一维硅基纳米材料的水热制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于与现有硅技术有良好的兼容性,一维硅基纳米材料有潜力成为硅纳米器件的基材,硅纳米管作为重要的硅基纳米材料之一,引起了人们极大的研究兴趣。由于硅为sp3杂化,易形成实心结构,故在实验上难以合成。因此,硅纳米管的研究在国际上都尚处于起步阶段。另外,硅纳米线、碳化硅纳米管/棒等一维硅基纳米材料由于独特的结构和优异性能,也成为了研究热点之一。本论文以一氧化硅和碳化硅为基础硅源,在自组生长硅纳米管、硅纳米线、碳化硅纳米管及碳化硅纳米棒的水热制备与表征、生长机理及光致发光PL性能等方面展开了较深入的研究,研究具有基础性和前瞻性,兼具重要的理论意义和潜在应用前景。
     以一氧化硅为原料,未使用金属催化剂及模板,采用水热法于470℃、6.8MPa制备出了自组生长硅纳米管。研究表明硅纳米管的生长头部为闭合结构,由内部数纳米的中空结构,中部为壁厚不大于5nm的晶体硅管壁结构以及厚度低于2nm的无定形二氧化硅外层所组成。采用5wt%的HF酸对自组生长硅纳米管的稳定性研究表明HF酸可以去除硅纳米管的氧化物外层,只剩下晶体硅纳米管,说明自组生长硅纳米管是一种稳定结构,因而使其应用成为可能。采用硅纳米管Si-H自组生长模型解释了硅纳米管的形成与生长,研究表明硅纳米管的稳定性与其生长过程密切相关。样品的Raman及IR结果进一步证明所得纳米管是一种晶体硅纳米管,外层主要为二氧化硅。PL结果表明样品在436nm处具有较强的PL性能,发射范围400-500nm,发射峰不对称,并出现了不均匀宽化。
     对不同水热条件一维硅纳米材料的系统研究表明470℃、6.8-8MPa是目前制备自组生长硅纳米管较合适的水热条件。470℃时,随着压力和保温时间的增加,硅纳米管的直径从小于20nm增加到了约100nm,压力增至9.5MPa以上时,所得一维硅纳米材料为实心结构。以硅及二氧化硅为硅源,所得样品只含有近圆形或不规则纳米颗粒,而以硅粉为硅源可制备出长数微米、直径约100nm的硅纳米链。
     水热条件下在硅片上可沉积出中间为硅核、外层包覆无定形二氧化硅的核壳结构硅纳米线,直径数百纳米、长度大于10μm。硅纳米线的Raman结果表明在519cm-1处有一Raman特征峰,并出现了不对称宽化,PL测试表明在754.1nm处有强烈的PL特征峰。采用氧化物辅助生长机理解释了沉积于硅片上硅纳米线的形成与生长,进一步研究表明470℃、9-14MPa及保温48h是目前较优的工艺参数。以硅及二氧化硅为硅源的研究表明只能在硅片上沉积出不同尺寸的球状及不规则颗粒,说明一氧化硅是水热条件下在硅片上沉积硅纳米线的较合适的硅源。
     以碳化硅与二氧化硅为原料,在470℃、8MPa时制备出了直径约10nm、长
One-dimensional silicon-based nanoscale materials have the potential to become the important basic material in silicon nanoscale devices owing to the excellent compatibility with the present silicon technology. Silicon nanotube (SiNT) is a kind of important silicon-based nanoscale materials and has attracted great interest. Solid silicon nanowires (SiNWs) can form easily due to sp3 hybridization in silicon. So SiNTs are difficult to synthesize in the experiments. Therefore, the research on SiNTs is still in primary stage in the world. In addition, one-dimensional silicon-based nanoscale materials such as SiNWs, silicon carbide nanotubes (SiCNTs) and nanorods (SiCNRs) are also the present research focuses because of their inimitable structures and outstanding properties. Silicon monoxide and silicon carbide are the basic silicon starting materials. The hydrothermal preparation and characterization, growth mechanism and photoluminescence (PL) properties of the self-assembled SiNTs, SiNWs, SiCNTs and SiCNRs have been studied in detail in the paper. The research is fundamental and pioneering, and is of great significance on theory and application potential.
     Self-assembled SiNTs have been prepared from silicon monoxide by the hydrothermal method with the temperature of 470℃, pressure of 6.8MPa without metallic-catalysts and templates. The research results demonstrate that the SiNTs have close caps at the tips. The structures of SiNTs are hollow inner pores with a size of several nanometers in the middle, crystalline silicon wall layers with the thickness of less than 5nm and amorphous silica outer layers with the thickness of less than 2nm. The research result on the stability of self-asembled SiNTs with 5wt% HF acid shows that silicon oxide outer layers can be removed and pure crystalline SiNTs survive after etching the SiNTs for enough time which implys that the self-assembled SiNTs are stable. Therefore, it’s possible to research the application of self-assembled SiNTs. A hypothetical SiNT Si-H self-assembled growth model is proposed to explain the formation and growth process of the SiNTs and the stability of the SiNTs is closely relative to the growth process. The Raman and Infra-red (IR) spectra of the SiNT sample further show that the obtained nanotubes are a kind of crystalline SiNTs with silica outer layers. PL result of the SiNT sample demonstrates that PL peak center at 436nm is strong and asymmetrically broad. And the range of PL emission peak is
引文
[1] Teo B K. Doping chemistry on low-dimensional silicon surfaces: silicon nanowires as platforms and templates [J]. Coordin Chem Rev, 2003, 246(4): 229-246.
