碳热还原制备碳化硅纳米线及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代宽带隙半导体SiC材料以其大的禁带宽度,高的熔点和硬度、高的热导率、高的临界击穿电场、高的电子饱和迁移率、抗辐射能力强以及机械性能好等特性,是制作大功率、高频、低能耗、耐高温和抗辐照器件的理想材料而受到人们的广泛关注。最近研究表明,与块体SiC材料相比SiC纳米线具有优异的光、电和机械等性能,在金属基、陶瓷基和聚合物基增强复合材料,制备发光二极管、大功率晶体管等电子和光电子纳米器件,场发射阴极材料,光催化,储氢和自清洁薄膜等许多领域都有着广泛的应用前景。因此研究SiC纳米线的制备及性能具有重要的意义。
     本文采用碳热还原Si02在常压无金属催化剂的条件下制备SiC纳米线,结合X射线粉末衍射(XRD)、傅立叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、透射电子显微镜(TEM)等分析测试方法,分析了SiC纳米线的成分、形貌和微观结构。研究了影响碳热还原制备SiC纳米线的工艺参数,反应过程热力学并提出了SiC纳米线的生长机理。最后对制备的SiC纳米线的发光性能、场发射性能和光催化性能进行了研究。论文主要包括以下几个方面:
     1.在常压下,以竹炭为碳源,C和Si02的摩尔比为3,在反应电流536A(1400℃)下反应20分钟,制备了p-SiC纳米线,纳米线具有核-壳结构,内层为单晶p-SiC,外层为无定形Si02。纳米线分布紊乱,表面粗糙,直径在50~200 nm之间,长度可达几百微米,沿着<111>方向生长。
     2.研究了碳源、配碳量、反应电流和反应时间等实验参数对碳热还原制备SiC纳米线形貌的影响,并提出了生长机理。研究结果表明,不同实验参数下所制备产物的晶体结构都为p-SiC,但形貌差别很大。在不同的配碳量下分别制备了片状、竹节状、宝塔状和珠状的SiC纳米结构;反应电流(温度)对SiC纳米线的形貌具有决定性的影响,在较低的反应电流(温度)下,过饱和度太小不能形成稳定的晶核,SiC纳米线的产率低;电流(温度)太高时,过饱和度太大有利于生成SiC纳米颗粒而不利于SiC纳米线的生成;反应时间对SiC纳米线的产率和直径影响不大,随着反应时间的延长,纳米线的长度不断增加,表面逐渐光滑。由于在反应过程中没有引入金属催化剂,而且FE-SEM和TEM分析表明纳米线尖端没有金属催化剂小滴,我们制备的纳米线是以气-固生长机制生长。
     3.研究了SiC纳米线的室温光致发光性能、场发射性能和光催化性能。在275 mn波长的光激发下,SiC纳米线在300 nm处有强的紫外光发射峰;SiC纳米线的场发射性能可通过退火热处理来增强,在700℃退火3h之前和之后的开启场强分别为9.5V/μm和7.5 V/gm,其场发射机理为量子隧道机理;在紫外光照射6h后,SiC纳米线降解亚甲基蓝溶液效率高达72.2%。
Silicon carbide (SiC), as one of the third-generation semiconductor materials, has been attracting extensive interest due to its outstanding properties, such as wide band gap, high melt point, high hardness, high thermal conductivity, high breakdown electric field, high electron velocity, high resistance to radiation, good mechanical property and can be used as a promise material for preparing high power device, high frequency device, low energy consumption device, high temperature device and high radiation device. Compared with bulk SiC material, SiC nanowires have superior optical, electric and mechanical properties. SiC nanowires can be used as reinforced element for metal-, ceramic-and polymer-matrix composites and to prepare luminescence diode, high power transistor and other optical, electric nanodevices. It also has widely potential application in the fields of field emission cathode material, photocatalyst, hydrogen storage material and self-cleaning coating. So, it is very significant to study the preparation and property of SiC nanowires.
