现对串状结构SiC纳米线的生长进行控制。
     当初始Ar压强0.2~0.5MPa,在1450~1600℃温度区间内对非晶态SiO_2/C纳米复合粉体直接热处理然后快速降温可获得伴有球状结构的SiC纳米线,呈现珍珠项链状的形貌,纳米线的直径80~100nm、长度可达几个毫米,小球的直径主要分布在1~10 m。当气相中存有较多未反应的SiO和CO气体情况下开始降温,SiO和CO气体容易在气氛压力和表面张力的共同作用下沉积到纳米线上并形成小球,从而自组装成为具有球状结构的SiC纳米线。通过调节热处理温度、反应时间、降温速率和Ar压强,可实现对伴生球状结构的SiC纳米线的可控生长。
     在N_2气氛中对前驱体进行热处理制备准一维Si_3N_4纳米材料,系统地研究其生长规律,并对各种结构进行表征。当初始N_2压强为0.2~1.0MPa,在1400~1600℃温度区间内对非晶态SiO_2/C纳米复合粉体直接热处理可获得Si_3N_4纳米纤维。Si_3N_4纳米纤维的生长,可以通过热处理温度、保温时间和N_2压强来进行控制。随着温度升高和保温时间延长,Si_3N_4纳米纤维由线状向带状过渡,且纳米带的尺寸逐渐增大;随着N_2压强的增大,Si_3N_4纳米纤维的尺寸也逐渐增大。当初始氮气压力为0.2MPa,对C与Si的摩尔比为4:1的SiO_2/C粉末进行热处理并保温4h时,可以得到高产率的无纺布状a-Si_3N_4纳米带,带宽150~300nm,带厚20~90nm。Si_3N_4纤维具有很好的发光性能,可发射波长范围246nm至595nm;电导率为10~(-9) S·cm~(-1),属于典型的半导体材料;具有优良的力学性能,纳米硬度和弹性模量分别为17.2GPa和180.8GPa。
Quasi one-dimensional (quasi-1D) SiC and Si_3N_4 nanomaterials have promising applications for reinforcing composite materials and producing nanodevices, due to their excellent mechanical, optical and electrical properties. Although great efforts have been made to prepare quasi-1D SiC and Si_3N_4 nanomaterials, the difficulty of producing them on large scale with controllable structure is still a major hindrance limiting their further practical applications. Therefore, it is very necessary and important to realize the controllable growth and high-yield preparation of quasi-1D SiC and Si_3N_4 nanomaterials. In this paper, silica sol and sucrose were used to synthesize novel amorphous SiO_2/C nanocomposite powders through the process of sol-gel and thermal decomposition. Then the as-synthsized powders were annealed to fabricate quasi-1D SiC and Si_3N_4 nanomaterials under Ar and N_2 atmosphere, respectively. The influences of the raw materials, annealing temperature and gas pressure on the growth of quasi-1D SiC and Si_3N_4 nanomaterials were systematically investigated, and the optical, electrical and mechanical properties of the obtained 1D nanomaterials were also studied.
     The SiO_2/C nanocomposites are amorphous in nature and homogeneous with the microstructure of close packed SiO_2 and carbon at nanoscale. Carbothermal reduction reaction begins at 1109°C and becomes very severe at 1300°C during the annealing process of SiO_2/C nanocomposites. The SiO_2/C nanocomposites can be annealed to produce SiC and Si_3N_4 nanocrystals at 1200 and 1300°C, respectively. Owing to the high reactivity at high temperature, the SiO_2/C nanocomposites are ideal precursor for fabrication of 1D SiC and Si_3N_4 nanomaterials.
     SiC nanowires were obtained by directly annealing the amorphous SiO_2/C nanocomposites at 1200~1600°C under the initial Ar pressure arrange of 0.1~1.0 MPa. The average diameter of SiC nanowires showed a decreasing trend with the increase of the gas pressure. With the reaction temperature increased, the average diameter of SiC nanowires remained unchangable, however, the length of nanowires increased significantly. When the nanocomposites are annealed at 1550°C, the length of SiC nanowires can be up to several centimeters. A large number of stacking faults, resulting to the formation of nano-fins structure, were found in the SiC nanowires when the reaction temperatures were more than 1600°C. For increasing the holding time from 0.5h to 4h at 1550°C, the yield of SiC nanowires were obviously increased as well. The optimal synthetic parameters for the growth of SiC nanowires based on the results of experiments were proposed as follows: annealing the SiO_2/C nanocomposites at 1550°C for 4h under 0.2MPa Ar gas-pressure atmosphere, large quantities of SiC nanowires were obtained with the average diameter of 80~100nm and the length of several centimeters. The photoluminescence, electrical, and mechanical properties of SiC nanowires were investigated.
     With regard to the string-like SiC nanowires achieved by annealing the amorphous SiO_2/C nanocomposites at 1650~1800℃under the initial Ar pressure arrange of 0.5~1.0 MP, the phase composition is mainlyβ-SiC single crystal with the average diameters of central nanowires and external string of 100nm and 200nm, respectively, and the length range of string-like SiC nanowires are from tens of microns to several millimeters. The controllable structure of string-like SiC nanowires can be fulfilled technically by adjusting the annealing temperatures and the initial Ar gas pressures.
     Necklace-like SiC nanowires were obtained by rapid cooling after annealing the amorphous SiO_2/C nanocomposites at 1450~1600℃under the initial Ar pressure arrange of 0.2~1.0 MPa. The formation mechanism of necklace-like SiC nanowires is proposed as following: Firstly, the straight SiC nanowires are formed; then, unreacted gaseous SiO and CO deposite into small balls on the SiC nanowires so as to form the novel structure of necklace-like SiC nanowires. By adjusting the annealing temperatures, holding times, cooling rates and Ar pressures, the growth of necklace-like SiC nanowires can be controlled.
     Quasi-1D Si_3N_4 nanomaterials, including nanowires and nanobelts, were obtained by directly annealing the amorphous SiO_2/C nanocomposites at 1200~1600°C under the initial N_2 pressure arrange of 0.2~1.0 MPa. The growth of Quasi-1D Si_3N_4 nanomaterials can be controlled by adjusting annealing temperature, holding time and the initial N_2 pressure. With increasing the annealing temperature and holding time, Si_3N_4 nanowires can turn into nanobelts. With the increase of initial N_2 gas pressure, the size of quasi-1D Si_3N_4 nanomaterials also increases. When the amorphous SiO_2/C nanocomposites (with molar ratio Si:C=1:3) were annealed at 1500 for 4 h under the initial nitrogen pressure of 0.2 MPa, the products were non-woven self-assembled by high yield Si_3N_4 nanobelts with a bandwidth of 150~300 nm and thickness of 20~90 nm. The properties of Si_3N_4 nanobelts were also investigated and results show the nanobelts exhibit excellent optical, electrical and mechanical properties.