    [2] Perepichka D F, Rosei F. Silicon nanotubes [J]. Small, 2006, 2(1): 22-25.
    [3] Stangl J, Holy V, Bauer G. Structural properties of self-organized semiconductor nanostructures [J]. Rev Mod Phys, 2004, 76(3): 725-783.
    [4] Ying Y C, Gu Y L, Li Z F, et al. A simple route to nanocrystalline silicon carbide [J]. J Solid State Chem, 2004, 177(11): 4163-4166.
    [5] Zhang R Q, Lee S T, Law C K, et al. Silicon nanotubes: Why not? [J]. Chem Phys Lett, 2002, 364(3): 251-258.
    [6] Li B X, Cao P L. Silicon nanorings and nanotubes: a full-potential linear-muffin-tin-orbital molecular-dynamics method study [J]. J Mol Sturct Theochem, 2004, 679(2): 127-130.
    [7] Kang J W, Byun K R, Hwang H J. Twist of hypothetical silicon nanotubes [J]. Modelling Simul Mater Sci Eng, 2004, 12(4): 1-12.
    [8] Fagan S B, Barierle R J, Mota R, et al. Ab initio calculations for a hypothetical material: Silicon nanotubes [J]. Phys Rev B, 2000, 61(15): 9994-9996.
    [9] Fagan S B, Mota R, Baierle R J, et al. Stability investigation and thermal behavior of a hypothetical silicon nanotube [J]. J Mol Struct Theochem, 2001, 539(8): 101-106.
    [10] Zhang M, Kan Y H, Zang Q J, et al. Why silicon nanotubes stably exist in armchair structure? [J]. Chem Phys Lett, 2003, 379(6): 81-86.
    [11] Schmidt O G, Eberl K. Thin solid films roll up into nanotubes [J]. Nature, 2001, 410(11): 168-169.
    [12] Songmuang R, Jin-Phillipp N Y, Mendach S, et al. Single rolled-up SiGe/Si microtubes: Structure and thermal stability [J]. Appl Phys Lett, 2006, 88(6): 021913-1-021913-3.
    [13] Sha J, Niu J J, Ma X Y, et al. Silicon nanotubes [J]. Adv Mater, 2002, 14(17): 1219-1221.
    [14] Jeong S Y, Kim J Y, Yang H D, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epiaxy [J]. Adv Mater, 2003, 15(14): 1172-1176.
    [15] Mu C, Yu Y X, Liao W, et al. Controlling growth and field emission properties of silicon nanotubes arrays by multistep template replication and chemical vapor depostion [J]. Appl Phys Lett, 2005, 87(3): 113104-1-113104-3.
    [16] Hu J Q, Bando Y, Liu Z W, et al. Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates [J]. Angew Chem Int Ed, 2004, 43(5): 63-66.
    [17] Saranin A A, Zotov A V, Kotlyar V G, et al. Ordered arrays of Be-encapsulated Si nanotubes on Si(111) surface [J]. Nano Lett, 2004, 4(8): 1469-1473.
    [18] Singh A K, Kumar V, Briere T M, et al. Cluster assembled metal encapsulated thin nanotubes of silicon [J]. Nano Lett, 2002, 2(11): 1243-1248.
    [19] Crescenzi M D, Castrucci P, Scarselli M, et al. Experimental imaging of silicon nanotubes [J]. Appl Phys Lett, 2005, 86(7): 231901-1-231901-3.
    [20] Chaieb S, Nayteh M H, Smith A D, et al. Assemblies of silicon nanoparticles roll up into flexible nanotubes [J]. Appl Phys Lett, 2005, 87(12): 062104-1-062104-3.
    [21] Namatsu H, Horiguchi S, Nagase M, et al. Fabrication of one-dimensional nanowire structures utilizing crystallographic orientation in silicon and their conductance characteristics [J]. J Vac Sci Technol B, 1997, 15(5): 1688-1696.
    [22] Ali D, Ahmed H. Coulomb blockade in a silicon tunnel junction device [J]. Appl Phys Lett, 1994, 64(16): 2119-2120.
    [23] Leobandung, Guo L, Wang Y, et al. Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperature over 100 K [J]. Appl Phys Lett, 1995, 67(7): 938-940.
    [24] Tang Y H. Synthesis and characterization of silicon and related nanowires [D]. Hong Kong: City University of Hong Kong, 2000: 23-45.
    [25] Liu H I, Biegelsen D K, Johnson N M, et al. Self-limiting oxidation of Si nanowires [J]. J Vac Sci Technol B, 1993, 11(6): 2532-2537.