     In this paper, SiC nanowires were prepared via carbothermic reduction of silica under normal atmosphere pressure without catalyst. The composition, morphology and microstructure of the SiC nanowires were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy disperse spectrum (EDS), and transmission electron microscopy (TEM). The parameters, thermodynamics of reaction process and the growth mechanism of SiC nanowires were investigated. Finally, the photoluminescence property, field emission property and photocatalytic degradation property of as-synthesized SiC nanowires were also investigated. The main results obtained in this paper are given as below:
     1. Under normal atmosphere pressure,β-SiC nanowires were synthesized in C/SiO2 mole ratio of 3 and at reaction current 536 A (1400℃) for 20 min by using bamboo carbon as carbon source. Theβ-SiC nanowires have a core-shell structure with crystalline SiC core and amorphous SiO2 shell. The nanowires with diameter of 50-200 nm and length from tens to hundreds of micrometers have a rough surface morphology, and the SiC nanowires grow along<111> direction.
     2. The effect of the carbon source, mole ratio of C/SiO2, reaction current and reaction time on the morphology of the SiC nanowires synthesized by carbothermic reduction is discussed and the growth mechanism has also been elucidated. The results indicated that under different experiment parameters the synthesized products were allβ-SiC but with different morphology. The platelet-, bamboo-, pagoda-, and bead-like SiC nanostructure are obtained. The reaction current (temperature) has a crucial effect on the morphology of SiC nanowires. When the current (temperature) is low; the supersaturation degree is too low to form stable nucleation, and then lead to reduce the yield of SiC nanowires; when the current (temperature) is high, the SiC nanoparticles are easily formed due to high supersaturation degree, while the formation of SiC nanowires is restrained. The reaction time has little effect on the yield and diameter of SiC nanowires. With the increasing of time, the length and surface of SiC nanowires are gradually become long and smooth, respectively. During the experiment, no metallic catalyst was introduced and no metallic droplets were detected in the nanowires'tips confirmed by FE-SEM and TEM characterization.Thus, the growth of nanowires in our experiment was not following the conventional metal-catalyst VLS mechanism. Based on the experiment results, we proposed the vapor-solid mechanism for the growth of SiC nanowires.
     3. The photoluminescence, field emission and photocatalytic degradation property of SiC nanowires are investigated. Under 275 nm excitation at room temperature, the SiC nanowires exhibit a strong ultraviolet emission peak at 300 nm. The field emission property of SiC nanowires can be enhanced by annealing treatment and the turn-on field of SiC nanowires before and after annealing at 700℃for 3 h is 9.5 V/μm and 7.5 V/μm, respectively. The field emission is done by quantum-tunneling mechanism; In addition, the as-synthesized silicon carbide nanowires have a high photocatalytic degradation activity (72.20%) to Methylene blue after 6 h degradation.
引文
[1]Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. Journal of Applied Physics,1994,76: 1364-1378
    [2]莱利,斯米尔腾斯,碳化硅高温半导体.上海:上海科学技术出版社,1962
    [3]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术.北京:科学出版社,2000
    [4]尉永玲.硅及硅化合物一维纳米材料的制备与表征:[硕士学位论文].杭州:浙江大学,2006
    [5]Du X W, Zhao X, Jia S L, et al. Direct synthesis of SiC nanaowires by multiple reaction VS growth. Materials Science and Engineering B,2007,136:72-77
    [6]Bethune D S, Kiang C H, Devries M S, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature,1993,363:605-607
    [7]刘畅,从洪涛,成会明,氢等离子电弧法半连续制备单壁纳米碳管,新型炭材料,,2000.15:1-5
    [8]Li Y B, Xie S S, Zhou X P, et al. Large-scale synthesis of β-SiC nanorods in the arc-discharge. Journal of Crystal Growth,2001,223:125-128