引文
1张立德,牟季美.纳米材料与纳米结构.科学出版社. 2001: 5~11
    2白春礼.中国纳米科技研究的现状及思考.物理. 2002, 31: 65~70
    3任红轩.世界纳米科技发展趋势分析.新材料产业. 2007, 6: 15~17
    4白春礼.纳米科技发展趋势分析(一).纳米科技. 2005, 5: 3~7
    5李言荣,恽正中.电子材料导论.清华大学出版社. 2001: 47~48
    6张秀荣.纳米材料的分类及其物理性能.现代物理知识. 2002, 14: 24~25
    7蔡子亮.现代科学技术与社会发展河南大学出版社. 2002: 180~181
    8 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354: 56~58
    9 G. Cao. Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press. 2004: 110
    10 J. G. Lu, P. C. Chang, Z. Y. Fan. Quasi-One-Dimensional Metal Oxide Materials - Synthesis, Properties and Applications. Materials Science & Engineering R-Reports. 2006, 52(1-3): 49~91
    11侯士敏,陶成钢,刘虹雯,赵兴钰,刘惟敏,薛增泉.高定向石墨表面金纳米粒子和金纳米线的研究.物理学报. 2001, 50: 223~226
    12董亚杰,李亚栋.一维纳米材料的合成、组装与器件.科学通报. 2002, 47: 641~649
    13 Y. Ding, Z. L. Wang. Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy. J. Physical Chemistry B. 2004, 108(33): 12280~12291
    14解挺,焦明华,俞建卫,吴玉程,张立德.准一维纳米材料制备方法的研究现状和发展趋势.材料科学与工程学报. 2006, 24: 311~315
    15 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang. Catalystic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials. 2001, 13(2): 113~116
    16 M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele. A Raman Spectroscopy Study of Individual SiC Nanowires. Advanced Functional Materials. 2007, 17(6): 939~943
    17 F. M. Gao, W. Y. Yang, Y. Fan, L. N. An. Aligned Ultra-Long Single-Crystalline Alpha-Si_3N_4 Nanowires. Nanotechnology. 2008, 19(10): 105602
    18 F. Li, G. Wen. A Novel Method for Massive Fabrication of Beta-SiC Nanowires. J. Materials Science. 2007, 42(12): 4125~4130
    19 T. Baldridge, M. C. Gupta. Zirconium Diboride Nanofiber Generation Via Microwave Arc Heating. Nanotechnology. 2008, 19(27): 275601
    20 S. Samitsu, T. Shimomura, K. Ito. Nanofiber Preparation by Whisker Method Using Solvent-Soluble Conducting Polymers. Thin Solid Films. 2008, 516(9): 2478~2486
    21 A. Eriksson, S. Lee, A. A. Sourab, A. Isacsson, R. Kaunisto, J. M. Kinaret, E. E. B. Campbell. Direct Transmission Detection of Tunable Mechanical Resonance in an Individual Carbon Nanofiber Relay. Nano Letters. 2008, 8(4): 1224~1228
    22 A. De, C. E. Pryor. Calculation of Lande G Factors for Iii-V Nanowhisker Quantum Dots and Comparison with Experiment. Physical Review B. 2007, 76(15): 15321
    23 J. A. Haber, P. C. Gibbons, W. E. Buhro. Morphological Control of Nanocrystalline Aluminum Nitride: Aluminum Chloride-Assisted Nanowhisker Growth. J. the American Chemical Society. 1997, 119(23): 5455~5456
    24 S. H. Lee, K. Miyazawa, R. Maeda. C-60 Nanowhisker Synthesis Using a Microchannel Reactor. Carbon. 2005, 43(4): 887~889
    25 C. Q. Xu, Z. C. Zhang, Q. Ye, X. Liu. Synthesis of Copper Sulfide Nanowhisker Via Sonochemical Way and Its Characterization. Chemistry Letters. 2003, 32(2): 198~199
    26 H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber. Synthesis and Characterization of Carbide Nanorods. Nature. 1995, 375: 769 ~ 772
    27 W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu. Synthesis of Gallium Nitride Nanorods through a Carbon Nanotube-Confined Reaction. Science. 1997, 277(5330): 1287~1289
    28 R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, A. P. Alivisatos. Spontaneous Superlattice Formation in Nanorods through Partial Cation Exchange. Science. 2007, 317(5836): 355~358
    29 F. Xu, X. Zhang, W. Xi, J. Hong, Y. Xie. Growth of Pure Beta-Si_3N_4 Nanorods from the Synergic Nitrogen Sources. Chemistry Letters. 2003, 32(7): 600~601
    30 B. Y. Liu, D. C. Jia, Y. Zhou, H. B. Feng, Q. C. Meng. Low Temperature Synthesis of Amorphous Carbon Nanotubes in Air. Carbon. 2007, 45(8): 1710~1713
    31 G. Wen, T. Zhang, X. X. Huang, B. Zhong, X. D. Zhang, H. M. Yu. Synthesis of Bulk Quantity Bn Nanotubes with Uniform Morphology. Scripta Materialia. 2010, 62: 25~28
    32 J. W. Zhao, C. H. Ye, X. S. Fang, L. R. Qin, L. D. Zhang. Selective Growth of Crystalline SnO_2 on the Polar Surface of Zno Nanobelts. Crystal Growth &Design. 2006, 6(12): 2643~2647
    33 C. H. Lu, L. M. Qi, J. H. Yang, L. Tang, D. Y. Zhang, J. M. Ma. Hydrothermal Growth of Large-Scale Micropatterned Arrays of Ultralong Zno Nanowires and Nanobelts on Zinc Substrate. Chemical Communications. 2006(33): 3551~3553
    34 H. Ni, X. D. Li. Young's Modulus of Zno Nanobelts Measured Using Atomic Force Microscopy and Nanoindentation Techniques. Nanotechnology. 2006, 17(14): 3591~3597
    35 G. W. Meng, L. D. Zhang, Y. Qin, C. M. Mo, F. Phillipp. Synthesis of Beta-SiC Nanowires with SiO_2 Wrappers. Nanostructured Materials. 1999, 12(5-8): 1003~1006
    36 C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui. Large-Scale Synthesis of Beta-SiC Nanowires by Using Mesoporous Silica Embedded with Fe Nanoparticles. Chemical Physics Letters. 2000, 329(3-4): 323~328
    37 L. D. Zhang, G. W. Meng, F. Phillipp. Synthesis and Characterization of Nanowires and Nanocables. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2000, 286(1): 34~38