    [26] Ono T, Saitoch H H, Esashi M. Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy [J]. Appl Phys Lett, 1997, 70(14): 1852-1854.
    [27] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(15): 208-211.
    [28] Tang Y H, Zhang Y F, Lee C S, et al. Large scale synthesis of silicon nanowires by laser ablation [J]. Mater Res Soc Symp Proc, 1998, 526(18): 73-77.
    [29] Lee S T, Zhang Y F, Wang N, et al. Semiconductor nanowires from oxides [J]. J Mater Res, 1999, 14(12): 4503-4507.
    [30] Feng S Q, Yu D P, Zhang H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect [J]. J Cryst Growth, 2000, 209(2): 513-517.
    [31] Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J]. Solid State Commun, 1998, 105(4): 403-407.
    [32] Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate [J]. J Cryst Growth, 2003, 247(9): 13-16.
    [33] Liu Z Q, Pan Z W, Sun L F, et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate [J]. J Phys Chem Solids, 2000, 61(2): 1171-1174.
    [34] Sakulchaicharoen N, Resasco D E. Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst [J]. Chem Phys Lett, 2003, 377(8): 377-383.
    [35] Liu Z Q, Xie S S, Zhou W Y, et al. Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition [J]. J Cryst Growth, 2001, 224(3): 230-234.
    [36] 冯孙齐, 俞大鹏, 张洪洲, 等. 一维硅纳米线的生长机制及其量子限制效应的研究 [J]. 中国科学 A 辑, 1999, 29(10): 921-926.
    [37] 张亚利, 郭玉国, 孙典亭. 纳米线研究进展(1): 制备与生长机制 [J]. 材料科学与工程, 2001, 19(1): 131-136.
    [38] Givargizov E I. Periodic instability in whisker growth [J]. J Cryst Growth, 1975, 31(2): 20-30.
    [39] Givargizov E I. Fundamental aspects of VLS growth [J]. J Cryst Growth, 1973, 20(3): 217-226.
    [40] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires [J]. Science, 2000, 287(5): 1471-1473.
    [41] Hanrath T, Korgel B A. Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals [J]. Adv Mater, 2003, 15(5): 437-440.
    [42] Lu X M, Hanrath T, Johnston K P, et al. Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate [J]. Nano Lett, 2003, 3(1): 93-99.
    [43] Tang Y H, Zhang Y F, Wang N, et al. Si nanowires synthesized from silicon monoxide by laser ablation [J]. J Vac Sci Technol B, 2001, 19(1): 317-319.
    [44] Wang N, Tang Y H, Zhang Y F, et al. Nucleation and growth of Si nanowires from silicon oxide [J]. Phys Rev B, 1998, 58(24): R16024-1-R16024-3.
    [45] Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowires prepared by laser ablation at high temperature [J]. Appl Phys Lett, 1998, 72(15): 1835-1837.
    [46] Wang N, Zhang Y F, Tang Y H, et al. SiO2-enhanced synthesis of Si nanowires by laser ablation [J]. Appl Phys Lett, 1998, 73(26): 3902-3904.
    [47] Zhang Y F, Tang Y H, Lam C, et al. Bulk-quantity Si nanowires synthesized by SiO sublimation [J]. J Crystal Growth, 2000, 212(20): 115-118.
    [48] Tang Y H, Zhang Y F, Peng H Y, et al. Si nanowires synthesized by laser ablation of mixed SiC and SiO2 powders [J]. Chem Phys Lett, 1999, 314(12): 16-20.
    [49] Ma D D D, Lee C S, Au F C K, et al. Small-diameter silicon nanowire surfaces [J]. Science, 2003, 299(5): 1874-1877.
    [50] Lee S T, Zhang Y F, Wang N, et al. Semiconductor nanowires from oxides [J]. J Mater Res, 1999, 14(12): 4503-4507.
    [51] Lee S T, Wang N, Zhang Y F, et al. Oxide-assisted semiconductor nanowire growth [J]. MRS Bull, 1999, 24(4): 36-42.
    [52] Zhang Y F, Tang Y H, Wang N, et al. One-dimensional growth mechanism of crystalline silicon nanowires [J]. J Cryst Growth, 1999, 197(9): 136-140.
    [53] Tang Q, Liu X, Theodore I, et al. Nucleation of Ti-catalyzed self-assembled kinked Si nanowires grown by gas source MBE [J]. J Cryst Growth, 2003, 251(1): 662-665.
    [54] Yu D P, Xing Y J, Hang Q L, et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid(SLS) mechanism [J]. Physica E, 2001, 9(6): 305-309.
    [55] Zhang Y F, Tang Y H, Peng H P, et al. Diameter modification of silicon nanowires by ambient gas [J]. Appl Phys Lett, 1999, 75(13): 1842-1844.
    [56] Bai Z G, Yu D P, Wang J J, et al. Synthesis and photoluminescence properties of semiconductor nanowires [J]. Mater Sci Eng B, 2000, 72(5): 117-120.
