碳化硅纳米线的制备、性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体纳米线由于具有独特的电学、光学及力学等性能,在新型纳米光电子器件领域拥有广阔的应用前景,因而引起了研究者的极大关注。碳化硅(SiC)半导体材料是继第一代元素半导体材料(Si)和第二代化合物半导体材料(GaAs、GaP、InP等)之后发展起来的第三代半导体材料,具有间接宽禁带、大的击穿电场、高的热导率和高的电子饱和漂移速度等特点,使其在高温、高频、高功率和抗辐射等极端环境下工作的光电子器件制备方面有着巨大的应用前景。目前,SiC半导体材料的研究着重两个方面:SiC单晶的生长和SiC纳米线的合成。SiC纳米线除保留其宽带隙半导体性能外,还由于纳米尺寸效应、特定的形貌和内在的特殊结构及缺陷,在力学性能、发光性能和场发射性能等方面展现出更多特异性,因此研究SiC纳米线合成、结构和性能具有重要意义。
     与大量文献报道的制备方法相比,本文采用相对简便和成本低廉的热蒸发技术,在不同碳基底(原料)上,制备了β-SiC(3C-SiC)纳米线及其阵列。应用X射线衍射、扫描电镜、透射电镜和能谱仪等测试手段研究了SiC纳米线的相组成、形貌和结构;应用红外光谱、拉曼光谱、光致发光光谱、场致电子发射装置和紫外.可见光光谱等仪器研究了SiC纳米线的光学、电学性能和能带结构。在上述基础上,提出了热蒸发SiC纳米线的生长机理,探索了SiC纳米线的结构与性能的关系。论文得到了一系列重要结论,取得了一些创新性成果,为SiC纳米线在纳米器件领域的实际应用打下了的基础。
     首先,在高温烧结炉中,以碳纤维为基底/原料,采用加热蒸发硅的方法制备了试管刷状β-SiC纳米线阵列。考察了真空度、温度和反应时间等工艺条件对纳米线形貌和阵列形式的影响,发现SiC纳米线的生长需要少量氧的参与。据此,提出了试管刷状纳米线阵列的气-固(VS)反应生长机理:高温下,碳纤维表面固态的碳与含硅蒸汽(Si或SiO)反应在表面生成SiC晶核,SiC晶核按两种方式生长:一种是继续由Si或SiO气体与碳纤维反应,使SiC晶核沿纤维生长,将碳纤维转化为试管刷的SiC轴;另一种是SiO和CO发生气-固反应,使SiC晶核沿特定晶体方向(β-SiC的[111]方向)一维放射生长,形成试管刷的SiC纳米线阵列。
     用同样的热蒸发技术,在抛光的石墨片基底上合成了草坪状SiC纳米线阵列。SiC纳米线的生成同样可归咎于VS生长模式:只是在高温下SiC晶核只从石墨表面单方向生长,形成草坪状β-SiC纳米线阵列。石墨表面的活性C原子吸附气氛中的SiO,反应生成二维SiC晶核(111)面的Si原子面(Si面);该面具有暴露在晶核表面的Si-O键,进而吸附气氛中的CO,再形成晶核(111)面的C面。新的C面继续吸附SiO并反应形成第二层Si面,导致Si和C原子交替沉积,实现β-SiC纳米线沿[111]方向的生长。
     基于SiC纳米线的头部具有螺型位错生长机理的典型形貌和纳米线的周期性(111)孪晶结构,论文首次提出了孪晶纳米线的螺型位错生长机理。由于O的参与,在二维SiC晶核的(111)面产生应变和应力,导致该面上螺型位错的形成。硅和碳原子围绕螺型位错中心以螺旋堆垛方式沉积在(111)面上。同样由于应力的作用,Si-C双原子层在堆垛过程中很容易形成层错。层错进而演变成[111]方向的周期性孪晶以降低应变能;周期性孪晶的出现使纳米线表面上产生{111}琢面以降低表面能。最终实现应变能和表面能最低的具有周期性孪晶结构和琢表面的β-SiC纳米线。众多纳米线以近似垂直方向生长在石墨表面构成草坪状β-SiC纳米线阵列。
     SiC纳米线的红外和拉曼峰位都有向低波数偏移的现象,这种现象是由于堆垛层错所造成。-100℃下的拉曼光谱显示在位于835cm~(-1)处出现一新峰,可归为4H-SiC的纵向光学声子模。本文解释为低温下层错原子通过弛豫过程重排,在3C-SiC纳米线的局部区域形成了4H-SiC片段。
     光致发光谱显示,SiC纳米线在470 nm附近有一个强的分裂的发光峰;在485nm附近有一处弱的肩峰。与β-SiC体单晶的发光特征峰相比,纳米线的发光峰位有明显的蓝移。SiC纳米线中堆垛层错导致的孪晶超晶格结构的量子限域效应是引起蓝移及发光峰分裂的主要原因。本文将此发光现象解释为纳米线中堆垛层错导致相互隔离的3C-SiC纳米片段的量子尺寸效应。
     论文分析了SiC纳米线的堆垛层错与准周期性孪晶结构的关系,提出孪晶界面附近的数层原子堆垛具有类似4H-SiC或6H-SiC多型体结构特点。由于4H/6H-SiC与3C-SiC相比具有较宽的带隙宽度,这种包含准周期性类4H/6H-SiC堆垛层错的3C-SiC一维纳米孪晶超晶格结构,在[111]方向形成准周期性分布的势阱,从而影响纳米线的光电性质。
     为了探究SiC纳米线的带隙特点,测试了β-SiC纳米线的紫外-可见光漫反射吸收光谱。结果表明纳米线仍为宽带隙间接半导体,禁带宽度约为2.85 eV,较其体单晶(2.23 eV)的带隙宽,与通过光致发光谱计算得到的带隙宽度(2.65 eV)较为接近,差值是斯托克斯位移所致。
     石墨片基底上生长的草坪状SiC纳米线的场致电子发射实验表明SiC纳米线具有良好的电子发射性能、高的亮度和低的开启电压,其场发射开启电压是2.1V/μm。
     利用一定温度下不同金属硅化物的硅蒸气压不同的特点来控制反应体系SiO过饱和度,生长了不同形貌的SiC纳米线。与CoSi_2合金为硅源比较,以CoSi合金为硅源,在1500℃下反应3小时生长的SiC纳米线的直径小(约60 nm)、产量小。在熔化后凝固的合金表面也生长有亚微米级的SiC纳米线/晶须。其机理可用固-液-固(SLS)和气-液-固(VLS)的联合生长模式来解释。
     采用溶胶-凝胶工艺结合直接加热过程制备了直径约为200 nm的六棱柱状SiC纳米线。纳米线的生长为典型的碳热还原过程。
Semiconductor nanowires(NWs)have attracted much attention because of their versatile electrical,optical and mechanical properties and their potential applications in novel nanoscale photonic and electronic devices.As a third generation wide bandgap semiconductor,silicon carbide(SiC)has been developed accompanying the progress of elemental semiconductors,e.g.Si,of the first generation and compound semiconductors,e.g.GaAs,GaP and InP,of the second generation.Due to its wide energy bandgap,high breakout field,high thermal conductivity and high elelctron drift velocity.SiC crystals have potentially promsing applications in the fabrication of optic and electronic devices,especially those suitable for operation under harsh environment such as high frequency,high temperature,high power and high irradiation.Recently,the researches on SiC semiconductor are mainly focused on the growth of SiC bulk crystals and the synthesis of SiC NWs.Besides the wide energy bandgap of semiconductor,SiC NWs may exhibit unique mechanical, photoluminescence and field electron emission properties caused by quantum confinement effects,special morphologies and inner novel structures and defects.The studies on the synthesis,structure and properties of SiC NWs are of great importance to future nanoscale photonic and electronic devices as well as fundamental research.
     Compared with other reported synthesizing methods,A simple and low cost thermal evaporation technique was employed in this paper to prepare SiC NWs.β-SiC (3C-SiC)NWs and their array were synthesized on the different carbon substrates using different raw materials.The compositions,morphologies,and microstructure of SiC NWs were characterized with X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersion spectroscopy(EDS).The optical, electronic and energy bandgap properties of the SiC NWs were studied by Fourier transformed infrared spectroscopy(FT-IR),Raman spectroscopy,photoluminescence spectrum(PL),the field-emission measurement and UV-Vis spectroscopy.The growth mechanism and the relationships between the structure and properties have been studied based on the above investigation.Some innovative achievements have been obtained and important conclusions are drawn,establishing the fundamentals for the practical applications of SiC nanowires in nano-devices.
     A tube-brush shaped array of SiC NWs was synthesized on carbon fibers via the silicon thermal evaporation method in an Astro furnace.The effect of the vacuum, temperature and reaction time on the morphology and array of the NWs was discussed. The experiments suggested that a little oxygen is necessary to the growth of SiC NWs. The vapor-solid(VS)reaction mode of the SiC NWs is proposed.Solid carbon reacted with Si vapor or rather SiO to produce SiC embryos on the surface of the carbon fiber.The SiC embryos then grew in two ways:one was still the reaction of solid carbon and silicon and/or SiO vapors;the other one was the vapor-solid(VS) reaction between SiO and CO.The former lead the SiC particle aggregates to form on the surface of the carbon fiber to construct the axis of the tube brush.The latter, however,since Si and C were provided by two vapors the growth was operated along a preferential crystalline direction([111]ofβ-SiC),to form SiC NWs,i.e.the bristles of the tube brush.
     SiC NWs like a lawn planting on the surface of the polished graphite plate were obtained by the same thermal evaporation method.The VS reaction mode of the SiC NWs is also proposed.At the high-temperature processing,SiO and Si vapor reacted with carbon to form SiC embryos by heterogeneous nucleation on surface of the graphite plate.The SiC embryos should be two dimensional over(111)plane ofβ-SiC, with Si layer on the top and C layer on the bottom.The top Si layer of SiC embryos may still has Si-O bonds,which could absorb CO molecules,and react each other [SiO(g)+CO(g)=SiC(s)+O_2(g)]to form a C layer covering the Si layer.Similarly, the newly formed C layer will absorb SiO to form the second Si layer,and a layer-by-layer growth along[111]direction will be realized.
     The inner structure of the SiC nanowires is featured by two characters:One is that each individual SiC NW is composed of(111)periodic twins,and the other is that the tips of most SiC NWs show the typical screw dislocation morphologies.Based on these,a crystallographic growth mechanism for the formation of the periodic twin structure via screw dislocation growth is proposed.As the participation of oxygen in the reaction,the strain can be easily introduced into the(111)plane of the two-dimensional SiC nucleiation,and the screw dislocation vertical to the(111)plane can be formed due to the strain in the lattice.The Si and C atoms continuously deposited on the step of the screw dislocation so that the close-packed spiral growing mode is assumed.The stacking fault can thus be induced during the spiral stacking of Si-C double layers for the strain effect.The(111)periodic twinning then evolved to reduce the strain energy.{111} faceting along the surfaces of the NWs was also formed by the periodic twinning to reduce the surface energy.SiC NWs with periodic twinned structure and{111} faceting surfaces have the lowest strain and surface energy.A great number of SiC NWs grown vertically on the surface of the polished graphite plate constructed a lawn-like SiC nanowire array.
     The down-shifting feature of FT-IR spectrum and Raman spectroscopy of SiC NWs shows that there are some stacking faults in NWs.Raman spectrum of NWs at-100℃has a new peaks at 835 cm~(-1),which was ascribed to the formation of 4H-SiC segments in 3C-SiC NWs at low temperature by the replacement of stacking faults.