    38 Y. Zhang, K. Suenaga, C. Colliex, S. Iijima. Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon. Science. 1998, 281(5379): 973~975
    39 X. D. Wang, J. H. Song, Z. L. Wang. Single-Crystal Nanocastles of ZnO. Chemical Physics Letters. 2006, 424(1-3): 86~90
    40 H. Ni, X. D. Li. Self-Assembled Composite Nano-/Micronecklaces with SiO_2 Beads in Boron Strings. Applied Physics Letters. 2006, 89(5): 053108 - 053108-3
    41 W. L. Hughes, Z. L. Wang. Controlled Synthesis and Manipulation of Zno Nanorings and Nanobows. Applied Physics Letters. 2005, 86(4): 1853514
    42 P. Zijlstra, J. W. M. Chon, M. Gu. Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods. Nature. 2009, 459(7245): 410~413
    43 B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, Z. L. Wang. Lasing Mechanism of Zno Nanowires/Nanobelts at Room Temperature. J. Physical Chemistry B. 2006, 110(26): 12865~12873
    44 J. Y. Fan, X. L. Wu, P. K. Chu. Low-Dimensional SiC Nanostructures: Fabrication, Luminescence, and Electrical Properties. Progress in Materials Science. 2006, 51(8): 983~1031
    45 X. X. Wang, J. F. Liu, B. W. Cheng, J. Z. Yu, Q. M. Wang. Metal Catalysis-Free, Direction-Controlled Planar Growth of Single-Crystalline Alpha-Si_3N_4 Nanowires on Si(100) Substrate. Nanotechnology. 2006, 17(15): 3989~3993
    46 Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F.Kim, Y. Q. Yan. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials. 2003, 15(5): 353~389
    47 R. S. Wagner, W. C. Ellis. Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters. 1964, 4: 89~90
    48 A. M. Morales, C. M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science. 1998, 279(5348): 208~211
    49 Y. Y. Wu, P. D. Yang. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. the American Chemical Society. 2001, 123(13): 3165~3166
    50 Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber. Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires. Applied Physics Letters. 2001, 78(15): 2214~2216
    51 Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee. Silicon Nanowires Prepared by Laser Ablation at High Temperature. Applied Physics Letters. 1998, 72(15): 1835~1837
    52 W. S. Shi, Y. F. Zheng, H. Y. Peng, N. Wang, C. S. Lee, S. T. Lee. Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. J. the American Ceramic Society. 2000, 83(12): 3228~3230
    53 D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, S. Q. Feng. Synthesis of Nano-Scale Silicon Wires by Excimer Laser Ablation at High Temperature. Solid State Communications. 1998, 105(6): 403~407
    54 G. C. Xi, Y. K. Liu, X. Y. Liu, X. Q. Wang, Y. T. Qian. Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures. J. Physical Chemistry B. 2006, 110(29): 14172~14178
    55 Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconducting Oxides. Science. 2001, 291(5510): 1947~1949
    56 P. D. Yang, C. M. Lieber. Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities. Science. 1996, 273: 1836~1840
    57 F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, W. E. Buhro. Solution-Liquid-Solid Growth of Semiconductor Nanowires. Inorganic Chemistry. 2006, 45(19): 7511~7521
    58 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science. 1995, 270: 1791 ~ 1794
    59 A. T. Heitsch, D. D. Fanfair, H. Y. Tuan, B. A. Korgel. Solution-Liquid-Solid (Sls) Growth of Silicon Nanowires. J. the American Chemical Society. 2008, 130(16): 5436
    60 X. M. Lu, D. D. Fanfair, K. P. Johnston, B. A. Korgel. High Yield Solution-Liquid-Solid Synthesis of Germanium Nanowires. J. the American Chemical Society. 2005, 127(45): 15718~15719
    61 J. W. Sun, W. E. Buhro. The Use of Single-Source Precursors for the Solution-Liquid-Solid Growth of Metal Sulfide Semiconductor Nanowires. Angewandte Chemie-International Edition. 2008, 47(17): 3215~3218
    62 A. J. Wooten, D. J. Werder, D. J. Williams, J. L. Casson, J. A. Hollingsworth. Solution-Liquid-Solid Growth of Ternary Cu-in-Se Semiconductor Nanowires from Multiple- and Single-Source Precursors. J. the American Chemical Society. 2009, 131(44): 16177~16188
    63 A. G. Dong, F. D. Wang, T. L. Daulton, W. E. Buhro. Solution-Liquid-Solid (Sls) Growth of Znse-Znte Quantum Wires Having Axial Heterojunctions. Nano Letters. 2007, 7(5): 1308~1313
    64 J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai. Nanotube Molecular Wires as Chemical Sensors. Science. 2000, 287(5453): 622~625
    65 Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science. 2001, 293(5533): 1289~1292
    66 I. Park, Z. Y. Li, A. P. Pisano, R. S. Williams. Top-Down Fabricated Silicon Nanowire Sensors for Real-Time Chemical Detection. Nanotechnology. 2010, 21(1): 015501
    67 E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Applied Physics Letters. 2002, 81(10): 1869~1871
    68 K. M. Ryu, D. H. Zhang, C. W. Zhoua. High-Performance Metal Oxide Nanowire Chemical Sensors with Integrated Micromachined Hotplates. Applied Physics Letters. 2008, 92(9): 2841665