    [57] Nihonyanagi S, Kanemitsu Y. Efficient indirect-exciton luminescence in silicon nanowires [J]. Physica E, 2003, 17(9): 183-184.
    [58] Tang Y H, Sun X H, Au F C K, et al. Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains [J]. Appl Phys Lett, 2001, 79(11): 1673-1675.
    [59] 唐元洪, 裴立宅. 掺杂硅纳米线的光电特性 [J]. 中国有色金属学报, 2004,14(S1): 398-403.
    [60] Au F C K, Wong K W, Tang Y H, et al. Electron field emission from silicon nanowires [J]. Appl Phys Lett, 1999, 75(12): 1700-1702.
    [61] Cui Y, Duan X F, Hu J T, et al. Doping and electrical transport in silicon nanowires [J]. J Phys Chem B, 2000, 104(22): 5213-5216.
    [62] Hu S F, Wong W Z, Liu S S, et al. Room temperature two-terminal characteristics in silicon nanowires [J]. Solid State Commun, 2003, 125(20): 351-354.
    [63] Li D Y, Wu Y Y, Shi L, et al. Thermal conductivity of individual silicon nanowires [J]. Appl Phys Lett, 2003, 83(14): 2934-2936.
    [64] Zhou X T, Hu J Q, Li C P, et al. Silicon nanowires as chemical sensors [J]. Chem Phys Lett, 2003, 369(9): 220-224.
    [65] Elibol O H, Morisette D, Akin D, et al. Integrated nanoscale silicon sensors using top-down fabrication [J]. Appl Phys Lett, 2003, 83(22): 4613-4615.
    [66] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293(7): 1289-1292.
    [67] Hahm J I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Lett, 2004, 4(1): 51-54.
    [68] Cui Y, Zhong Z H, Wang D L, et al. High performance silicon nanowire field effect transistors [J]. Nano Lett, 2003, 3(2): 149-152.
    [69] Stone N J, Ahmed H. Single-electron detector and counter [J]. Appl Phys Lett, 2000, 77(5): 744-746.
    [70] Stone N J, Ahmed H. Silicon single electron memory cell [J]. Appl Phys Lett, 1998, 73(15): 2134-2136.
    [71] Tsutsumi T, Suzuki E, Ishii K, et al. Properties of Si nanowire devices fabricated by using an inorganic EB resist process [J]. Superlattice Microst, 2000, 28(5): 454-460.
    [72] Altebaeumer T, Ahmed H. Silicon nanowires and their application in bi-directional electron pumps [J]. Microelectron Eng, 2001, 57(23): 1029-1033.
    [73] Toriyama T, Funai D, Sugiyama S.Piezoresistance measurement on single crystal silicon nanowires [J]. J Appl Phys, 2003, 93(1): 561-565.
    [74] Fan R, Wu Y Y, Li D Y, et al. Fabrication of silica nanotube from vertical silicon nanowire template [J]. J Am Chem Soc, 2003, 125(8): 5254-5255.
    [75] Lyons D M, Ryan K M, Morris M A, et al. Tailoring the optical properties of silicon nanowire arrays through strain [J]. Nano Lett, 2002, 2(8): 811-816.
    [76] Kang J W, Hwang H J. Hypothetical silicon nanotubes under axial compression [J]. Nanotechnology, 2003, 14(3): 402-408.
    [77] Byun K R, Kang J W, Hwang H J. Atomistic stimulation of hypothetical silicon nanotubes under tension [J]. J Korean Phys Soc, 2003, 42(5): 635-646.
    [78] Tang J, Qin L C, Sasako T, et al. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure [J]. Phys Rev Lett, 2000, 85(9): 1887-1889.
    [79] Yakobson B I, Campbell M P, Barbec C J, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes [J]. Comp Mater Sci, 1997, 8(3): 341-348.
    [80] Lu J P. Elastic properties of carbon nanotubes and nanoropes [J]. Phys Rev Lett, 1997, 79(7): 1297-1300.
    [81] Hayashida T, Pan L, Nakayama Y. Mechanical and electrical properties of carbon tubule nanocoils [J]. Physica B: Condensed Matter, 2002, 323(4): 352-353.
    [82] Demczyk B G, Wang Y M, Cumings J, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Mater Sci Eng A, 2002, 334(16): 173-178.
    [83] Geifert G, Kohler T, Urbassek H M, et al. Tubular structures of silicon [J]. Phys Rev B, 2001, 63(8): 193409.
    [84] Popov V N. Carbon nanotubes: properties and application [J]. Mater Sci Eng R, 2004, 43(23): 61-102.
    [85] 李俊涛, 雷威. 场致发射显示技术研究进展 [J]. 电子器件, 2002, 25(4): 332-339.
    [86] Menon M, Andriotis A N, Froudakis G. Structure and stability of Ni-encapsulated Si nanotube [J]. Nano Lett, 2002, 2(4): 301-304.
    [87] Singh A K, Briere T M, Kumar V, et al. Magnetism in transition-metal-doped silicon nanotubes [J]. Phys Rev Lett, 2003, 91(14): 146802-1-146802-4.