    [9]吴旭峰,凌一鸣,电弧放电法制备碳化硅纳米棒,硅酸盐学报,2006,10:1283-1286
    [10]吴旭峰,凌一鸣,电弧放电法制备SiC纳米丝的试验研究,真空科学与技术学报,2005,1:30-32
    [11]Shi W S, Zheng Y F, Peng H Y et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires. Journal of the American Ceramic Society, 2000,83 (12):3228-3230
    [12]Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods. Nature,1995,375:769-772
    [13]Tang C C, Fan S S, Dang H Y, et al. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. Journal of Crystal Growth,2000,210:595-599
    [14]Pan Z W, Lai H L, Au F C K, et al. Oriented silicon carbide nanowires:synthesis and field emission properties. Advanced Materials,2000,12:1186-1190
    [15]Pham H C, Keller N, Ehret G, et al. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. Journal of Catalysis,2001, 200:400-410
    [16]Keller N, Pham H C, Ehret G, et al. Synthesis and characterization of medium surface area silicon carbide nanotubes. Carbon,2003,41:2131-2139
    [17]Li Z J, Zhang J L, Meng A L, et al. Large-area highly-oriented SiC nanowire arrays: Synthesis, Raman, and Photo luminescence properties. Journal of Physical Chemistry B, 2006,110:22382-22386
    [18]Xu D Y, He Z W, Guo Y P, et al. Fabrication of quasi-one dimension silicon carbide nanorods prepared by RF sputtering. Microelectronics Engineering,2006,83:89-91
    [19]Deng S Z, Wu Z S, Zhou J, et al. Synthesis of silicon carbide nanowires in a catalyst-assisted process. Chemical Physics Letters,2002,356:511-514
    [20]Wu Z S, Deng S Z, Xu N S, et al. Needle-shaped silicon carbide nanowires:synthesis and field electron emission properties. Applied Physics Letters,2002,80:3829-3831
    [21]Liu S H, Lu H W, Qian X F, et al. Synthesis of beltlike CdS nanocrystals via solvothermal route. Journal of Solid State Chemistry,2003,172:480-484
    [22]Hu J Q, Lu Q Y, Tang K B, et al. A new rapid reduction-carbonization route to nanocrystalline β-SiC. Chemistry of Materials,1999,11:2389-2371
    [23]Lu Q Y, Hu J Q, Tang K B, et al. Growth of SiC nanorods at low temperature. Applied Physics Letters,1999,75:507-509
    [24]Hu J Q, Lu Q Y, Tang K B, et al. Synthesis and characterization of SiC nanowires through a reduction-carburization route. Journal of Physical Chemistry B,2000,104: 5251-5254
    [25]Shen G Z, Chen D, Tang K B, et al. Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. Chemical Physics Letters,2003,375:177-184
    [26]Xi G C, Peng Y Y, Wan S M, et al. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts. Journal of Physical Chemistry B,2004,108: 20102-20104
    [27]Ying Y C, Gu Y L, Li Z F, et al. A simple route to nanocrystalline silicon carbide. Journal of Solid State Chemistry,2004,177:4163-4166
    [28]Xi G C, Liu Y K, Liu X Y, et al. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. Journal of Physical Chemistry B,2006,110:14172-14178
    [29]Zou G F, Dong C, Xiong K, et al. Low-temperature solvothermal route to 2H-SiC nanoflakes. Applied Physics Letters,2006,88:071913
    [30]Ju Z C, Ma X C, Fan N, et al. High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route. Materials Letters,2007,61:3913-3915
    [31]Ju Z C, Xing Z, Guo C L, et al. Sulfur-assisted approach for the low-temperature synthesis of β-SiC nanowires. European Journal of Inorganic Chemistry,2008, 3883-3888
    [32]Li P, Xu L Q, Qian Y T. Selective synthesis of 3C-SiC hollow nanospheres and nanowires. Crystal. Growth & Design,2008,8:2431-2436
    [33]Li T, Xu L Q, Wang L C, et al. Synthesis and characterization of 3C and 2H-SiC nanocrystals starting from SiO2, C2H5OH and metallic Mg. Journal of alloys and compounds,2009,484:341-346
    [34]Leu I C, Hon M H. Nucleation behavior of silicon carbide whiskers grown by chemical vapor deposition. Journal of Crystal Growth,2002,26:171-175
    [35]Ahn H S, Choi D J. Fabrication of silicon carbide whiskers and whisker-containing composite coatiings without using metallic catalyst. Surface and Coating Technology, 2002,154:276-281