    69 X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, C. M. Lieber. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature. 2001, 409(6816): 66~69
    70 X. Duan, Y. Huang, R. Agarwal, C. M. Lieber. Single-Nanowire Electrically Driven Lasers. Nature. 2003, 421: 241~245
    71 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science. 2001, 292(5523): 1897~1899
    72 Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber. LogicGates and Computation from Assembled Nanowire Building Blocks. Science. 2001, 294(5545): 1313~1317
    73 A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker. Logic Circuits with Carbon Nanotube Transistors. Science. 2001, 294(5545): 1317~1320
    74 Y. Huang, X. F. Duan, Y. Cui, C. M. Lieber. Gallium Nitride Nanowire Nanodevices. Nano Letters. 2002, 2(2): 101~104
    75 Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, P. Avouris. An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science. 2006, 311(5768): 1735~1735
    76 W. J. Yu, U. J. Kim, B. R. Kang, I. H. Lee, E. H. Lee, Y. H. Lee. Adaptive Logic Circuits with Doping-Free Ambipolar Carbon Nanotube Transistors. Nano Letters. 2009, 9(4): 1401~1405
    77 Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. J. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers. Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates. Nature. 2008, 454(7203): 495~U4
    78 B. A. Sheriff, D. W. Wang, J. R. Heath, J. N. Kurtin. Complementary Symmetry Nanowire Logic Circuits: Experimental Demonstrations and in Silico Optimizations. ACS Nano. 2008, 2(9): 1789~1798
    79 Z. L. Wang, J. H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006, 312(5771): 242~246
    80 X. D. Wang, J. H. Song, J. Liu, Z. L. Wang. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science. 2007, 316(5821): 102~105
    81 Y. Qin, X. D. Wang, Z. L. Wang. Microfibre-Nanowire Hybrid Structure for Energy Scavenging. Nature. 2008, 451(7180): 809~813
    82 U. Starke, J. Bernhardt, J. Schardt, K. Heinz. SiC Surface Reconstruction: Relevancy of Atomic Structure for Growth Technology. Surface Review and Letters. 1999, 6(6): 1129~1141
    83 E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science. 1997, 277(5334): 1971~1975
    84 X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang. Low-Temperature in Situ Large Strain Plasticity of Ceramic SiC Nanowires and Its Atomic-Scale Mechanism. Nano Letters. 2007, 7(2): 452~457
    85 H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee, D. J. Choi. Optical and Electrical Transport Properties in Silicon Carbide Nanowires. Applied Physics Letters. 2004, 85(7): 1256~1258
    86 Y. B. Li, P. S. Dorozhkin, Y. Bando, D. Golberg. Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes. Advanced Materials. 2005, 17(5): 545
    87 W. M. Zhou, X. Liu, Y. F. Zhang. Simple Approach to Beta-SiC Nanowires: Synthesis, Optical, and Electrical Properties. Applied Physics Letters. 2006, 89(22): 2398902
    88 W. Q. Han, S. S. Fan, Q. Q. Li, W. J. Liang, B. L. Gu, D. P. Yu. Continuous Synthesis and Characterization of Silicon Carbide Nanorods. Chemical Physics Letters. 1997, 265(3-5): 374~378
    89 L. G. Zhang, W. Y. Yang, H. Jin, Z. H. Zheng, Z. P. Xie, H. Z. Miao, L. N. An. Ultraviolet Photoluminescence from 3C-SiC Nanorods. Applied Physics Letters. 2006, 89(14): 143101 - 143101~3
    90 X. M. Liu, K. F. Yao. Large-Scale Synthesis and Photoluminescence Properties of SiC/SiOx Nanocables. Nanotechnology. 2005, 16(12): 2932~2935
    91 K. Z. Li, J. Wei, H. J. Li, Z. J. Li, D. S. Hou, Y. L. Zhang. Photoluminescence of Hexagonal-Shaped SiC Nanowires Prepared by Sol-Gel Process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2007, 460: 233~237
    92 K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, S. T. Lee. Field-Emission Characteristics of SiC Nanowires Prepared by Chemical-Vapor Deposition. Applied Physics Letters. 1999, 75(19): 2918~2920
    93 Z. W. Pan, H. L. Lai, F. C. K. Au, X. F. Duan, W. Y. Zhou, W. S. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, S. S. Xie. Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties. Advanced Materials. 2000, 12(16): 1186~1190
    94 S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, J. Zhou, X. G. Zheng, H. T. Xu, J. Chen, J. C. She. Field Emission Study of SiC Nanowires/Nanorods Directly Grown on SiC Ceramic Substrate. Applied Physics Letters. 2006, 89(2): 023118
    95 G. Z. Shen, Y. Bando, C. H. Ye, B. D. Liu, D. Golberg. Synthesis, Characterization and Field-Emission Properties of Bamboo-Like Beta-SiC Nanowires. Nanotechnology. 2006, 17(14): 3468~3472
    96 Y. Ryu, Y. Tak, K. Yong. Direct Growth of Core-Shell SiC-SiO_2 Nanowires and Field Emission Characteristics. Nanotechnology. 2005, 16(7): S370~S374
    97 Y. Ryu, B. Park, Y. Song, K. J. Yong. Carbon-Coated SiC Nanowires: Direct Synthesis from Si and Field Emission Characteristics. J. Crystal Growth. 2004, 271(1-2): 99~104
    98 X. N. Zhang, Y. G. Chen, Z. P. Xie, W. Y. Yang. Shape and Doping EnhancedField Emission Properties of Quasialigned 3C-SiC Nanowires. J. Physical Chemistry C. 2010, 114(18): 8251~8255