    [88] Yang T H, Chen C H, Chatterjee A, et al. Controlled growth of silicon carbide nanorods by rapid thermal process and their field emission properties [J]. Chem Phys Lett, 2003, 379(23): 155-161.
    [89] 吴艳军, 蔡炳初, 张亚飞, 等. 碳化硅纳米晶须的制备研究进展 [J]. 电子元件与材料, 2003, 22(9): 41-44.
    [90] Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375(3): 769-771.
    [91] Mo Y H, Shajahan M D, Lee Y S, et al. Structural transformation of carbon nanotubes to silicon carbide nanorods or microcrystals by the reaction with different silicon sources in rf induced CVD reactor [J]. Synthetic met, 2004, 140(7): 309-315.
    [92] Meng G W, Zhang L D, Mo C M, et al. Preparation of β-SiC nanorods with and without amorphous SiO2 wrapping layers [J]. J Mater Res, 1998, 13(9): 2533-2537.
    [93] Zhou X T, Lai H L, Peng H Y, et al. Thin β-SiC nanorods and their field emission properties [J]. Chem Phys Lett, 2000, 318(24): 58-62.
    [94] Yang W Y, Miao H Z, Xie Z P, et al. Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor [J]. Chem Phys Lett, 2004, 383(3): 441-444.
    [95] Feng D H, Jia T Q, Li X X, et al. Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires [J]. Solid State Commun, 2003, 128(13): 295-297.
    [96] Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles [J]. Chem Phys Lett, 2000, 329(9): 323-328.
    [97] Kang B C, Lee S B, Boo J H. Growth of β-SiC nanowires on Si(100) substrates by MOCVD using nickel as a catalyst [J]. Thin Solid Films, 2004, 464(7): 215-219.
    [98] Choi H J, Scong H K, Lee J C, et al. Growth and modulation of silicon carbide nanowires [J]. J Cryst Growth, 2004, 269(5): 472-478.
    [99] Deng S Z, Wu Z S, Zhou J, et al. Synthesis of silicon carbide nanowires in a catalyst-assisted process [J]. Chem Phys Lett, 2002, 356(4): 511-514.
    [100] Shen G Z, Chen D, Tang K B, et al. Silicon carbide hollow nanosphere, nanowires and coxial nanowires [J]. Chem Phys Lett, 2003, 375(9): 177-184.
    [101] Hu J Q, Lu Q Y, Tang K B, et al. Synthesis and characterization of SiC nanowires through a reduction-carburization route [J]. J Phys Chem B, 2000, 104(12): 5251-5254.
    [102] Li J C, Lee C S, Lee S T. Direct growth of β-SiC nanowires from SiOx thin films deposited on Si(100) substrate [J]. Chem Phys Lett, 2002, 355(7): 147-150.
    [103] Yang W, Araki H, Hu Q L, et al. In situ growth of SiC nanowires on RS-SiCsubstrate(s) [J]. J Cryst Growth, 2004, 264(5): 278-283.
    [104] Saulig-Wenger K, Cornu D, Chassagneux F, et al. Direct synthesis of β-SiC and h-BN coated β-SiC nanowires [J]. Solid State Commun, 2002, 124(11): 157-161.
    [105] Pham-Huu C, Keller N, Ehret G, et al.The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential [J]. J Catal, 2001, 200(13): 400-410.
    [106] Keller N, Pham-Huu C, Ehret C, et al. Synthesis and characterization of medium surface area silicon carbide nanotubes [J]. Carbon, 2003, 41(9):2131-2139.
    [107] Sun X H, Li C P, Wong W K, et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes [J]. J Am Chem Soc, 2002, 124(17): 14464-14471.
    [108] Borowiak-Palen E, Ruemmeli M H, Gemming T, et al. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution [J]. J Appl Phys, 2005, 97(9): 056102-1-056102-4.
    [109] Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes) [J]. Appl Phys Lett, 2004, 85(14): 2932-2934.
    [110] Zhang H F, Wang C M, Wang L S. Helical crystalline SiC/SiO2 core-shell nanowires [J]. Nano Lett, 2002, 2(9): 941-944.
    [111] Zhang D Q, Alkhateeb A, Han H M, et al. Silicon carbide nanosprings [J]. Nano Lett, 2003, 3(7): 983-987.
    [112] Xi G C, Peng Y Y, Wan S M, et al. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts [J]. J Phys Chem B, 2004, 108(52): 20102-20104.
    [113] Ho G W, Wong A S W, Kang D J, et al. Three-dimensional crystalline SiC nanowire flowers [J]. Nanotechnology, 2004, 15(6): 996-999.
    [114] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm [J]. J Am Chem Soc, 200 3, 125(15): 4430-4431.
    [115] Zhang H, Ma X Y, Ji Y J, et al. Single crystalline CdS nanorods fabricated by a novel hydrothermal method [J]. Chem Phys Lett, 2003, 377(17): 654-657.