     The Photoluminescence spectra of SiC NWs display several strong separated peaks around 470 nm and a weak shoulder peak around 485 nm.Compared with the band gap of bulk 3C-SiC(2.23 eV),the PL peaks of nanowires are blue-shifted.The phenomena can be explained by the quantum confinement effects of the quasi-periodically twinning superlattice structure formed by the twin stacking faults. We tentatively attribute the separated light emissions to the quantum confinement effects of 3C-SiC nano-scaled segments with different widths within the nanowires.
     The relationships between the stacking faults and twinning structure of SiC NWs are discussed.The region around a twinning boundary resembles the structure of 4H/6H-SiC.As the bandgap of 4H/6H-SiC wider than 3C-SiC,the twinning superlattice has quantum-well-like features perpendicular to the c-axis,i.e.[111] growth direction.Electron transport through these quantum wells may be an important issue for future work on the properties of SiC nanowires.
     The bandgap of the SiC NWs were also investigated by UV-Vis absorption spectroscopy.The absorption spectra show a perfect fit for the indirect transition and the extrapolation yields an Eg value of 2.85 eV which is wider than the bandgap of bulk 3C-SiC(2.23 eV),and is close to the bandgap calculated by photoluminescence (2.65eV).The difference may be caused by the Stokes shift.
     Field emission properties of lawny SiC nanowire array on the surface of the polished graphite plate were tested.The SiC nanowire emitters exhibit excellent macroscopic emission properties.It has low turn-on voltage(2.1V/μm)and high brightness.
     A novel metal silicide solution technique to grow SiC NWs was also developed by simple thermal evaporation.The supersaturation of the SiO of was controlled by using different metal silicides at the same temperature.NWs with different morphologies were obtained.Compared by the Co-Si_2 solution,the SiC NWs obtained by CoSi solution have a small average diameter(60 nm)and a low output.SiC NWs/whiskers with sub-micronmeter diameter were also observed on the surface of the freezed solution.It is believed that the formation of SiC NWs is a combination of solid-liquid-solid(SLS)reaction for nucleation and vapour-liquid-solid(VLS)process for nanowire growth.
     The hexagonal-shaped SiC NWs with 200 nm in diameter were also synthesized through a sol-gel and direct heating process.The growth of NWs was typical carbothermal reduction process.
引文
[1]朱静 等编著 纳米材料和器件,清华大学出版社,北京,2003.
    [2]R.P.Feynman,There's plenty of room at the bottom,Eng.Sci.1960,23:22;reprinted in 1992.J.Micromech.Systems 1:60.
    [3]H.Gleiter,in Deformation of Polycrystals:Mechanism and Microstructures,eds.Hansen et al.,Roskilde:Riso Nat.Lab.,1981,15.
    [4]G.Buining,H.Rohrer,Scanning tunneling microscopym,Helv.Phys.Acta.,55:726-735.
    [5]http://www.Nano.gov.
    [6]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89-92.
    [7]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,(2001),5-11.
    [8]张立德,纳米材料,北京:化学工业出版社,(2000),39-41.
    [9]阎子峰,纳米催化技术,北京:化学工艺出版社,(2003),9-11.
    [10]S.Iijima.Helical microtubules of graphitic carbon,Nature,(1991),354:56-58.
    [11]J.T.Hu,T.W.Odom,C.M.Lieber.Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes,Acc.Chem.Res.,(1999),32:435-445.
    [12]P.G.Colins,A.Avouris,Nanotubes for electronics,Sci.Am.,(2000),283(12):62-69.
    [13]Y.N.Xia,P.D.Yang,Y.G.Sun,Y.Y.Wu,B.Mayers,B.Gates,Y.D.Yin,F.Kim, Y.Q.Yan,One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater.,(2003),15(5):353-389.
    [14]孙大可,曹立新,常素玲,一维纳米材料的制备、性质及应用,稀有金属,(2006),30(1):88-94.
    [15]J.Chen,B.J.Wiley,Y.Xia,One-Dimensional Nanostructures of Metals:Large-Scale Synthesis and Some Potential Applications,Langmuir,(2007),23:4120-4129.
    [16]G.W.Sears,Mercury whiskers,Acta Metall.,(1953),1:457-459.
    [17]J.C.Fisher,R.L.Fullman,G.W.Sears,On the Origin of Screw dislocation in growing crystals,Acta Metall.,(1954),2:344-346.
    [17]G.W.Sears,A growth mechanism for mercury whiskers,Acta Metall.,(1955),3:361-366
    [19]J.B.Newkirk,G.W.Sears,growth of Potassium Halide crystals from aqueous solution,Acta Metall.,(1955),3:110-111.
    [20]S.S.Brenner,G.W.Sears,Mechanism of whisker growth-Ⅲ nature of growth sites,Acta Metall.,1956,4:268-270.
    [21]F.C.Frank,The influence of dislocations on crystal growth.Disc.Faraday Soc.,(1949),5:48-54.
    [22]J.M.Blakely,K.A.Jackson,Growth of crystal whiskers,J.Chem.Phys.,(1962)37(2):428-430
    [23]R.G.Treuting,Torsional strain and the screw dislocation in whisker crystals,Acta Metall.,(1957),5:173-175.
    [24]B.Lewis,The growth of crystals of low supersaturation,J.Cryst.Growth,(1974),21:29-50.
    [25]I.A.Oding,I.M.Koptyev,The growth mechanism of filament crystals,Met.Sci.Heat Treat.,(1961),3(7-8):291-294.
    [26]Y.Zhang,N.Wang,S.Gao,R.He,S.Miao,J.Liu,J.Zhu,X.Zhang,A simple method to synthesize nanowires,Chem.Mater.,(2002),14(8),3564-3568.
    [27]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science,(2001).291:1947-1949.
    [28] P. Yang, CM. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities, Science, (1996), 273(5283): 1836-1840.
    [29] E.G. Wolfe, T.D. Coskren, Growth and Morphology of Magnesium Oxide Whiskers, J. Am. Ceram. Soc, (1965), 48(60): 279-285.
    [30] W.S. Shi, H.Y. Peng, Y.F. Zheng, N. Wang, N.G. Shang, Z.W. Pan, C.S. Lee, S.T. Lee, Synthesis of large areas of highly oriented, very long silicon nanowires, Adv. Mater., (2000), 12, 1343-1345.
    [31] R.Q. Zhang, Y. Lifshitz, S.T. Lee, Oxide-assisted growth of semiconducting nanowires, Adv. Mater., (2003), 15: 635-637.
    [32] W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, General synthetic route to III-V compound semiconductor nanowires, Adv. Mater., (2001), 13:591-594.
    [33] R.S. Wagner, W.C. Ellis, Vapor-liquid- solid mechanism of single crystal growth, Appl. Phys. Lett., (1964), 4(5): 89-90.
    [34] E.I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, (1975), 31:20-30.
    [35] Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowires growth, J. Am. Chem. Soc, (2001),123: 3165-3166.
    [36] Y.F. Zhang, Y.H. Tang, N. Wang, D.P.Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett., (1998), 72 (15): 1835-1837.
    [37] W.S. Shi, Y.F. Zheng, H.Y. Peng, N. Wang, C.S. Lee, S.T. Lee, Laser ablation synthesis and optical characterization of silicon carbide nanowires, J. Am. Ceram. Soc, (2000), 83(12): 3228-3230.
    [38] A.M. Morales, CM. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, (1998), 279: 208-211.
    [39] D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng, Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Solid State Commun., (1998), 105(6): 403-407.
    [40] D.P. Yu, Z.G. Bai, T. Ding, Q.L. Hang, H.Z. Zhang, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett., (1998), 72: 3458-3460.
    [41] T. Seeger, P. Kohler-Redlich, M. Ruhle, Synthesis of nanometer-sized SiC whiskers in the Arc-discharge, Adv. Mater., (2000), 12(4): 279-282.
    [42] G.C. Xi, Y.K. Liu, X.Y. Liu, X.Q. Wang, Y.T. Qian, Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures, J. Phys. Chem. B, (2006), 110(29): 14172-14178.
    [43] T.J. Trentler, K.M. Hickman, S.C. Geol, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, (1995), 270, 1791-1794.
    [44] X. Lu, T. Hanrath, B. A. Korgel, Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate, Nano Lett., (2003), 3(1):93.
    [45] J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science, (2000), 287:1471-1473. [46] P. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles Phys. Rev.A, (1976), 13(6): 2287-2298.
    [47] S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M. A. El-Sayed, Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time, Phys. Rev.B, (2000), 61(9), 6086-6090.
    [48] Y. Wu, P. Yang, Melting and welding semiconductor nanowires in nanotubes, Adv. Mater., (2001), 13:520-523.
    [49] J. Schi0tz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, (1998), 391: 561-563.
    [50] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, (1997), 277(5334): 1971-1975.
    [51] P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, (1999), 283:1513-1516.
    [52] G.Y.Jing, H.Ji, W.Y.Yang, J.Xu, D.P.Yu, Study of the dending modulus of individual silicon nitride nanobelts via atomic force microscopy, Appl. Phys. A, (2006), 82:475-478.
    