    99 C. C. Tang, Y. Bando. Effect of Bn Coatings on Oxidation Resistance and Field Emission of SiC Nanowires. Applied Physics Letters. 2003, 83(4): 659~661
    100 Z. S. Wu, S. Z. Deng, N. S. Xu, J. Chen, J. Zhou, J. Chen. Needle-Shaped Silicon Carbide Nanowires: Synthesis and Field Electron Emission Properties. Applied Physics Letters. 2002, 80(20): 3829~3831
    101 S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, J. Zhou, X. G. Zheng, H. T. Xu, J. Chen, J. C. She. Field Emission Study of SiC Nanowires/Nanorods Directly Grown on SiC Ceramic Substrate. Applied Physics Letters. 2006, 89(2): 023118
    102 G. D. Wei, W. P. Qin, R. J. Kim, J. B. Sun, P. F. Zhu, G. F. Wang, L. L. Wang, D. S. Zhang, K. Z. Zheng. Quantum Confinement Effect and Field Emission Characteristics of Ultrathin 3C-SiC Nanobelts. Chemical Physics Letters. 2008, 461(4-6): 242~245
    103 T. H. Yang, C. H. Chen, A. Chatterjee, H. Y. Li, J. T. Lo, C. T. Wu, K. H. Chen, L. C. Chen. Controlled Growth of Silicon Carbide Nanorods by Rapid Thermal Process and Their Field Emission Properties. Chemical Physics Letters. 2003, 379(1-2): 155~161
    104 X. T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee, S. T. Lee. Thin Beta-SiC Nanorods and Their Field Emission Properties. Chemical Physics Letters. 2000, 318(1-3): 58~62
    105 Y. M. Xing, J. H. Zhang, W. W. Yang, Y. H. Yu, Z. R. Song, Z. X. Lin, D. S. Shen. Electron Field Emission from SiC/Si Heterostructures by High Temperature Carbon Implantation into Silicon. Applied Physics Letters. 2004, 84(26): 5461~5463
    106 Y. J. Yang, G. W. Meng, X. Y. Liu, L. D. Zhang, Z. Hu, C. Y. He, Y. M. Hu. Aligned SiC Porous Nanowire Arrays with Excellent Field Emission Properties Converted from Si Nanowires on Silicon Wafer. J. Physical Chemistry C. 2008, 112(51): 20126~20130
    107 G. H. Shen, Y. Bando, D. Golberg. Self-Assembled Hierarchical Single-Crystalline Beta-SiC Nanoarchitectures. Crystal Growth & Design. 2007, 7(1): 35~38
    108 W. M. Zhou, L. J. Yan, Y. Wang, Y. F. Zhang. SiC Nanowires: A Photocatalytic Nanomaterial. Applied Physics Letters. 2006, 89(1): 013105
    109周伟民.一维碳化硅纳米材料的制备与性能的基础研究.上海交通大学博士论文. 2007: 94~108
    110 G. W. Meng, Z. Cui, L. D. Zhang, F. Phillipp. Growth and Characterization ofNanostructured Beta-SiC Via Carbothermal Reduction of SiO_2 Xerogels Containing Carbon Nanoparticles. J. Crystal Growth. 2000, 209(4): 801~806
    111 Y. Yan, S. L. Zhang, S. S. Fan, W. Q. Han, G. M. Meng, L. D. Zhang. Effect of Changing Incident Wavelength on Raman Features of Optical Phonons in SiC Nanorods and Tac Nanowires. Solid State Communications. 2003, 126(11): 649~651
    112 Z. J. Li, H. J. Li, X. L. Chen, A. L. Meng, K. Z. Li, Y. P. Xu, L. Dai. Large-Scale Synthesis of Crystalline Beta-SiC Nanowires. Applied Physics a-Materials Science & Processing. 2003, 76(4): 637~640
    113 H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhang, Y. P. Xu. SiC Nanowire Networks. J. Alloys and Compounds. 2003, 352(1-2): 279~282
    114 J. Q. Hu, Q. K. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu, J. X. Wu. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route. J. Physical Chemistry B. 2000, 104(22): 5251~5254
    115 Z. C. Ju, X. C. Ma, N. Fan, P. Li, L. Q. Xu, Y. T. Qian. High-Yield Synthesis of Single-Crystalline 3C-SiC Nanowires by a Facile Autoclave Route. Materials Letters. 2007, 61(18): 3913~3915
    116 Z. C. Ju, Z. Xing, C. L. Guo, L. S. Yang, L. Q. Xu, Y. T. Qian. Sulfur-Assisted Approach for the Low-Temperature Synthesis of Beta-SiC Nanowires. European J. Inorganic Chemistry. 2008(24): 3883~3888
    117 Q. L. Pang, L. Q. Xu, Z. C. Ju, Z. Xing, L. S. Yang, Q. Hao, Y. T. Qian. 3C-SiC Nanowires and Micro-Scaled Polyhedra: Synthesis, Characterization and Properties. J. Alloys and Compounds. 2010, 501(1): 60~66
    118 F. M. Gao, W. Y. Yang, H. T. Wang, Y. Fan, Z. P. Xie, L. A. An. Controlled Al-Doped Single-Crystalline 6h-SiC Nanowires. Crystal Growth & Design. 2008, 8(5): 1461~1464
    119 H. T. Wang, L. Lin, W. Y. Yang, Z. P. Xie, L. N. An. Preferred Orientation of SiC Nanowires Induced by Substrates. J. Physical Chemistry C. 2010, 114(6): 2591~2594
    120 H. T. Wang, Z. P. Xie, W. Y. Yang, J. Y. Fang, L. N. An. Morphology Control in the Vapor-Liquid-Solid Growth of SiC Nanowires. Crystal Growth & Design. 2008, 8(11): 3893~3896
    121 W. Wang, Z. Jin, T. Xue, G. Yang, G. Qiao. Preparation and Characterization of SiC Nanowires and Nanoparticles from Filter Paper by Sol-Gel and Carbothermal Reduction Processing. J. Materials Science. 2007, 42(15): 6439~6445
    122 W. Wang, Z. H. Jin, T. Xue, G. J. Qiao. Effect of Sintering Conditions on the Formation of SiC Nanomaterials in Carbothermal Reduction. Rare Metal Materials and Engineering. 2008, 37: 535~538
    123 R. B. Wu, B. S. Li, M. X. Gao, J. J. Chen, Q. M. Zhu, Y. Pan. Tuning the Morphologies of SiC Nanowires Via the Control of Growth Temperature, and Their Photoluminescence Properties. Nanotechnology. 2008, 19(33): 335602