    [116] Ma X Y, Zhang H, Ji Y J, et al. Synthesis of ultrafine lanthanum hydroxide nonorods by a simple hydrothermal process [J]. Mater Lett, 2004, 58(8): 1180-1182.
    [117] Cao M H, Wang Y H, Qi Y J, et al. Synthesis and characterization of MgF2 and KMgF3 nanorods [J]. J Solid State Chem, 2004, 177(6): 2205-2209.
    [118] Yuan Z Y, Zhang Z L, Du G H, et al. A simple method to synthesize single-crystalline manganese oxide nanowires [J]. Chem Phys Lett, 2003, 378(23): 349-353.
    [119] 宋旭春, 岳林海, 刘波, 等. 水热法合成掺杂铁离子的小管径 TiO2 纳米管 [J]. 无机化学学报, 2005, 19(8): 899-901.
    [120] 洪剑, 孙景志, 曹健, 等. 一维 TiO2 纳米材料的微观形态与结构的控制 [J]. 材料研究学报, 2004, 18(1): 6-10.
    [121] Wang J W, Li Y D. Hydrothermal synthesis of M2S3(M=Sb, Bi) bulk single crystals and nanorods [J]. Mater Chem Phys, 2004, 87(9): 420-423.
    [122] Yu L, Zhang X G. Hydrothermal synthesis and characterization of vanadium oxide/titanate composite nanorods [J]. Mater Chem Phys, 2004, 87(9): 168-172.
    [123] Moreno J M C, Yoshimura M. Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon [J]. J Am Chem Soc, 2001, 123(13): 741-742.
    [124] Moreno J M C, Swamy S S, Fujino T, et al. Carbon nanocells and nanotubes grown in hydrothermal fluids [J]. Chem Phys Lett, 2000, 329(21): 317-322.
    [125] Gogotsi Y G, Nickel K G. Formation of filamentous carbon from paraformaldehyde under high temperatures and pressures [J]. Carbon, 1998, 36(7): 937-942.
    [126] Suchanek W L, Libera J A, Gogotsi Y, et al. Behavior of C60 under hydrothermal conditions: transformation to amorphous carbon and formation of carbon nanotubes [J]. J Solid State, 2001, 160(18): 184-188.
    [127] Gogotsi Y, Libera J, Yoshimura M. Hydrothermal synthesis of multiwall carbon nanotubes [J]. J Mater Res, 2000, 15(12): 2591-2594.
    [128] Libera J, Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst [J]. Carbon, 2001, 39(5):1307-1318.
    [129] DeVries R C. Diamonds from warm water [J]. Nature, 1997, 385(3): 485-486.
    [130] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(8): 56-58.
    [131] Wildoer J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes [J]. Nature, 1998, 391(2): 59-61.
    [132] 张振华, 彭景翠, 陈小华, 等. 掺杂单壁碳纳米管的电流特性 [J]. 半导体学报, 2002, 23(5): 499-502.
    [133] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393(4): 49-51.
    [134] Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors [J]. Nature, 2003, 424(10): 654-656.
    [135] 施尔畏, 陈之战, 元如林, 等. 水热结晶学 [M]. 北京: 科学出版社, 2004: 30-52.
    [136] Wang N, Tang Z K, Li G D, et al. Single-walled 4? carbon nanotubes arrays [J]. Nature, 2000, 408(9): 50-51.
    [137] Hohl A, Wieder T, Aken P A V, et al. An interface clusters mixture model for the structure of amorphous silicon monoxide [J]. J Non-Cryst Solids, 2003, 320(6): 255-280.
    [138] Yang R Z, Wang Z X, Dai L, et al. Synthesis and characterization of single-crystalline nanorods of α–MnO2 and γ–MnOOH [J]. Mater Chem Phys, 2005, 93(3): 149-153.
    [139] 周志朝, 蔡文永, 朱永花, 等. 结晶学 [M]. 杭州: 浙江大学出版社, 1997: 59-76.
    [140] Schnurre S M, Gr?bner J, Schmid-Fetzer R. Thermodynamics and phase stability in the Si-O system [J]. J Non-Cryst Solids, 2004, 336(15): 1-25.
    [141] Shi W S, Peng H Y, Xu L, et al. Coaxial three-layer nanocables synthesized by combining laser ablation and thermal evaporation [J]. Adv Mater, 2000, 12(24): 1927-1931.
    [142] 梁英教, 车荫昌, 刘晓霞, 等. 无机物热力学手册 [M]. 沈阳: 东北大学出版社, 1993: 32-54.
    [143] Kumar V, Majumder C, Kawazoe V. M@Si16, M = Ti, Zr, Hf: π conjugation, ionization potentials and electron affinities [J]. Chem Phys Lett, 2002, 363(4): 319-322.
    [144] Rabenau A. The role of hydrothermal synthesis in preparative chemistry [J]. Angew Chem Int Ed, 1985, 24(12): 1026-1040.
    [145] Higashi G S, Chabal Y J, Trucks G W, et al. Ideal hydrogen termination of the Si (111) surface [J]. Appl Phys Lett, 1990, 56(7):656-658.