    [53] Y. Huang, X. F. Duan, Y.Cui, L.J. Lauhon, K. H. Kim, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, (2001), 294:1313-1317.
    [54] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors, Science, (2001), 294:1317-1320.
    [55] CM. Lieber, The incredible shrinking circuit, Sci. Am., (2001), 285:50-56.
    [56] Y. Huang, X. F. Duan, Y. Cui, Gallium nitride nanowire nanodevices, Nano Lett., (2002), 2: 101-104.
    
    [57] K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Measurement of the quantum of thermal conductance, Nature, (2000), 404(6781): 974-977.
    [58] S.G. Volz, G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires, Appl. Phys. Lett., (1999), 75:2056-2058.
    [59] J.F. Wang, M.S. Gudiksen, X.F. Duan, Y. Cui, CM. Lieber, Highly polarized photoluminescence from single indium phosphide nanowires and photodetection application Science, (2001), 293:1455-1457.
    [60] M.H. Huang, S.Mao, P.D.Yang, Room-temperature ultraviolet nanowire nanolasers, Science, (2001), 292:1897-1899.
    [61] X. F. Duan, Y. Huang, C. M.Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and opto-electronic devices, Nature, (2001), 409:66-69.
    [62] L.L. Wang, Z. Sun, T. Chen, W.X. Que, Growth temperature effect on field emission properties of printable carbon nanotubes cathode, Solid-State Electronics, (2006), 50:800-804.
    [63] S. H. Jo, D. Banerjee, Z. F. Ren, Field emission of zinc oxide nanowires grown on carbon cloth, Appl. Phys. Lett., (2006), 89: 023118-023120.
    [64] Z.W. Pan, H.L. Lai, F. C.K. Au, X.F. Duan, W Y. Zhou, W. Shi, N. Wang, C.S. Lee, N.B. Wong, S. T. Lee, Oriented silicon carbide nanowires: synthesis and field emission properties. Adv. Mater., (2000), 12:1186-1190.
    [65]H.Kind,H.Yan,P.Yang,Nanowire ultraviolet photodetectors and optical switches,Adv.Mater.,(2002),14(2):158.
    [66]X.Wang,J.Song,J.Liu,Z.L.Wang,Direct-current nanogenerator driven by ultrasonic waves,Sciences,(2007),316:102-105.
    [67]M.Law,H.Kind,F.Kim,B.Messer,P.Yang,Photochemical sensing of NO_2with SnO_2 nanoribbon nanosensors at room temperature,Angew.Chem.Int.Ed.2002,41,2405-2408.
    [68]Y.Li,F.Qian,J.Xiang,C.M.Lieber,Nanowires electronic and optoelectronic devices,Materials today,(2006),9(10):18-27.
    [69]杨光义,金属硅化物熔体中不同形貌碳化硅晶体的生长研究,[浙江大学博士论文],2007.3.
    [70]J.B.Casady,R.W.Johnson,Status of silicon carbide(SIC)as a wide-bandgap semiconductor for high-temperature applications:a review,Solid State Electron.,(1996),39(10):1409-1422.
    [71]R.R.Siergiej,R.C.Clarke,S.Sriram,A.K.Agarwal,R.J.Bojko,A.W.Morse,V.Balakrishna,M.F.MacMillan,A.A.Burk,Jr.,C.D.Brandt,Advances in SiC materials and devices:an industrial point of view,Mater.Sci.Eng.,B,(1999),61-62:9-17.
    [72]S.Sriram,R.R.Siergiej,R.C.Clarke,A.K.Agarwal,C.D.Brandt,SiC for microwave power transistors,Phys.Stat.Sol.(a),(1997),162(1):441-457.
    [73]M.Bauer,L.Kador,Microscopic heterogeneities in the electrical properties of SiC as studied with single-molecule spectroscopy,J.Phys.Chem.B,(2003),107(51):14301-14305.
    [74]H.Morkoc,S.Strite,G.B.Gao,M.E.Lin,B.Sverdlov,M.Bums,Large-band-gap SiC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies.J.Appl.Phys.,(1994),76(3):1363-1398.
    [75]王玉霞,何海平,汤洪高,宽带隙半导体材料SiC研究进展及其应用,硅酸盐学报,(2002),30(3):372-381.
    [76]W.J.Choyke,G.Pensl,Physical Properties of SiC,MRS Bulletin,(1997),22(3):25-29.
    [77]J.A.Lely,Darstellung von Einkristallen von Siliciumearbid und Beherrschung von Art and Menge der eingebauten Verunremigungen,Ber.Deut.Keram.Ges.,(1955),32:229-231.
    [78]F.A.Halden,The growth of silicon carbide from solutions,Proc.Conf.On Silicon Carbide,Boston 1959,Pergamon Press,1960,115-123.
    [79]K.Gillessen,W.V.Munch,Growth of silicon carbide from liquid silicon by a traveling heater method,J.Cryst.Growth,(1973),19:263-268.
    [80]Y.M.Tairov,V.F.Tsvetkov,Investigation of growth processes of ingots of silicon carbide single crystals.J.tryst.Growth,(1978),43(2):209-212.
    [81]C.H Carter,Jr.,V.F.Tsvetkov,R.C.Glass,D.Henshall,M.Brady,St.G.Muller,O.Kordina,K.Irvine,J.A.Edmond,H.-S.Kong,R.Singh,S.T.Allen,J.W.Palmour,Progress in SiC:from material growth to commercial device development,Mater.Sci.Eng.,B,(1999),61-62:1-8.
    [82]N.Ohtani,T.Fujimoto,M.Katsuno,T.Aigo,H.Yashiro,Growth of large high-quality SiC single crystals,J.Cryst.Growth,(2002),237-239:1180-1186.
    [83]K.Yasui,K.Asada,T.Maeda,T.Akahane,Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane,Appl.Surf.Sci.,(2001),175-176:495-498.
    [84]D.H.Hofmann,M.H.Muller,Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals,Mater.Sci.Eng.,B,(1999),61-62:29-39.
    [85]郝跃,彭军,杨银堂编著,碳化硅宽带隙半导体技术,北京科学出版社,2000.
    [86]N.Ohtani,J.Takahashi,M.Katsuno,H.Yashiro,M.Kanaya,Development of large single-crystal SiC substrates,Electronics and Communications in Japan,Part 2,(1998),81(6):8-19.
    [87]U.Starke,J.Bernhardt,J.Schardt,K.Heinz,SiC surface reconstruction:relevancy of atomic structure for growth technology,Surf.Rev.Lett.,(1999),6(6):1129-1141.
    [88]R.I.Scace,G.A.Slack,Solubility of carbon in silicon and germanium,J.Chem.Phys.,(1959),30(6):1551-1555.
    [89]J.Drowart,G.D.Maria,M.G.Inghram,Thermodynamic study of SiC utilizing a mass spectrometer, J. Chem. Phys., (1958), 29(5): 1015-1021.
    [90] J.L.Davidson, K.K. Blankenship, High temperature radiation hardened devices technology assessment, Proc.1st Int. High temp. Electr. Conf., (1991): 17-22.
    [91] A. Solangi, M.I. Chaudhry, Absorption coefficient of β—SiC grown by chemical vapor deposition, J. Mater. Res., (1992), 7(3): 539-541.
    [92] L. Patrick, W.J. Choyke, Optical absorption in n-type cubic SiC, Phys. Rev., (1969), 186(3): 775-777.
    [93] G.L. Harris, In: Properties of silicon carbide, ed. Materials Science Research Center of Excellence Howard University, Washington D.C., USA, 1995: 15.
    [94] D. Zhou, S.Seraphin, Production of silicon carbide whiskers from carbon nanoclusters, Chem. Phys.Lett, (1994), 222:223-238.
    [95] H.J.Dai, E.W.Wong, Y. Z.Lu, S. Fan, C. M. Lieber, Synthesis and characterization of carbide nanorods, Nature, (1995), 375: 769-772.
    [96] W.Q. Han, S.S. Fan, Q.Q. Li, W J.Lung, B.L. Gu, D.P. Yu, Continuous synthesis and characterization of silicon carbide nanorods, Chem. Phys. Lett., (1997), 65:374-378.
    [97] A. I. Kharlamov, N. V. Kirillova, S. N. Kaverina, Hollow silicon carbide nanostructures, Theor. Exp. Chem., (2002), 38: 237-241.
    [98] X.H. Sun, C. P. Li, W.K. along, N.B. along, C. S. Lee, S.T. Lee, B.K Teo, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes, J. Am. Chem. Soc, (2002),124: 14464-14471.