    124 R. B. Wu, G. Y. Yang, M. X. Gao, B. S. Li, J. J. Chen, R. Zhai, Y. Pan. Growth of SiC Nanowires from Nisi Solution. Crystal Growth & Design. 2009, 9(1): 100~104
    125 G. Y. Yang, R. B. Wu, J. J. Chen, Y. Pan, R. Zhai, L. L. Wu, J. Lin. Growth of SiC Nanowires/Nanorods Using a Fe-Si Solution Method. Nanotechnology. 2007, 18(15): 155601
    126 W. M. Zhou, F. Fang, Z. Y. Hou, L. J. Yan, Y. F. Zhang. Field-Effect Transistor Based on Beta-SiC Nanowire. Ieee Electron Device Letters. 2006, 27(6): 463~465
    127 W. M. Zhou, Y. J. Wu, E. S. W. Kong, F. Zhu, Z. Y. Hou, Y. F. Zhang. Field Emission from Nonaligned SiC Nanowires. Applied Surface Science. 2006, 253(4): 2056~2058
    128 W. M. Zhou, B. Yang, Z. X. Yang, F. Zhu, L. J. Yan, Y. F. Zhang. Large-Scale Synthesis and Characterization of SiC Nanowires by High-Frequency Induction Heating. Applied Surface Science. 2006, 252(14): 5143~5148
    129 R. Kim, W. P. Qin, G. D. Wei, G. F. Wang, L. L. Wang, D. S. Zhang, K. Z. Zheng, N. Liu. Growth of SiO_2 Hierarchical Nanostructure on SiC Nanowires Using Thermal Decomposition of Ethanol and Titanium Tetrachloride and Its Ftir and Pl Property. Materials Chemistry and Physics. 2010, 119(1-2): 309~314
    130 R. Kim, W. P. Qin, G. D. Wei, G. F. Wang, L. L. Wang, D. S. Zhng, K. Z. Zheng, N. Liu. Synthesis of Large-Scale SiC-SiO_2 Nanowires Decorated with Amorphous Carbon Nanoparticles and Raman and Pl Properties. Chemical Physics Letters. 2009, 475(1-3): 86~90
    131 G. D. Wei, W. P. Qin, G. F. Wang, J. B. Sun, J. J. Lin, R. J. Kim, D. S. Zhang, K. Z. Zheng. The Synthesis and Ultraviolet Photoluminescence of 6h-SiC Nanowires by Microwave Method. J. Physics D-Applied Physics. 2008, 41(23): 235102
    132 J. Wei, K. Z. Li, H. J. Li, D. S. Hou, Y. L. Zhang, C. Wang. Large-Scale Synthesis and Photoluminescence Properties of Hexagonal-Shaped SiC Nanowires. J. Alloys and Compounds. 2008, 462(1-2): 271~274
    133 J. Wei, K. Z. Li, H. J. Li, H. B. Ouyang, Z. J. Li, C. Wang. PhotoluminescencePerformance of SiC Nanowires, Whiskers and Agglomerated Nanoparticles Synthesized from Activated Carbon. Physica E-Low-Dimensional Systems & Nanostructures. 2009, 41(8): 1616~1620
    134 X. N. Guo, R. J. Shang, D. H. Wang, G. Q. Jin, X. Y. Guo, K. N. Tu. Avoiding Loss of Catalytic Activity of Pd Nanoparticles Partially Embedded in Nanoditches in SiC Nanowires. Nanoscale Research Letters. 2010, 5(2): 332~337
    135 D. H. Wang, D. Q. Wang, Y. J. Hao, G. Q. Jin, X. Y. Guo, K. N. Tu. Periodically Twinned SiC Nanowires. Nanotechnology. 2008, 19(21): 215602
    136 Z. J. Li, J. L. Zhang, A. Meng, J. Z. Guo. Large-Area Highly-Oriented SiC Nanowire Arrays: Synthesis, Raman, and Photoluminescence Properties. J. Physical Chemistry B. 2006, 110(45): 22382~22386
    137李峰. SiBONC陶瓷的制备与热稳定性研究.哈尔滨工业大学博士论文. 2006: 105~118
    138 F. Li, G. Wen, L. Song. Growth of Nanowires from Annealing Sibonc Nanopowders. J. Crystal Growth. 2006, 290(2): 466~472
    139 G. W. Wen, F. Li, Z. X. Han, H. W. Bai. Growth of Beta-SiC Nanowires from Sibonc Nano Powder Compacts. Rare Metal Materials and Engineering. 2008, 37(3): 561~564
    140 G. C. Xi, Y. Y. Peng, S. M. Wan, T. W. Li, W. C. Yu, Y. T. Qian. Lithium-Assisted Synthesis and Characterization of Crystalline 3C-SiC Nanobelts. J. Physical Chemistry B. 2004, 108(52): 20102~20104
    141 R. B. Wu, L. L. Wu, G. Y. Yang, Y. Pan, J. J. Chen, R. Zhai, J. Lin. Fabrication and Photoluminescence of Bicrystalline SiC Nanobelts. J. Physics D-Applied Physics. 2007, 40(12): 3697~3701
    142 C. Pham-Huu, N. Keller, G. Ehret, M. J. Ledoux. The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. J. Catalysis. 2001, 200(2): 400~410
    143 X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, B. K. Teo. Formation of Silicon Carbide Nanotubes and Nanowires Via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J. the American Chemical Society. 2002, 124(48): 14464~14471
    144 E. Borowiak-Palen, M. H. Ruemmeli, T. Gemming, M. Knupfer, K. Biedermann, A. Leonhardt, T. Pichler, R. J. Kalenczuk. Bulk Synthesis of Carbon-Filled Silicon Carbide Nanotubes with a Narrow Diameter Distribution. J. Applied Physics. 2005, 97(5): 1853493
    145 J. Q. Hu, Y. Bando, J. H. Zhan, D. Golberg. Fabrication of Zns/SiC Nanocables,SiC-Shelled Zns Nanoribbons (and Sheets), and SiC Nanotubes (and Tubes). Applied Physics Letters. 2004, 85(14): 2932~2934
    146 G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, J. Samios. SiC Nanotubes: A Novel Material for Hydrogen Storage. Nano Letters. 2006, 6(8): 1581~1583
    147 V. Drinek, J. Subrt, M. Klementova, M. Rieder, R. Fajgar. From Shelled Ge Nanowires to SiC Nanotubes. Nanotechnology. 2009, 20(3): 035606
    148 Y. Ryu, Y. Tak, K. Yong. Direct Growth of Core-Shell SiC-SiO_2 Nanowires and Field Emission Characteristics. Nanotechnology. 2005, 16(7): S370~S374