    [36]Kang B-C, Lee S-B, Boo J-H. Growth of β-SiC nanowires on Si (100) by MOCVD using nickel as a catalyst. Thin Solid Films,2004,464-465:215-219
    [37]Motojima S, Hasegawa M. Chemical vapor growth of β-SiC whiskers from a gas mixture of Si2Cl6-CH4-H2-Ar. Journal of Crystal Growth,1988,87:311-317
    [38]Wei J, Li K Z, Li H J, et al. Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Materials Chemistry and Physics,2006,95: 140-144
    [39]Zhou X T, Wang N, Lai H L, et al. β-SiC nanorods synthesized by hot filament chemical vapor deposition. Applied Physics Letters,1999,74:3942-3944
    [40]Zhang H F, Wang C M, Wang L S. Helical crystalline SiC/SiO2 core-shell nanowires. Nano Letters,2002,2:941-944
    [41]Zhang D Q, Alkhateeb A, Han H M, et al. Silicon carbide nanosprings. Nano Letters, 2003,3:983-987
    [42]Ho G W, Wong A S W, Kang D J, et al. Three-dimensional crystalline SiC nanowire flowers. Nanotechnology,2004,25:996-999
    [43]Rao C N R, Keller N, Ehret G, et al. Inorganic nanowires. Progress in Solid State Chemistry,2003,31:5-147
    [44]Hu J Q, Bando Y, Zhang J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Applied Physics Letters, 2004,85 (14):2931-2934
    [45]Borowiak-Palen E, Ruemmeli M H, Gemming T, et al. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. Journal of Applied Physics,2005,97:05610
    [46]郝雅娟,靳国强,郭向云,碳热还原制备不同形貌的碳化硅纳米线,无机化学学报,2006,22:1833-1837
    [47]Hao Y J, Jin G Q, Han X D, et al. Synthesis and characterization of bamboo-like SiC nanofibers. Materials Letters,2006,60:1334-1337
    [48]Hao Y J, Wagner J B, Su D S, et al. Beaded'silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology,2006,17: 2870-2874
    [49]Wang D H, Xu D, Wang Q, et al. Periodically twinned SiC nanowires. Nanotechnology, 2008,19:215602
    [50]徐武军,徐耀,孙先勇等,溶胶-凝胶和碳热还原制备塔状SiC纳米棒,新型炭材料,2006,21:167-170
    [51]Dhage S, Lee H C, Hassan M S, et al. Formation of SiC whiskers by carbothermic reduction of silica with activated carbon. Materials Letters,2009,63:174-176
    [52]王富强,郝志彪,闰联生,碳化硅晶须的制备研究,材料导报,2008,22:74-76
    [53]晋传贵,裴立宅,俞海云,一维无机纳米材料.北京:冶金工业出版社,2007
    [54]Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires. Progress in Solid State Chemistry,2003,31:5-147
    [55]Wang N, Cai Y, Zhang R Q. Growth of nanowires. Materials Science and Engineering R,2008,60:1-51
    [56]Wanger R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4:89-90
    [57]Huang M H, Wu Y Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials,2001,13:113-116
    [58]李永军,刘春艳,一维无机纳米材料的研究进展,感光科学与光化学,2003,21:446-468
    [59]张亚利,郭玉国,孙典亭,纳米线的研究进展:制备与生长机理,材料科学与工程学报,2001,19:131-136
    [60]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001,291: 1947-1949
    [61]Frank F C. On tin whiskers. Philosophical Magazine,1953,44:854-860
    [62]Zhou J, Ding Y, Deng S Z, et al. Three-dimensional tungsten oxide nanowire networks. Advanced Materials,2005,17:2107-2110
    [63]Wang Z L, Kong X Y, Zuo J M. Induced growth of asymmetric nanocantilever arrays on polar surface. Physical Review Letters,2003,91:185502-185505
    [64]Xia Y N, Yang P D, Sun Y, et al. One-dimensional nanostructure:synthesis, characterization, and applications. Advanced Materials,2003,15:353-389
    [65]Zhou J, Deng S Z, Gong L, et al. Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition:Synthesis, growth mechanism, and device application. Journal of Physical Chemistry B,2006,110:10296-10302
    [66]Lee S T, Zhang Y F, Wang N, et al. Semiconductor nanowires from oxides. Journal of Materials Research,1999,14:4503-4507
    [67]Shi W S, Zhang Y F, Wang N, et al. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Applied Physics Letters,2001,78:3304-3306
    [68]F L Wang, L Y Zhang, Y F Zhang. SiC nanowires synthesized by rapidly heating a mixture of SiO and arc-discharge plasma pretreated carbon black. Nanoscale Research Letters,2009,4:153-156