    [99] H.H. Ye, N. Titchenal, Y. Gogotsi, F. Ko, SiC nanowires synthesized from electrospun nanofiber templates, Adv. Mater., (2005), 17:1531-1535.
    [100] Z.J. Li, J.L. Zhang, A.L. Meng, J.Z. Guo, Large-area highly-oriented SiC nanowire arrays: synthesis, raman, and photoluminescence properties, J. Phys. Chem. B, (2006), 110(45): 22382-22386.
    [101] R.V. Krishinarao, M.M. Godokhindi, P.G.I. Mukunda, M. Chakraborty, Direct pyrolysis of raw rice husks for maximization of silicon carbide whisker formation, J. Am. Ceram. Soc, (1991), 74:2869-2873.
    [102]Z.L.Wang,Z.R.Dai,R.P.Gao,and Z.G.Bai,J.L.Gole,Side-by-side silicon carbide-silica biaxial nanowires:synthesis,structure,and mechanical properties,Appl.Phys.Lett.,(2000),77(21):3349-3351.
    [103]Y.Ryu,Y.Tak,K.Yong,Direct growth of core-shell SiC-SiO_2 nanowires and field emission characteristics,Nanotechnology,(2005),16:S370-S374.
    [104]G.W.Meng,Z.Cui,L.D.Zhang,F.Phillipp,Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO_2 xerogels containing carbon nanoparticles,J.Cryst.Growth,(2000),209:801-806.
    [105]V.Raman,G.Bhatia,S.Bhardwaj,Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques,J.Mater.Sci.,(2005),40:1521-152.
    [106]X.K.Lia,L.Liua,Y.X.Zhangb,Sh.D.Shenb,Sh.Geb,L.Ch.Ling,Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels,Carbon,(2001),39:159-165.
    [107]W.Yang,H.Araki,Q.Hu,N.Ishikawa,H.Suzuki,T.Noda,In situ growth of SiC nanowires on RS-SiC substrate(s),J.Cryst.Growth,(2004),264:278-283.
    [108]M.Lin,K.P.Loh,C.Boothroyd,A.Du,Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones,Appl.Phys.Lett.,(2004),85(22)5388-5390.
    [109]H.F.Zhang,C.M.Wang,L.S.Wang,Helical crystalline SiC/SiO_2 core shell nanowires,Nano Lett.,(2002),2(9):941-944.
    [110]D.Zhang,A.Alkhateeb,H.Han,H.Mahmood,D.N.McIlroy,M.G.Norton,Silicon carbide nanosprings,Nano Lett.,(2003)3(7):983-987.
    [111]J.J.Niu,J.N.Wang,An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers,Eur.J.Inorg.Chem.,(2007),2007,(25):4006-4010.
    [112]吴旭峰,凌一鸣,电弧放电法制备SiC纳米丝的实验研究,真空科学与技术学,(2005),25:30-33.
    [113]X.M.Liu,K.F.Yao,Large-scale synthesis and photoluminescence properties of SiC/SiO_x nanocables,Nanotechnology,(2005),16:2932-2935.
    [114]S.Z.Deng,Z.B.Li,W.L.Wang,N.S.Xu,Jun Zhou,X.G.Zheng,H.T.Xu,J. Chen, J. C. She, Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate, Appl. Phys. Lett., (2006), 89: 023118-023120.
    [115] Q. Lu, J. Hu, K. Tang, Y. Qian, G.Zhou, X. Liu, J. Zhu, Growth of SiC nanorods at low temperature, Appl. Phys. Lett., (1999), 75(4):507-509.
    [116] X. Bao, M.R. Nangrejo, M.J. Edirisinghe, Preparation of silicon carbide foams using polymeric precursor solutions, J. Mater. Sci., (2000), 35(17): 4365-4372.
    [117] J.M. Garces, A. Kuperman, D.M. Millar, M.M. Olken, A.J. Pyzik, W. Rafaniello, Synthetic inorganic materials, Adv. Mater., (2000), 12(23): 1725-1735.
    [118] J. Moon, A.C. Caballero, L. Hozer, Y.M. Chiang, M.J. Cima, Fabrication of functionally graded reaction infiltrated SiC-Si composite by three-dimensional printing (3DP~(TM) process, Mater. Sci. Eng. A, (2001), 298: 110-119.
    [119] G.D. Zhan, J.D. Kuntz, R.G. Duan, A.K. Mukherjee, Spark-plasma sintering of silicon carbide whiskers (SiCw) reinforced nanocrystalline alumina, J. Am. Ceram. Soc, (2004), 87(12): 2297-2300.
    [120] Z.Y. Ryu, J.T. Zheng, M.Z. Wang, B.J. Zhang, Synthesis and characterization of silicon carbide whiskers, Carbon, (2001), 39(12): 1929-1930.
    [121] A. Fissel, B. Schroter, W. Richter, Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy, Appl. Phys. Lett., (1995), 66(23): 3182-3184.
    [122] M. Takahiro, T. Jun, T. Taruki, Blue-green luminescence from porous silicon carbide, Appl. Phys. Lett., (1994), 64(2):226-228.
    [123] M. Hidenori, M.Takahiro, Blue electroluminescence from porous silicon carbide, Appl Phys Lett, (1994), 65(26):3350-3352.
    [124] V. P. Koch, O. Sreseli, G. Polisski, Luminescence enhancement by electrochemical etching of SiC (6H), Thin Solid Film, (1995), 255:107-110.
    [125] J.Y. Fan, X.L. Wu and Paul K. Chu, Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties, Prog. Mater. Sci., (2006), 51(8):983-1031.
    [126] G. Gundiah, G.V. Madhav, A.Govindaraj, M.M. Seikh, C.N.R. Rao, Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires, J. Mater. Chem., (2002), 12:1606-1611.
    [127] L. Zhang, W. Yang, H. Jin, Z. Zheng, Z. Xie. H. Miao, L. An, Ultraviolet photoluminescence from 3C-SiC nanorods, Appl. Phys. Lett., (2006), 89: 143101.
    [128] K.Z. Li, J. Wei, H.J. Li, Z.J. Li, D.S. Hou, Y.L. Zhang, Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gel process, Mater. Sci. Eng. A, (2007), 460-461:233-237.
    [129] H.K. Seong, H.J. Choi, S.K. Lee, J. Lee, D.J. Choi, Optical and electrical transport properties in silicon carbide nanowires, Appl. Phys. Lett., (2004), 85(7): 1256-1258.
    [130] W.M. Zhou, X. Liu, Y.F. Zhang, Simple approach to P-SiC nanowires: Synthesis, optical, and electrical properties, Appl. Phys. Lett., (2006), 89, 223124.
    [131] Y. Li, P. S. Dorozhkin, Y. Bando, D. Golberg, Controllable modification of SiC nanowires encapsulated in BN nanotubes, Adv. Mater., (2005), 17(5), 545-549.
    [132] Z. S. Wu, S. Z. Deng, N. S. Xu, J. Chen, J. Zhou, J. Chen, Needle-shaped silicon carbide nanowires: synthesis and field electron emission properties, Appl. Phys. Lett., (2002), 80(20):3829-3831.
    [133] W.M. Zhou , Y.J. Wu, E. Si. Kong, F. Zhu, Z.Y. Hou, Y.F. Zhang, Field emission from nonaligned SiC nanowires, Appl. Surf. Sci., (2006), 253: 2056-2058.
    [134] G. Shen, Y. Bando, C. Ye, B. Liu, D. Golberg, Synthesis,characterization and field-emission properties of bamboo-like P-SiC nanowires, Nanotechnology, (2006), 17:3468-3472
    [135] W.M. Zhou, L. Yan, Y. Wang, Y.F. Zhang, SiC nanowires: a photocatalytic nanomaterials, Appl. Phys. Lett., (2006)89: 013105-013107.
    [136] C. Pham-Huu, N. Keller, G. Ehret, M. J.Ledoux, The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential, J. Catal., (2001), 200:400-410.
    [137] Y. Zhang, X. Han, K. Zheng, Z. Zhang, X. Zhang, J. Fu, Y. Ji, Y. Hao, X. Guo, Z. L. Wang, Direct observation of super-plasticity of Beta-SiC nanowires at low temperature, Adv. Funct. Mater., (2007), 17(17):3435.
    [138] W. Yang, H. Araki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda, Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites, Adv. Mater., (2005), 17:1519-1523.
    