    149 Q. G. Fu, H. J. Li, X. H. Shi, K. Z. Li, J. Wei, Z. B. Hu. Synthesis of Silicon Carbide Nanowires by Cvd without Using a Metallic Catalyst. Materials Chemistry and Physics. 2006, 100(1): 108~111
    150 A. Meng, Z. J. Li, J. L. Zhang, L. Gao, H. J. Li. Synthesis and Raman Scattering of Beta-SiC/SiO_2 Core-Shell Nanowires. J. Crystal Growth. 2007, 308(2): 263~268
    151 L. Z. Cao, H. Jiang, H. Song, X. Liu, W. G. Guo, S. Z. Yu, Z. M. Li, G. Q. Miao. SiC/SiO_2 Core-Shell Nanowires with Different Shapes: Synthesis and Field Emission Properties. Solid State Communications. 2010, 150(15-16): 794~798
    152 W. Q. Han, P. Redlich, F. Ernst, M. Ruhle. Synthesizing Boron Nitride Nanotubes Filled with SiC Nanowires by Using Carbon Nanotubes as Templates. Applied Physics Letters. 1999, 75(13): 1875~1877
    153 P. Singjai, A. Wongjamras, L. D. Yu, T. Tunkasiri. Production and Characterization of Beaded Nanofibers from Current Heating of Charcoal. Chemical Physics Letters. 2002, 366(1-2): 51~55
    154 J. Wei, K. Z. Li, H. J. Li, Q. G. Fu, L. Zhang. Growth and Morphology of One-Dimensional SiC Nanostructures without Catalyst Assistant. Materials Chemistry and Physics. 2006, 95(1): 140~144
    155 G. D. Wei, W. P. Qin, K. Z. Zheng, D. S. Zhang, J. B. Sun, J. J. Lin, R. J. Kim, G. F. Wang, P. F. Zhu, L. L. Wang. Synthesis and Properties of SiC/SiO_2 Nanochain Heterojunctions by Microwave Method. Crystal Growth & Design. 2009, 9(3): 1431~1435
    156 J. Z. Guo, Y. Zuo, Z. J. Li, W. D. Gao, J. L. Zhang. Preparation of SiC Nanowires with Fins by Chemical Vapor Deposition. Physica E-Low-Dimensional Systems & Nanostructures. 2007, 39(2): 262~266
    157京玉海,罗丽萍.机械制造基础(上册).清华大学出版社. 2004: 103
    158 S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani. A Comparative Ab Initio Study of the 'Ideal' Strength of Single Crystal Alpha- and Beta-Si_3N_4. Acta Materialia. 2004, 52(1): 233~238
    159 Y. J. Zhang, N. L. Wang, R. R. He, Q. Zhang, J. Zhu, Y. J. Yan. Reversible Bending of Si_3N_4 Nanowire. J. Materials Research. 2000, 15(5): 1048~1051
    160 G. Y. Jing, H. Ji, W. Y. Yang, J. Xu, D. P. Yu. Study of the Bending Modulus of Individual Silicon Nitride Nanobelts Via Atomic Force Microscopy. Applied Physics a-Materials Science & Processing. 2006, 82(3): 475~478
    161 L. G. Zhang, H. Jin, W. Y. Yang, Z. P. Xie, H. H. Miao, L. N. An. Optical Properties of Single-Crystalline Alpha-Si_3N_4 Nanobelts. Applied Physics Letters. 2005, 86(6): 061908
    162 K. F. Huo, Y. W. Ma, Y. M. Hu, J. J. Fu, B. Lu, Y. N. Lu, Z. Hu, Y. Chen. Synthesis of Single-Crystalline Alpha-Si_3N_4 Nanobelts by Extended Vapour-Liquid-Solid Growth. Nanotechnology. 2005, 16(10): 2282~2287
    163 L. W. Yin, Y. Bando, Y. C. Zhu, Y. B. Li. Synthesis, Structure, and Photoluminescence of Very Thin and Wide Alpha Silicon Nitride (Alpha-Si_3N_4) Single-Crystalline Nanobelts. Applied Physics Letters. 2003, 83(17): 3584~3586
    164 N. Zhu, Z. J. Peng, C. B. Wang, Z. Q. Fu, H. Z. Miao. Preparation and Characterization of Bundled One-Dimensional Si_3N_4 Single-Crystalline Nanowires by Catalytic Pyrolysis of a Polymer Precursor. Solid State Sciences. 2009, 11(6): 1094~1097
    165 M. Ahmad, J. Zhao, F. Zhang, C. F. Pan, J. Zhu. One-Step Synthesis Route of the Aligned and Non-Aligned Single Crystalline Alpha-Si_3N_4 Nanowires. Science in China Series E-Technological Sciences. 2009, 52(1): 1~5
    166 M. Ahmad, J. Zhao, C. F. Pan, J. Zhu. Ordered Arrays of High-Quality Single-Crystalline Alpha-Si_3N_4 Nanowires: Synthesis, Properties and Applications. J. Crystal Growth. 2009, 311(20): 4486~4490
    167 T. Sekiguchi, J. Q. Hu, Y. Bando. Cathodoluminescence Study of One-Dimensional Free-Standing Widegap-Semiconductor Nanostructures: Gan Nanotubes, Si_3N_4 Nanobelts and Zns/Si Nanowires. J. Electron Microscopy. 2004, 53(2): 203~208
    168 F. M. Gao, Y. S. Wang, L. G. Zhang, W. Y. Yang, L. A. An. Optical Properties of Heavily Al-Doped Single-Crystal Si_3N_4 Nanobelts. J. the American Ceramic Society. 2010, 93(5): 1364~1367
    169 J. Y. Zhang, Y. X. Chen, T. L. Guo, Z. X. Lin, T. H. Wang. Sub-Band-Gap Photoconductivity of Individual Alpha-Si_3N_4 Nanowires. Nanotechnology. 2007, 18(32): 325603
    170 Y. C. Zhu, Y. Bando, L. W. Yin, D. Golberg. Field Nanoemitters: Ultrathin Bn Nanosheets Protruding from Si_3N_4 Nanowires. Nano Letters. 2006, 6(12): 2982~2986
    171 W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, D. Yu. Synthesis of Silicon Nitride Nanorods Using Carbon Nanotube as a Template. Applied Physics Letters. 1997, 71: 2271~2273
    172 F. Wang, Y. J. Hao, G. Q. Jin, X. Y. Guo. Effects of the Reaction Conditions in Preparation of Si_3N_4 Nanowires. Acta Physico-Chimica Sinica. 2007, 23(10): 1503~1507
    173 F. Wang, G. Q. Jin, X. Y. Guo. Formation Mechanism of Si_3N_4 Nanowires Via Carbothermal Reduction of Carbonaceous Silica Xerogels. J. Physical Chemistry B. 2006, 110(30): 14546~14549
    174 F. Wang, G. Q. Jin, X. Y. Guo. Sol-Gel Synthesis of Si_3N_4 Nanowires and Nanotubes. Materials Letters. 2006, 60(3): 330~333