    [146] 朴文革, 张西粉, 孙权. 氢氟酸法测定石英砂中二氧化硅的含量 [J]. 炭素技术, 2000, 22(5): 49-51.
    [147] 王敬, 屠海令, 朱悟新, 等. 稀氢氟酸中硅表面氢终端的原位拉曼光谱研究 [J]. 光散射学报, 1999, 11(2): 147-150.
    [148] Ubara H, Imura T, Hiraki A. Formation of Si-H bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment [J]. Solid State Commun, 1984, 50(7): 673-675.
    [149] Wang R P, Zhou G W, Liu Y L, et al. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects [J]. Phys Rev B, 2000, 61(4): 16827-16832.
    [150] Mishra P K, Mohanty B C, Nayak B B. Fine silica powder preparation by use of a transferred arc thermal plasma reactor [J]. Mater Lett, 1995, 23(2): 153-156.
    [151] Wang N, Tang Y H, Zhang Y F, et al. Si nanowires grown from silicon oxide [J]. Chem Phys Lett, 1999, 299(7): 237-242.
    [152] Yuan P, He H P, Wu D Q, et al. Characterization of diatomaceous silica by Raman spectroscopy [J]. Spectrochim Acta A, 2004, 60(7): 2941-2945.
    [153] 靳蓓, 康惠宝, 刘吉平. 二氧化硅纳米管的制备及表征 [J]. 化工新材料, 2003, 31(10): 21-23.
    [154] Lucovsky G, Yang J, Chao S S, et al. Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films [J]. Phys Rev B, 1983, 28(6): 3225-3233.
    [155] Hernandez G, Rodriguez R. Adsorption properties of silica sols modified with thiol groups [J]. J Non-Cryst Solids, 1999, 246(21): 209-215.
    [156] Zhang R Q, Lee H L, Li W K, et al. Investigation of possible structures of silicon nanotubes via Density-Functional Tight-Binding Molecular Dynamics Simulations and ab Initio Calculations [J]. J Phys Chem B, 2005, 109(2): 8605-8612.
    [157] Chen Y Q, Zhang K, Miao B, et al. Temperature dependence of morphology and diameter of silicon nanowires synthesized by laser ablation [J]. Chem Phys Lett, 2002, 358(3): 396-400.
    [158] Zhang Y F, Tang Y H, Wang N, et al. Germanium nanowires sheathed with an oxide layer [J]. Phys Rev B, 2000, 61(3): 4518-4521.
    [159] Tang Y H, Zhang Y F, Wang N, et al. Morphology of Si nanowires synthesized by high-temperature laser ablation [J]. J Appl Phys, 1999, 85(11): 7981-7983.
    [160] Kohno H, Takeda S. Periodic instability in growth of chains of crystalline-silicon nanosphers [J]. J Cryst Growth, 2000, 216(26): 185-191.
    [161] Kohno H, Iwasaki T, Mita Y, et al. Role of metal impurities in the growth of chains of crystalline-silicon nanosphers [J]. Physica B, 2001, 308(19): 1097-1099.
    [162] Kohno H, Iwasaki T, Takeda S. Growth, structure and properties of chains of crystalline-Si nanospheres [J]. Mater Sci Eng B, 2002, 96(8): 76-79.
    [163] Kohno H, Yoshida H, Ohno Y, et al. Formation of silicon/silicide/oxidenanochains and their properties studied by electron holography [J]. Thin Solid Films, 2004, 464(5): 204-207.
    [164] Lew K K, Redwing J M. Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates [J]. J Cryst Growth, 2003, 254(4): 14-22.
    [165] Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowire: A new shape of crystalline silicon [J]. Mat Res Soc Symp Proc, 1999, 507(13): 993-998.
    [166] 张树霖. 一维纳米材料的本征拉曼谱和‘反常’的拉曼光谱特征 [J]. 光散射学报, 2001, 13(2): 78-81.
    [167] Camplbel I H, Fauchet P M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors [J]. Solid State Commu, 1986, 58(10): 739-741.
    [168] Nolsson G, Nelin G. Study of the homology between silicon and germanium by thermal-neutron spectrometry [J]. Phys Rev B, 1972, 6(10): 3777-3782.
    [169] Wang N, Tang Y H, Zhang Y F, et al. Silicon nanowires grown from silicon oxide [J]. Chem Phys Lett, 1999, 299(23): 237-242.
    [170] 刘光启, 马连湘, 刘杰. 化学化工物性数据手册 [M]. 北京: 化学工业出版社, 2002: 12-104.
    [171] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl Phys Lett, 1990, 56(8): 1046-1048.
    [172] Takagi H, Ogawa H, Yamazaki Y, et al. Quantum size effects on photoluminsecence in ultrafine particles [J]. Appl Phys Lett, 1990, 56(4): 2379-2380.
    [173] Wu Y Y, Yang P D. Germanium nanowire growth via simple vapor transport [J]. Chem Mater, 2000, 12(10): 605-607.