    [139] G. P. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, J. Samios, SiC nanotubes: a novel materials for hydrogen storage, Nano Lett., (2006), 6:1581-1583.
    [140] V. G. Pol, S. V. Pol, A. Gedanken, S. H. Lim, Z. Zhong, J. Lin, Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods, J. Phys. Chem.B (2006), 110:11237-11240.
    [1]G.W.Sears,Mercury whiskers,Acta Metall.,(1953),1:457-459.
    [2]J.C.Fisher,R.L.Fullman,G.W.Sears,On the origin of screw dislocation in growing crystals,Acta Metall.,(1954),2:344-346.
    [3]G.W.Sears,A growth mechanism for mercury whiskers,Acta Metall.,(1955),3:361-366.
    [4]Z.R.Dai,Z.W.Pan,Z.L.Wang,Novel nanostructures of functional oxides synthesized by thermal evaporation,Adv.Funct.Mater.,(2003),13(1):9-24.
    [5]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides,Science,(2001),291(5510):1947-1949.
    [6]Z.S.Wu,S.Z.Deng,N.S.Xu,J.Chen,J.Zhou,J.Chen,Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties,Appl.Phys.Lett.,(2002),80(20):3829-3831.
    [7]S.Z.Deng,Z.B.Li,W.L.Wang,N.S.Xu,Jun Zhou,X.G.Zheng,H.T.Xu,Jun Chen,and J.C.She,Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate,Appl.Phys.Lett.,(2006),89:023118-023120.
    [8]Z.Ryu,J.Zheng,M.Wang,B.Zhang,Synthesis and characterization of silicon carbide whiskers,Carbon,(2001),39:1929-1941.
    [9]周伟民,一维碳化硅纳米材料的制备与性能的基础研究,[上海交通大学博士学位论文],2007.1.
    [10]C.H.Liang,G.W.Meng,L.D.Zhang,Y.C.Wu,Z.Cui,Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles,Chem.Phys.Lett.,(2000),329:323-328.
    [11]W.Y.Yang,H.Z.Miao,Z.P.Xie,L.G.Zhang,L.N.An,Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor,Chem.Phys.Lett.,(2004),383:441-444.
    [12] B. Park, U. Ryu, K.J. Yong, Growth and characterization of silicon carbide nanowire, Surf. Rev. Lett., (2004), 11: 373-378.
    [13] C.C. Tang, Y. Bando, T. Sato, K. Kurashima, X.X. Ding, Z.W. Ding, Z.W. Gan, S.R. Qi, SiC and its bicrystalline nanowire with uniform BN nanowire, Appl. Phys. Lett., (2002), 80: 4641-4643.
    [14] Z.Wang, Z.Dai, R.Gao, Z.Bai, J.L.Gole, Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties, Appl. Phys. Lett., (2000), 77: 3349-3351.
    [15] K. S. Wenger, D. Comu, F. Chassagneux, G. Ferro, T. Epicier, P.Miele, Direct synthesis of β-SiC nanowires, Solid State Commun., (2002), 124: 157-161.
    [16] W. Zhou, Z. X. Yang, SiC/SiO_2 nanocables and nanosprings synthesized by catalyst-free method, Phys. E, (2006), 31: 9-12
    [17] Z. Yang, W. Zhou, F. Zhu, Y. Zhang, SiC/SiO_2 core-shell nanocables formed on the carbon fiber felt, Mater.l Chem. Phys., (2006), 96: 439-411.
    [18] H. F. Zhang, C. M. Wang, L. S. Wang, Helical Crystalline SiC/SiO_2 Core-Shell Nanowires, Nano Lett., 2002, 2(9): 941-944.
    [19] H. W. Shim, H. Huang, Three-stage transition during silicon carbide nanowire growth, Appl. Phys. Lett., (2007), 90:083106.
    [20] R. D. Jong, R.A. McCauley, Growth of twinned P-silicon carbide whiskers by the vapor-liquid-solid process, J. Am. Ceram. Soc, (1987), 70(11): C-338-C-341.
    [21] X. Yao, S. Tan, Z. Huang, S. Dong, D. Jiang, Ceram. Int., (2007), 33:901-904.
    [22] Z.W. Pan, H.L. Lai, F.C.K. Au, X.F. Duan, W.Y. Zhou, W.S. Shi, N. Wang, C.S. Lee, N.B. Wong, S.T. Lee, S.S. Xie, Oriented silicon carbide nanowires: synthesis and field emission properties, Adv. Mater., (2000), 12(16): 1186-1190.
    [23] Z.J. Li, J.L. Zhang, A.L. Meng, J.Z. Guo, Large-area highly-oriented SiC nanowire arrays: synthesis, raman, and photoluminescence properties, J. Phys. Chem. B, (2006), 110(45): 22382-22386.
    [24]A.Y.Cao,V.P.Veedu,X.Li,Z.Yao,M.N.Ghasemi-Nejhad,P.M.Ajayan,Multifunctional brushes made from carbon nanotubes,Nature Mater.,(2005),4:540-545.
    [25]Y.Back,Y.H.Ryu,K.Yong,Structural characterization of β-SiC nanowires synthesized by direct heating method,Mater.Sci.Eng.C,(2006),26:805-808.
    [26]S.C.Bennett,D.J.Johnson,Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres,Carbon,(1979),17:25-39.
    [27]C.Vix-Guterl,P.Ehrburger,Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation,Carbon,(1997),35(10-11):1587-1592.
    [28]C.Vix-Guterl,I.Alix,EEhrburger,Synthesis of tubular silicon carbide(SIC)from a carbon-silica material by using a reactive replica technique:mechanism of formation of SiC,Acta Mater.,(2004),52(6):1639-1651
    [29]L.Wang,H.Wada,L.F.Allard,Synthesis and characterization of SiC whiskers,J.Mater.Res.,(1992),7(1):148-163.
    [30]杨光义,金属硅化物熔体中不同形貌碳化硅晶体的生长研究,[浙江大学博士论文],2007.3.
    [31]W.S.Seo,K.Koumoto,S.Aria,Morphology and stacking faults of β-silicon carbide whisker synthesized by carbothermal reduction,J.Am.Ceram.Soc.,(2000),83(10):2584-2592.
    [32]E.Borowiak-palen,M.H.Ruemmeli,T.Gemming,Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution,J.Appl.Phys.,(2005),97:056102
    [33]W.Q.Ham,S.S.Fan,Q.Q.Li,W.J.Liang,B.L.Gu,D.P.Yu,Continuous synthesis and characterization of silicon carbide nanorods,Chem.Phys.Lett.,(1997),265:374-378.
    [34]C.Vix-Guterl.I.Alix.P.Gibot.P.Ehrburger,Formation of tubular silicon carbide from a carbon-silica material by using a reactive replica technique: infra-red characterisation, Appl. Surf. Sci., (2003), 210: 329-337.
    [35] G.W. Meng, L.D. Zhang, C.M. Mo, S.Y Zhang, Y. Qin, S.P. Feng, H.J. Li, Preparation of β—SiC nanorods with and without amorphous SiO2 wrapping layers, J.Mater. Res., (1998), 13: 2533-2538.
    [36] S. Nakashima, H. Harima, Raman Investigation of SiC Polytypes, Phys. Stat.Sol. (a), (1997), 162:39-64.
    [37] H. Harima, S. Nakashima, T. Uemura, Raman scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H- and 6H-SiC, J. Appl. Phys., (1995), 78(3): 1996-2005.
    [38] S. Rohmfeld, M. Hundhausen, L. Ley, Influence of stacking disorder on the Raman spectrum of 3C-SiC, Phys. Stat. Sol. (b), (1999), 215: 115-119.
    [39] S.L. Zhang, B.F. Zhu, F. Huang, Y.Yan, E.Y.B. Shang, S.S. Fan, W.G. Han, Effect of defects an optical phonon Raman spectra in SiC nanorods, Solid State Commun., (1999), 111:647-651.