    [69]Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors:An analogy to vapor-liquid-solid growth. Science,1995,270: 1791-1794
    [70]Buhro W E, Hickman K M, Trentler T J. Turing down the heat on semiconductor growth:solution-chemical synthesis and the solution-liquid-solid mechanism. Advanced Materials,1996,8:685-688
    [71]Xing Y J, Hang Q L, Yan H F, et al. Solid-liquid-solid (SLS) growth of coaxial nanocables:silicon carbide sheathed with silicon oxide. Chemical Physical Letters, 2001,345:29-32
    [72]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes. Science,1997,277 (5334):1971-1975
    [73]Zhang Y F, Han X D, Zheng K, et al. Direct observation of super-plasticity of Beta-SiC nanowires at low temperature. Advanced Functional Materials,2007,17:3435-3440
    [74]Han X D, Zhang Y F, Zheng K, et al. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano letters,2007,7:452-457
    [75]Zhan G D, Kuntz J D, Duan R G, et al. Spark-plasma sintering of silicon carbide whiskers (SiCw) reinforced nanocrystalline alumina. Journal of the American Ceramic Society,2004,87 (12):2297-2300
    [76]Deng J, Ai X. Microstructure and mechanical properties of hot-pressed TiB2-SiCw composites. Materials Research Bulletin,1998,33:575-582
    [77]Nhuapeng W, Thamjaree W, Kumfu S, et al. Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites. Current Applied Physics,2008,2: 295-299
    [78]Zhang X H, Xu L, Ham W B, et al. Microstructure and properties of silicon carbide whisker reinforce zirconium diboride ultra-high temperature ceramics. Solid State Science,2009,11:156-161
    [79]Canham L T. Silicon quantum wire array fabrication by electrochemical and dissolution of wafers. Applied Physics Letters,1990,57:1046-1048
    [80]吴艳军.碳化硅纳米晶须的制备、特性及应用基础研究:[博士学位论文].上海:上海交通大学,2004
    [81]Wu R B, Chen J J, Yang G Y, et al. Self-assembled one-dimensional hierarchical SiC nanostructures:Microstructure, growth mechanism, and optical properties. Journal of Crystal Growth,2008,310:3573-3578
    [82]Feng D H, Jia T Q, Li X X, et al. Catalytic synthesis and photoluminescence of needle-shaped 3C-SiC nanowires. Solid State Communications,2003,128:295-297
    [83]Zhang Y F, Gamo M N, Xiao C Y, et al. Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence. Journal of Applied Physics,2002,91: 6066-6070
    [84]Wei J, Li K Z, Li H J, et al. Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires. Journal of Alloy and Compounds,2008,462: 271-274
    [85]Liu X M, Yao K F. Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology,2005,16:2932-2935
    [86]Seong H K, Choi H J, Lee S K, et al. Optical and electrical transport properties in silicon carbide nanowires. Applied Physics Letters,2004,85 (7):1256-1258
    [87]Zhou W M, Fang F, Hou Z Y, et al. Field-effect transistor based on β-SiC nanowire. IEEE Electron Device Letters,2006,27:463-465
    [88]周伟民.一维碳化硅纳米材料的制备与性能的基础研究:[博士学位论文].上海:上海交通大学,2007
    [89]Wong K W, Zhou X T, Au F C K, et al. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Applied Physics Letters,1999,75: 2918-2920
    [90]Ryu Y, Tak Y, Yong K. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics. Nanotechnology,2005,16:S370-S374
    [91]Senthil K, Yong K. Enhanced field emission from density-controlled SiC nanowires. Materials Chemistry and Physics,2008,112:88-93
    [92]Yang Y J, Meng G W, Liu X Y, et al. Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer. Journal of Physical Chemistry C,2008,112:20126-20130
    [93]Zhou W M, Yan L J, Wang Y, et al. SiC nanowires, A photocatalytic nanomaterials. Applied Physics Letters,2006,89:013105-013107
    [94]Sandhu A. Photocatalysis:Environmentally friendly SiC nanowires. Nature nanotechnology,2006, DOI:10.1038/nnano.2006.21
    [95]Mpourmpakis G, Froudakis G E, Lithoxoos G P, et al. SiC nanotubes:a novel material for hydrogen storage. Nano Letters,2006,6:1581-1583
    [96]Baierle R J, Miwa R H. Hydrogen interaction with native defects in SiC nanotubes. Physical Review B,2007,76:205401.