    175 W. Y. Yang, Z. P. Xie, J. J. Li, H. Z. Miao, L. G. Zhang, L. N. An. Ultra-Long Single-Crystalline Alpha-Si_3N_4 Nanowires: Derived from a Polymeric Precursor. J. the American Ceramic Society. 2005, 88(6): 1647~1650
    176 M. Bechelany, A. Brioude, S. Bernard, G. Ferro, D. Cornu, P. Miele. Large-Scale Preparation of Faceted Si_3N_4 Nanorods from Beta-SiC Nanowires. Nanotechnology. 2007, 18(33): 335305
    177 H. Chen, Y. G. Cao, X. W. Xiang, J. T. Li, C. C. Ge. Fabrication of Beta-Si_3N_4 Nano-Fibers. J. Alloys and Compounds. 2001, 325(1-2): L1~L3
    178 J. Farjas, C. Rath, A. Pinyol, P. Roura, E. Bertran. Si_3N_4 Single-Crystal Nanowires Grown from Silicon Micro- and Nanoparticles near the Threshold of Passive Oxidation. Applied Physics Letters. 2005, 87(19): 192114-192114.3
    179 W. Y. Yang, Z. P. Xie, H. Z. Miao, L. G. Zhang, H. Ji, L. N. An. Synthesis of Single-Crystalline Silicon Nitride Nanobelts Via Catalyst-Assisted Pyrolysis of a Polysilazane. J. the American Ceramic Society. 2005, 88(2): 466~469
    180 W. Yang, L. Zhang, Z. Xie, J. Li, H. Miao, L. An. Growth and Optical Properties of Ultra-Long Single-Crystalline Alpha-Si_3N_4 Nanobelts. Applied Physics a-Materials Science & Processing. 2005, 80(7): 1419~1423
    181 W. Y. Yang, Z. P. Xie, H. Z. Miao, L. G. Zhang, L. A. An. Simultaneous Growth of Si_3N_4 Nanobelts and Tianodendrites by Catalyst-Assisted Crystallization of Amorphous SiCN. J. Crystal Growth. 2005, 276(1-2): 1~6
    182 F. Wang, X. F. Qin, G. Q. Jin, Y. Y. Wang, X. Y. Guo. Synthesis and Characterization of Si_3N_4 Thin Nanobelts Via Direct Nitridation of Si Powders. Physica E-Low-Dimensional Systems & Nanostructures. 2008, 41(1): 120~123
    183 C. Xu, M. Kima, J. Chuna, D. E. Kima, B. Chonb, S. Hongb, T. Joo. Gallium-Doped Silicon Nitride Nanowires Sheathed with Amorphous Silicon Oxynitride. Scripta Materialia. 2005, 53: 949~954
    184 X. Xu, T. Nishimura, Q. Huang, R. J. Xie, N. Hirosaki, H. Tanaka. Synthesis and Photoluminescence of Eu2+-Doped Alpha-Silicon Nitride Nanowires Coated with Thin Bn Film. J. the American Ceramic Society. 2007, 90(12): 4047~4049
    185 G. Z. Shen, Y. Bando, B. D. Liu, C. C. Tang, Q. Huang, D. Golberg. Systematic Investigation of the Formation of 1D Alpha-Si_3N_4 Nanostructures by Using a Thermal-Decomposition/Nitridation Process. Chemistry-a European Journal. 2006, 12(11): 2987~2993
    186张晓东,温广武,黄小萧.一种测量纳米纤维单丝拉伸强度的方法.中国发明专利. 2010,申请号: 201010189858.9
    187 G. W. Meng, L. D. Zhang, C. M. Mo, S. Y. Zhang, Y. Qin, S. P. Feng, H. J. Li. Synthesis of "a Beta-SiC Nanorod within a SiO_2 Nanorod" One Dimensional Composite Nanostructures. Solid State Communications. 1998, 106(4): 215~219
    188 Z. J. Li, W. D. Gao, A. A. Meng, Z. D. Geng, L. Gao. Large-Scale Synthesis and Raman and Photoluminescence Properties of Single Crystalline Beta-SiC Nanowires Periodically Wrapped by Amorphous SiO_2 Nanospheres 2. J. Physical Chemistry C. 2009, 113(1): 91~96
    189 J. S. Lee, Y. K. Byeun, S. H. Lee, S. C. Choi. In Situ Growth of SiC Nanowires by Carbothermal Reduction Using a Mixture of Low-Purity SiO_2 and Carbon. J. Alloys and Compounds. 2008, 456(1-2): 257~263
    190 Y. Ding, D. He, H. Shirai. Deposition of Low Dielectric Constant SiOC films by Using an Atmospheric Pressure Microplasma. J. Physics D: Applied Physics. 2009, 42
    191 H. R. Byon, H. C. Choi. Carbon Nanotube Guided Formation of Silicon Oxide Nanotrenches. Nature Nanotechnology. 2007, 2(3): 162~166
    192 A. Karakuscu, R. Guider, L. Pavesi, G. D. Sorarù. White Luminescence from Sol–Gel-Derived Sioc Thin Films. J. the American Ceramic Society. 2009, 92(12): 2969~2974
    193 D. W. Lee, C.-Y. Yu, K.-H. Lee. Facile Synthesis of Mesoporous Carbon and Silica from a Silica Nanosphere-Sucrose Nanocomposite. J. Materials Chemistry 2009, 19(2): 299~304
    194 K. Ono, Y. Kurachi. Kinetic Studies onβ-SiC Formation from Homogeneous Precursors. J. Materials Science. 1991, 26: 388~392
    195 S. H. Chen, C.-I. Lin. Effect of Contact Area on Synthesis of Silicon Carbide through Carbothermal Reduction of Silicon Dioxide. J. Materials Science Letters. 1997, 16: 702~704
    196 X. Zhang, X. Huang, G. Wen, X. Geng, J. Zhu, T. Zhang, H. Bai. Novel SiOC Nanocomposites for High-Yield Preparation of Ultra-Large-Scale SiC Nanowires.Nanotechnology. 2010, 21: 385601
    197刘伯洋.空心微纳米碳材料的低温合成、表征及机理研究.哈尔滨工业大学博士论文. 2008: 29
    198 J. Y. Zhou, Z. Y. Chen, M. Zhou, X. P. Gao, E. Q. Xie. SiC Nanorods Grown on Electrospun Nanofibers Using Tb as Catalyst: Fabrication, Characterization, and Photoluminescence Properties. Nanoscale Research Letters. 2009, 4(8): 814~819
    199陈珂,曾海兵,胡辉.雷达隐身材料技术研究.现代防御技术. 2005, 2: 58~59
    200 J. Robertson, M. J. Powell. Gap States in Silicon Nitride. Applied Physics Letters. 1984, 44: 415~417
    201 W. Oliver, G. Pharr. Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. materials research. 1992, 7(6): 1564~1583
    202于峰,史立秋,王涛.单晶硅的纳米硬度测试分析.金属热处理. 2005, 30(8): 88~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700