    [40] M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, A Raman Spectroscopy Study of Individual SiC Nanowires, Adv. Funct. Mater., (2007), 17:939-943,
    [41] J.Y Fan, X.L. Wu, Paul K. Chu, Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties, Prog. Mater Sci., (2006), 51:983-1032.
    [42] L. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. (1983)79(11):5566-5571.
    [43] X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, P. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett., (2005), 94:026102(1-4).
    [1]C.H.Liang,G.W.Meng,L.D.Zhang,Y.C.Wu,Z.Cui,Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles,Chem.Phys.Lett.,(2000),329:323-328.
    [2]W.Y.Yang,H.Z.Miao,Z.P.Xie,L.G.Zhang,L.N.An,Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor,Chem.Phys.Lett.,(2004),383:441-444.
    [3]A.Solangi,M.I.Chaudhry,Absorption coefficient of β-SiC grown by chemical vapor deposition,J.Mater.Res.,(1992),7(3):539-541.
    [4]L.Patrick,W.J.Choyke,Optical absorption in n-type cubic SiC,Phys.Rev.,(1969),186(3):775-777.
    [5]章晓中,电子显微分析,北京:清华大学出版社,(2006),142-143.
    [6]杨顺华,晶体位错理论基础,北京:科学出版社,1988-1998.
    [7]F.C.Frank,The influence of dislocations on crystal growth.Disc.Faraday Soc.,(1949),5:48-54.
    [8]G.W.Sears,Mercury whiskers,Acta Metall.,(1953),1:457-459.
    [9]J.C.Fisher,R.L.Fullman,G.W.Sears,Acta Metall.,On the Origin of screw dislocation in growing crystals,(1954),2:344-346.
    [10]G.W.Sears,A growth mechanism for mercury whiskers,Acta Metall.,(1955),3:361-366.
    [11]J.M.Blakely,K.A.Jackson,Growth of crystal whiskers,J.Chem.Phys.,(1962),37(2):428-430.
    [12]Y.N.Xia,P.D.Yang,Y.G.Sun,Y.Y.Wu,B.Mayers,B.Gates,Y.D.Yin,F.Kim,Y.Q.Yan,One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater.,(2003),15(5):353-389.
    [13]S.S.Brenner,G.W.Sears,Mechanism of whisker growth-Ⅲ nature of growth sites, Acta Metall., (1956), 4:268-270.
    [14] I. A. Oding, I.M. Koptyev, The growth mechanism of filament crystals, Met. Sci. Heat Treat., (1961), 3(7-8): 291-294.
    [15] P. Smereka, Spiral crystal growth, Physica D, (2000), 138(3- 4): 282-301.
    [16] W.K. Burton, N. Cabrera, F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Phi. Trans. Roy. Soc. Lond., (1951), 243A:299-358.
    [17] R. W. Cahn, Twinned crystals, Adv. Phys., (1954), 3(12): 363-445.
    [18] J. Johansson, L.S. Karlsson, T.S. Patrik, T. Martensson, B. A. Wacser, K. Deppert, L. Samuelson, W. Seufert, Structural properties of < 111> B-oriented III-V nanowires Nature Mater., (2006), 5:574-580.
    [19] F. M. Davidson, III, D. C. Lee, D. D. Fanfair, B. A. Korgel, Lamellar Twinning in Semiconductor Nanowires, J. Phys. Chem. C, (2007), 111(7): 2929-2935.
    [20] B. A. Korgel, Twins cause kinks, Nature Mater., (2006), 5: 521-522.
    [21] Q. Xiong, J. Wang, P. C. Eklund, Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires, Nano Lett., (2006), 6(12): 2736-2742.
    [22]H. W. Shim, H. Huang, Three-stage transition during silicon carbide nanowire growth, Appl. Phys. Lett., (2007), 90:083106(1-3).
    [23] H.F. Zhang, C.M. Wang, L.S. Wang, Helical crystalline SiC/SiO_2 core-Shell nanowires, Nano Lett., (2002), 2(9): 941-944.
    [24] Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, and J. L. Gole, Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties, Appl. Phys. Lett., (2000), 77(21): 3349-3351.
    [25] A. H. Carim, K.K. Lew, J. M. Redwing, Bicrystalline silicon nanowires, Adv. Mater., (2001), 13(19): 1489-1491.
    [26] Q. Tang, X. Liu, T. I. Kamins, G. S. Solomon, J. S. Harris, Twinning in TiSi_2-island catalyzed Si nanowires grown by gas-source molecular-beam epitaxy, Appl. Phys. Lett., (2002), 81(13): 2451-2453.
    [27] N. Wang. Y. H. Tang, Y. F. Zhang, D. P. Yu, C. S. Lee. I. Bello and S. T. Lee, Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation, Chem. Phys. Lett., (1998), 283(5-6): 368-372.
    [28] Q. Li, X. Gong, C. Wang, J. Wang 1, K. Ip, S. Hark, Size-dependent periodically twinned ZnSe nanowires, Adv. Mater., (2004), 16(16): 1436-1440.
    [29] Y. Yang, X. W. Sun, B. K. Tay, J. X. Wang, Z. L. Dong, H. M. Fan, Twinned Zn_2TiO_4 spinel nanowires using ZnO nanowires as a template, Adv. Mater., (2007), 19(14): 1839-1844.
    [30] H. Chen, J. Wang, H.Yu, H. Yang, S. Xie, J. Li, Transmission electron microscopy study of pseudoperiodically twinned Zn_2SnO_4 nanowires, J. Phys. Chem. B, (2005), 109(7): 2573-2577.
    [31] Y. Ding, Z. L. Wang,T. Sun, J. Qiu, Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires Appl. Phys. Lett., (2007), 90:153510(1-3).
    [32] Y. Hao, G. Meng, Z.L. Wang, C. Ye, L. Zhang, Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth, Nano Lett, (2006), 6(8): 1650-1655.
    [33] J. Wang, H. Huang, Novel deformation mechanism of twinned nanowires, Appl. Phys. Lett., (2006),88:203112; M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater., (2001), 13(1): 62-65.
    [34] K. A. Afanasyev, F. Sansoz, Strengthening in gold anopillars with nanoscale twins, Nano Lett. 2007, 7(7): 2056-2062.
    [35] R.D. Jong, R.A. McCauley, Growth of twinned β-silicon carbide whiskers by the vapor-liquid-solid process, J. Am. Ceram. Soc, (1987), 70(11): C-338-C-341.
    [36] X. Yao, S. Tan, Z. Huang, S. Dong, D. Jiang, Growth mechanism of β-SiC nanowires in SiC reticulated porous ceramics, Ceramics International, (2007), 33:901-904.
    [37] R. Wu, Y. Pan, G. Yang, M. Gao, L. Wu, J. Chen, R. Zhai, J. Lin, Twinned SiC zigzag nanoneedles, J. Phys. Chem. C, (2007), 111: 6233-6237. [38] W. Yang, H. Araki, Q. Hu, N. Ishikawa, H. Suzuki, T. Noda, In situ growth of SiC nanowires on RS-SiC substrate(s), J. Cryst. Growth, (2004), 264:278-283.
    [39] W.S. Seo, K. Koumoto, S. Aria, Morphology and stacking faults of β-silicon carbide whisker synthesized by carbothermal reduction, J. Am. Ceram. Soc, (2000) 83(10): 2584-2592.
    