    [97]Pol V G, Pol S V, Gedanken A, et al. Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods. Journal of Physical Chemistry B, 2006,110:11237-11240
    [98]Niu J J, Wang J N. A novel self-cleaning coating with silicon carbide nano wires. Journal of Physical Chemistry B,2009,113:2909-2912
    [99]王富耻,材料现代分析测试方法.北京:北京理工大学出版社,2006
    [100]李宝生.C-Si-O,C-Si-O-X等体系下纳米结构的制备及其结构与性能研究:[硕士学位论文].杭州:浙江大学,2008
    [101]陈建军.碳化硅纳米线的制备、性能及机理研究:[博士学位论文].杭州:浙江大学,2008
    [102]Pujar V V, Cawley J D. Effect of stacking faults on the X-ray diffraction profiles of β-SiC powders. Journal of the American Ceramic Society,1995,78:774-782
    [103]Raman V, Bahl O P, Dhawan U. Synthesis of silicon carbide through sol-gel process from different precursors. Journal of Materials Science,1995,30:2686-2693
    [104]Bouillon E, Langlais F, Pailler R, et al. Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material. Journal of Materials Science,1991,26:1333-1345
    [105]Luo X G, Ma W H, Zhou Y, et al. Synthesis and photoluminescence property of silicon carbide nanowires via carbothemic reduction of silica. Nanoscale Research Letters,2010,5:252-256
    [106]马海林.一维β-Ga203纳米材料的制备与发光特性研究:[硕士学位论文].兰州:兰州大学,2008
    [107]Stolle S, Gruner W, Pitschke W, et al. Comparative microscale investigations of the carbothermal synthesis of (Ti, Zr, Si) carbides with oxide intermediates of different volatilities. International Journal of Refractory Metals and Hard Materials,2000,18: 61-72
    [108]Weimer A W, Nilsen K J, Cochran G A, et al. Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE Journal,1993,39:493-503
    [109]Meng G W, Zhang L D, Mo C M, et al. Synthesis of "A β-SiC nanorod within a SiO2 nanorod" one dimensional composite nanostructures. Solid State Communications, 1998,106:215-219
    [110]Keller N, Pham-Huu C, Ledoux M J, et al. Preparation and characterization of SiC microtubes. Applied Catalysis A:General,1999,187:255-268
    [111]Benaissa M, Werckmann J, Hutchison J L, et al. High-resolution transmission electron microscopy study on SiC grown from SiO and C:crystal growth and structural characterization. Journal of Crystal Growth,1993,131:5-12
    [112]林晶,陈建军,杨光义等,热蒸发法碳化硅纳米晶须阵列的合成与表征,复合材料学报,2007,5:77-83
    [113]张克立,孙聚堂,袁良杰等,无机合成化学.武汉:武汉大学出版社,2004
    [114]潘顺龙.以水玻璃为硅源软化学合成超细SiC粉体:[博士学位论文].北京:中国科学院理化技术研究所,2005
    [115]Shen G Z, Bando Y S, Golberg D. Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Crystal Growth & Design,2007,7:35-38
    [116]Yin L W, Bando Y, Zhu Y C, et al. Growth and field emission of hierarchical single-crystalline wurtzite AIN nanoarchitectures Advanced Materials,2005,17: 110-114
    [117]赵茹.利用固体废弃物制备碳化硅晶须的研究:[硕士学位论文].青岛:青岛理工大学,2007
    [118]宋祖伟,李旭云,蒋海燕等,碳化硅晶须合成工艺的研究,无机盐工业,2006,1:29-31
    [119]Silva P C, Figueiredo J L. Production of SiC and Si3N4 whiskers in C+SiO2 solid mixtures. Materials Chemistry and Physics,2001,72:326-331