    [174] Wang Q H, Corrigan T D, Dai J Y, et al. Field emission from nanotube bundle emitters at low fields [J]. Appl Phys Lett, 1997, 70(24): 3308-3310.
    [175] Han W Q, Fan S S, Li Q Q, et al. Continuous synthesis and characterization of silicon carbide nanorods [J]. Chem Phys Lett, 1997, 265(25): 374-378.
    [176] Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes [J]. Phys Rev B, 2004, 69(12): 115322-1-115322-4.
    [177] Mavrandonakis A, Froudakis G E, Schnell M, et al. From pure carbon to silicon-carbon nanotubes: An Ab-initio study [J]. Nano Lett, 2003, 3(11): 1481-1484.
    [178] Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization ofcarbon nanotubes-TiO2 nanocomposites [J]. Carbon, 2004, 42(9): 1147-1151.
    [179] Nakashima S, Harima H. Raman investigation of SiC polytypes [J]. Phys Status Solidi A, 1997, 162(1): 39-64.
    [180] H?hnel A, Woltersdorf J. Platinum-enhanced graphitisation in sandwich structures of silicon carbide and boronsilicate glass [J]. Mater Chem Phys, 2004, 83(6): 380-388.
    [181] Feng Z C, Mascarenhas A J, Choyke W J, et al. Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si [J]. J Appl Phys, 1998, 64(4): 3176-3186.
    [182] Kholmanov I N, Kharlamov A, Barborini E, et al. A simple method for the synthesis of silicon carbide nanorods [J]. J Nanosci Nanotechno, 2002, 2(5): 1-4.
    [183] Sasaki Y, Nishina Y, Sato M, et al. Optical-phonon states of SiC small particles studied by Raman scattering and infrared absorption [J]. Phys Rev B, 1989, 40(4): 1762-1772.
    [184] 黄惠忠, 编著. 纳米材料分析 [J]. 北京: 化学工业出版社, 2004: 328-330.
    [185] Iijima S, Yudasaka M, Yamada R, et al. Nanobelts of the dielectric material Ge3N4 [J]. Chem Phys Lett, 1999, 354(4): 264-268.
    [186] Meng G W, Zhang L D, Qin Y, et al. Synthesis of β-SiC nanowires with SiO2 wrappers [J]. Nanostruc Mater, 1999, 12(21): 1003-1006.
    [187] Wang W Z, Huang J Y, Wang D Z, et al. Low-temperature hydrothermal synthesis of multiwall carbon nanotubes [J]. Carbon, 2005, 43(8): 1328-1331.
    [188] Han W Q, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction [J]. Appl Phys Lett, 1998, 73(21): 3805-3807.
    [189] Han W Q, Cumings J, Huang X S, et al. Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route [J]. Chem Phys Lett, 2001, 346(4): 368-372.
    [190] Han W Q, Mickelson W, Cumings J, et al. Transformation of BxCyNz nanotubes to pure BN nanotubes [J]. Appl Phys Lett, 2002, 81(6): 1110-1112.
    [191] Santos W N D, Baldo J B, Taylor R. Effect of SiC on the thermal diffusivity of silica-based materials [J]. Mater Res Bull, 2000, 35(12): 2091-2100.
    [192] Miller P D, Lee J D, Butler I B. The reduction of silica with carbon and silicon carbide [J]. J Am Ceram Soc, 1979, 62(3): 147-149.
    [193] Li Y F, Qiu J S, Zhao Z B, et al. Bamboo-shaped carbon tubes from coal [J]. Chem Phys Lett, 2002, 366(7): 544-550.
    [194] Wang X B, Hu W P, Liu Y Q, et al. Bamboo-like carbon nanotubes produced bypyrolysis of iron(II) phthalocyanine [J]. Carbon, 2001, 39(10): 1533-1536.
    [195] Adveeva N A, Goncharova O V, Kochubey D I, et al. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction [J]. Appl Catal A, 1996, 141(4): 117-129.
    [196] Moon W H, Hwang H J. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes [J]. Phys Lett A, 2004, 320(21): 446-451.
    [197] Todinov M T. Statistics of defects in one-dimensional components [J]. Compu Mater Sci, 2002, 24(4): 430-442.
    [198] Gao Y H, Bando Y, Kurashima K, et al. The microstructural analysis of SiC nanorods synthesized through carbothermal reduction [J]. Scripta Mater, 2001, 44(7): 1941-1944.
    [199] Zhou X T, Wang N, Au F C K, et al. Growth and emission properties of β-SiC nanorods [J]. Mater Sci Eng A, 2000, 286(3): 119-124.
    [200] Meng G W, Zhang L D, Mo C M, et al. β-SiC nanorods with uniform amorphous SiO2 wrappers on the outside surface [J]. Mater Res Bull, 1999, 34(5): 783-790.
    [201] Lu Y M, Leu I C. Qualitative study of beta silicon carbide residual stress by Raman spectroscopy [J]. Thin Solid Films, 2000, 377(15): 389-393.
    [202] Campbell I H, Fauchet P M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semicondutors [J]. Solid State Commun, 1986, 58(4): 739-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700