    [40] S.R. Nutt, Defects in silicon carbide whiskers, J. Am. Ceram. Soc, (1984) 67, (6): 428-431.
    
    [41] A. Chrysanthou, P. Grieveson, A. Jha, Formation of silicon carbide whiskers and their microstructure, J. Mater. Sci., (1991), 26:3463-3476.
    
    [42] A. T. Blumenau,C. J. Fall and R. Jones, S. O berg, T. Frauenheim, P. R. Briddon, Structure and motion of basal dislocations in silicon carbide, Phys. Rev. B,(2003), 68(17): 174108.
    
    [43] L.Wang, H. Wada, L.F. Allard, Synthesis and characterization of SiC whiskers, J. Mater, Res., (1992), 7(1):148-163.
    
    [44] B. Lewis, The growth of crystals of low supersaturation, J. Cryst. Growth, (1974), 21:29-50.
    
    [45] M. Kitamura, S. HOSoya, I.Sunagawa, Re-investigation of the re-entrant corner effect in twinned crystals, J. Cryst. Growth, (1979), 47:93-99.
    
    [46] J.W. Lee, U. J. Chung, N.M. Hwang, D,Y. Kim, Growth process of the ridge-trough faces of a twinned crystal, Acta Cryst., (2005), A61: 405-410.
    
    [47] N. Ming, I. Sunagawa, Twin lamellae as possible self-perpetuation step sources, J. Cryst. Growth, (1988), 87: 13-17.
    [48] G. Shen, Y. Bando, C. Ye, B. Liu, D. Golberg, Synthesis, characterization and field-emission properties of bamboo-like P-SiC nanowires, Nanotechnology, (2006), 17:3468-3472.
    
    [49] X. Ma, A method to determine superscrew dislocation structure in silicon carbide Mater. Sci. Eng. B, (2006), 129:216-221.
    
    [50] Xianyun Ma, Superscrew dislocations in silicon carbide: Dissociation, aggregation, and formation, J. Appl. Phys., (2006), 99: 063513(1-6).
    