    [120]Li X K, Liu L, Zhang Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon,2001,39:159-165
    [121]李西平,司云森,物理化学.昆明:云南大学出版社,2006
    [122]梁英教,车荫昌,无机物热力学数据手册.沈阳:东北大学出版社,1993
    [123]Martin Hans-Peter, Ecke Ramona, Muller Eberhard. Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction. Journal of the European Ceramic Society,1998,18:1737-1742
    [124]王伟,金志浩,薛涛等,烧结条件对碳热还原生成SiC纳米材料的影响,稀有金属材料与工程,2008,Suppl.1:535-538
    [125]Seo Won-Seon, Koumoto Kunihito. Stacking faults in β-SiC formed during carbothermal reduction of SiO2. Journal of the American Ceramic Society,1996,79: 1777-1782
    [126]Seo Won-Seon, Koumoto Kunihito. Morphology and stacking faults of P-silicon carbide whisker synthesized by carbothermal reduction. Journal of the American Ceramic Society,2000,83:2584-2592
    [127]Wang L, Wada H, Allard L F. Synthesis and characterization of SiC whiskers. Journal of Materials Research,1992,7:148-163
    [128]Gao Y H, Bando Y, Kurashima K, et al. SiC nanorods prepared from SiO and activated carbon. Journal of Materials Science,2002,37:2023-2029
    [129]Deng S Z, Li Z B, Wang W L, et al. Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate. Applied Physics Letters, 2006,89:023118
    [130]Park B, Ryu Y, Yong K. Growth and characterization of silicon carbide nanowires. Surface Review Letter,2004,11:373-378
    [131]Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of (3-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chemical Physics Letters,2000,329:323-328
    [132]Bao X M, Liao L S, Li N S, et al. The formation and microstructures of Si-based blue-light emitting porous β-SiC. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1996,119:505-509
    [133]Li X T, Shao C L, Qiu S L, et al. Blue photoluminescence from SiC nanoparticles encapsulated in ZSM-5. Materials Letters,2001,48:242-246
    [134]Chen Z M, Ma J P, Yu M B, et al. Light induced luminescence centers in porous SiC prepared from nano-crystalline SiC grown on Si by hot filament chemical vapor deposition. Materials Science and Engineering B,2000,75:180-183
    [135]Reitano R, Foti G, Pirri C F, et al. Room temperature blue light emission from ECR-CVD deposited nano-crystalline SiC. Materials Science and Engineering C,2001, 15:299-302
    [136]Zhou X T, Lai H L, Peng H Y, et al. Thin β-SiC nanorods and their field emission properties. Chemical Physics Letters,2000,318:58-62
    [137]Ryu Y H, Park B T, Song Y H, et al. Carbon-coated SiC nanowires:direct synthesis from Si and field emission characteristics. Journal of Crystal Growth,2004, 271:99-104
    [138]Fowler R H, Nordheim L. Electron emission in intense electric fields. Proceedings of the Royal Society A:Mathematical, Physical & Engineering Sciences,1928,119: 173-181
    [139]Qian X M, Liu H B, Guo Y B, et al. Effect of aspect ratio on field emission properties of ZnO nanorod arrays. Nanoscale Research Letters,2008,3:303-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700