    [51] A. R. Verma, Dislocations in silicon carbide crystals: interferometric and X-Ray study of polytypism, Proceed. Roy. Soc. Lond. Series A. Mathematical and Physical Sciences, (1957). 240(1223):462-472.
    [52] E.I. Givargizov, edited by A. A. Chernov, Growth of Crystals, Translated by J.E.S. Bradley, Consultants Bureau, New York, (1979), 11:136.
    [53] W.Q. Han, S.S. Fan, Q.Q. Li, W.J. Liang, B.L. Gu, D.P. Yu, Continuous synthesis and characterization of silicon carbide nanorods, Chem. Phys. Lett., (1997), 265: 374-378.
    [54] C. Vix-Guterl, I. Alix, P. Gibot, P. Ehrburger, Formation of tubular silicon carbide from a carbon-silica material by using a reactive replica technique: infra-redcharacterisation, Appl. Surf. Sci., (2003), 210: 329-337.
    [55] E. Borowiak-palen, M.H.Ruemmeli, T.Gemming, Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution, J. Appl. Phys., (2005), 97:056102
    [56] G. Kirchschstein(ED.), Gemlin Handbook of Inorganic Chemistry, Si-Silicon Supplement, eighth ed., Springer, Berlin, (1984), vol.B2.
    [57] C. Vix-Guterl, I. Alix, P. Ehrburger, Synthesis of tubular silicon carbide (SiC) from a carbon-silica material by using a reactive replica technique: mechanism of formation of SiC, Acta Mater., (2004), 52(6): 1639-51.
    [58] L.Geng, J. Zhang, A study of the crystal structure of a commercial β-SiC whisker by high-resolution TEM, Mater. Chem. Phys., (2004), (84): 243-246.
    [59] G. Z. Cambaz, G. N. Yushin, Y. Gogotsi, V. G. Lutsenko, Anisotropic Etching of SiC Whiskers, Nano Lett., (2006), 6(3): 548-551.
    [60] S.L. Zhang, B.F. Zhu, F.M. Huang, Y. Yan, E.Y. Shang, S.S. Fan, W.G. Han, Effect of defects on optical phonon Raman spectra in SiC nanorods, Solid State Commun,(1999), 111(11): 647-651
    [61] S. Nakashima, H. Harima, Raman investigation of SiC polytypes, Phys. Stat. Sol. (a), (1997), 162:39-64.
    [62] S. Rohmfeld, M. Hundhausen, L. Ley, Influence of stacking disorder on the Raman spectrum of 3C-SiC, Phys. Stat. Sol. (b), (1999), 215:115-119.
    [63] M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, A Raman spectroscopy study of individual SiC nanowires, Adv. Funct. Mater., (2007), 17: 939-943.
    [64] D. H. Feng, T. Q. Jia, X. X. Li. Z. Z. Xu, J. Chen, S. Z. Deng, Z. S. Wu, N. S. Xu, Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires,Solid State Commun.,(2003),128:295-297.
    [65]J.Y.Fan,X.L.Wu,Paul K.Chu,Low-dimensional SiC nanostructures:Fabrication,luminescence,and electrical properties Prog.Mater Sci.,(2006),51:983-1032.
    [66]Y.Zhang,M.Nishitani-Gamo,C.Xiao,T.Ando,Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence,J.Appl.Phys.,(2002),91(9):6066-6070.
    [67]X.L.Wu,J.Y.Fan,T.Qiu,X.Yang,G.G.Siu,and P.K.Chu,Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites,Phys.Rev.Lett.,(2005),94:026102(1-4).
    [68]罗庆尧,邓延倬,蔡汝秀,分光光度分析,北京:科学出版社,1992:559-567.
    [69]褚明辉,金华,杨为佑,谢志鹏,安立楠,张立功,聚合物前驱体衍生SiC纳米棒的光学性质,发光学报,(2005),26(5):641-646.
    [70]季振国,半导体物理,杭州:浙江大学出版社,2005:129-146.
    [71]K.M.Reddy,S.V.Manorama,A.R.Reddy,Bandgap studies on anatase titanium dioxide nanoparticles,Mater.Chem.Phys.,(2002),78:239-245.
    [72]L.L.Wang,Z.Sun,T.Chen,W.X.Que,Growth temperature effect on field emissionproperties of printable carbon nanotubes cathode,Solid-State Electronics,(2006),50:800-804.
    [73]H.S.Jang,H.R.Lee,D.H.Kim,Field emission properties of carbon nanotubes with different morphologies,Thin Solid Films,(2006),500:124-128.
    [74]S.H.Jo,D.Banerjee,Z.F.Ren,Field emission of zinc oxide nanowires grown on carbon cloth,Appl.Phys.Lett.,(2006),89:023118-023120.
    [75]Z.W.Pan,H.L.Lai,F.C.K.Au,X.F.Duan,W.Y.Zhou,W.Shi,N.Wang,C.S.Lee,N.B.Wong,S.T.Lee,Oriented silicon carbide nanowires:synthesis and field emission properties,Adv.Mater.,(2000),12:1186-1190.
    [76]S.Z.Deng,Z.B.Li,W.L.Wang,N.S.Xu,Jun Zhou,X.G.Zheng,H.T.Xu,Jun Chen,J.C.She,Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate, Appl. Phys. Lett., (2006), 89:023118-023120.
    [77] W.M. Zhou, Y.J. Wu, E. S. Kong, F. Zhu, Z.Y. Hou, Y.F. Zhang, Field emission from nonaligned SiC nanowires, Appl. Surf. Sci., (2006), 253:2056-2058.
    [78] Y. Ryu, Y. Tak, K. Yong, Direct growth of core-shell SiC-SiO_2 nanowires and field emission characteristics, Nanotechnology, (2005), 16:S370-S374.
    [79] G. Shen, Y. Bando, D. Golberg. Self-assembled hierarchical single-crystalline β -SiC nanoarchitectures, Crystal Growth & Design, (2007), 7 (1):35-38.
    [80] C. Liu, Z.Hu, Q.Wu, X. Z. Wang, Y.Chen, H.Sang, J. M. Zhu, S. Z Deng,. N. S.Xu, Vapor-solid growth and characterization of aluminum nitride nanocones, J. Am. Chem. Soc, (2005), 127:1318-1322.
    [81] H.P. Iwataa, U. Lindefelta, S. Oberg, P.R. Briddon, Stacking faults in silicon carbide, Physica B, (2003), 340-342:165-170.
    [82] H. Iwata, U. Lindefelt, S. Oberg, P. R. Briddon, A new type of quantum wells: stacking faults in silicon carbide, Microelectron. J., (2003), 34:371-374.
    [83] H. Iwata, U. Lindefelt, S. Oberg, P. R. Briddon, Electronic localization around stacking faults in silicon carbide, Mater. Sci. Forum, (2002), 389-393: 529-532.
    [84] H. Iwata, U. Lindefelt, S. Oberg, P.R. Briddon, Localized electronic states around stacking faults in silicon carbide, Phys. Rev. B, (2002), 65: 033203.
    [85] M.S. Miao, S. Limpijumnong, W. Lambrecht, Stacking fault band structure in 4H-SiC and its impact on electronic devices, Appl. Phys. Lett., (2001), 79:4360-4362.
    [86] H.J.Chio, J.G. Lee, Stacking faults in silicon carbide whiskers, Ceram. Int., (2000), 26: 7-12.
    [87] Y. C. Zhou, X. Chang, J. Zhou, F. Xia, C. H. Shih, Branching phenomena in SiC whiskers, J. Mater. Sci. Lett., (1992), 11: 891-892.
    [88] L.I.Van Torne, Growth faults in P-silicon carbide whiskers, J. Appl. Phy., (1966), 37(4): 1849-1851.
    [89] C. Cheng, R. J. Needs, V. Heine, Inter-layer interactions and the origin of SiC polytypes, J. Phys. C: Solid State Phys., (1988), 21:1049-1063.
    [90] P. J. H. Denteneer, in Atomic Scale Calculations in Materials Science, edited by J. tersoff, D.Vanderbilt, and V.Vitek (Mater. Res. Soc. Symp. Proc. 141, Pittsburgh, PA. 1989), P.343.
    [91] H.Takayama, N.Sutoh, N. Murakawa, Quantitative analysis of stacking faults in the structure of SiC by x-ray powder profile refinement methods, J.Ceram. Soc. Jpn, (1988), 96: 1003-1011.
    
    [92] K. Koumoto, S. Takeda, C. H. Pai,T. Sato, H. Yanagida, High-resolution electron microscopy observations of stacking faults in β-SiC, J. Am. Ceram. Soc, (1989), 72 (10):1985-1987.
    
    [93] L. Zhang, W. Yang, H. Jin, Z. Zheng, Z. Xie, H. Miao, L. An, Ultraviolet photoluminescence from 3C-SiC nanorods, Appl. Phys. Lett., (2006), 89:143101.
    [94] Z. Ikonic, G. P. Srivastava, and J. C. Inkson, Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors, Phys. Rev. B, (1993), 48(23):17181-17193.
    [95] X. Wu, G. Siu, M. J. Stokes, D. Fan, Y. Gu, and X. Bao, Blue-emitting β-SiC fabricated by annealing C_(60) coupled on porous silicon, Appl. Phys. Lett., (2000), 77:1292-1294.
    [1]Y.N.Xia,P.D.Yang,Y.G.Sun,Y.Y.Wu,B.Mayers,B.Gates,Y.D.Yin,F.Kim,Y.Q.Yah,One-dimensional nanostructures:Synthesis,characterization,and applications,Adv.Mater.,(2003),15(5):353-389.
    [2]长崎诚三,平林真编著,刘安生译,二元合金状态图集,北京:冶金工业出版社,2004.
    [3]K.Ishida,T.Nishlzawa,M.E.Schlesinger,The Co-Si(Cobalt-Silicon)System,J.Phase Equilib.,(1991),12(5):578-586.
    [4]杨光义,金属硅化物熔体中不同形貌碳化硅晶体的生长研究,[浙江大学博士论文],2007.3.
    [5]G.W.Meng,L.D.Zhang,C.M.Mo,S.Y.Zhang,Y.Qin,S.P.Feng,H.J.Li,Preparation of β-SiC nanorods with and without amorphous SiO_2 wrapping layers,J.Mater.Res.,(1998),13(9):2533-2538.
    [6]G.W.Meng,Z.Cui,L.D.Zhang,F.Phillipp,Growth and characterization of nanostructured β-SiC via carbotherrnal reduction of SiO_2 xerogels containing carbon nanoparticles,J.Cryst.Growth,(2000),209:801-806.
    [7]X.K.Li,L.Liu,Y.X.Zhang,S.D.Shen,S.Ge,L.C.Ling,Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels,Carbon,(2001),39:159-165.
    [8]K.Li,J.Wei,H.Li,Z.Li,D.Hou,Y.Zhang,Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gel process,Mater.Sci.Eng.A,(2007),460-461:233-237.
    [9]V.Raman,G.Bhatia,A.K.Mishra,S.Bhardwaj,K.N.Sood,Synthesis of silicon carbide nanofibers from pitch blended with sol-gel derived silica,Mater.Lett.,(2006),60:3906-3911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700