碳化硅材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC半导体材料是第三代宽带隙(WBP)半导体材料。由于具有宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等优异的性质,所以在高温、高频、大功率、光电子及抗辐射等方面具有巨大的应用前景。本论文在对碳化硅纳米材料的合成、应用等方面的发展现状进行充分调研的基础上,采用几种简单的方法(硅粉为硅源,金属单质为还原剂,卤代烃CHI3、CBr4、CHCl3及CH2Cl2和CCl4的混合物为碳源)制备了3C-SiC纳米线和微米级多面体,并对其物相、形貌、光学及热稳定性等进行了表征。主要内容概括如下:
     1.低温制备SiC纳米线和微米级多面体及其控制生长。
     以硅粉为硅源,CHI3为碳源,金属Na为还原剂在230℃条件下,于高压反应釜中成功制备出碳化硅纳米线;当反应物用量均加倍,在500℃条件下可以制得大量碳化硅多面体。粉末X-射线衍射(XRD)显示制得的碳化硅纳米线样品为面心立方结构(3C-SiC),计算所得晶格常数a=4.359A,与JCPDS卡片值(No.65-0360,a=4.358A)接近。透射电子显微镜(TEM)照片显示所得3C-SiC纳米线的直径主要分布在10-80 nm,长度有几微米,其生长方向为[111]。值得一提的是,所得的碳化硅纳米线中有约三分之一为弯曲纳米线。根据实验结果分析并结合相关的文献报道,该实验中SiC纳米线可能的形成机制为气-液-固(VLS)生长机理。XRD衍射花样证实多面体样品也是面心立方相的碳化硅(3C-SiC)。场发射扫描电镜显示多面体具有光滑的表面,直径为2-5μm。热重分析(TGA)显示立方碳化硅多面体样品在1100℃以下具有极好的热稳定性,即使在1200℃也只有很微量增重,这表明该样品有很强的抗氧化性;室温光致发光测试(PL)显示3C-SiC纳米线和微米级多面体样品分别在360和354nm处有强的发射峰。
     此外,以硅粉为硅源,CHI3为碳源,金属K为还原剂在140℃条件下,也成功制备出了立方相碳化硅纳米线(30%)和多面体(70%);然而,若把还原剂换成金属镁粉,即使反应温度升高到600℃也不能合成出碳化硅
     2.制备SiC支晶纳米线。
     300℃条件下以硅粉为硅源,CBr4为碳源,金属Na为还原剂,成功制备出了碳化硅支晶纳米线。X-射线粉末衍射(XRD)显示制得的样品为面心立方相的碳化硅,晶格常数a=4.355A,与JCPDS卡片值(No.65-0360,a=4.358 A)接近;透射电子显微镜(TEM)显示碳化硅纳米线存在支晶结构,其纳米线直径为20-50nm,长度有几微米,选区电子衍射(SAED)表明样品为单晶SiC;高分辨透射电镜(HRTEM)显示相邻的晶格条纹间距约为0.25 nm,与3C-SiC的(111)面间距相一致,其生长方向为[111]。光致发光测试(PL)显示样品在355 nm左右有一个强的发射峰。此外,当反应体系中的金属还原剂改为金属K时,也可以成功制备出面心立方相的碳化硅纳米线。
     3.溶剂热法制备碳化硅材料。
     通过溶剂热法以硅粉为硅源,CHCl3为碳源,金属Na为还原剂在高压反应釜中350℃条件下制得了碳化硅纳米线。粉末X-射线衍射(XRD)显示得到的样品为面心立方相的碳化硅(3C-SiC),晶格常数a=4.357A,与JCPDS卡片值(No.65-0360,a=4.358A)基本吻合;透射电子显微镜(TEM)照片显示所制得的碳化硅形貌主要是纳米线和六方块结构,纳米线的直径约为20-50 nm,长度为十几微米。高分辨透射电镜(HRTEM)显示相邻的晶格条纹间距约为0.25 nm,与3C-SiC的(111)面间距相一致。
     另外,以硅粉为硅源,CH2C12和CCl4的共同作为碳源,金属钠为还原剂在高压反应釜中300℃条件下成功制备出面心立方相碳化硅。场发射扫描电镜照片显示碳化硅主要有不规则的六角片堆积而成花状结构。室温光致发光测试(PL)显示样品在439 nm左右有一个强的发射峰。
Silicon carbide is an important wide band gap semiconducting material, and has attracted extensively attention due to its excellent properties, including high breakdown electric field strength, high saturated drift velocity of electrons, wide gap, high thermal conductivity, high mechanical strength, high chemical stability, and low induced activity; therefore, SiC-based devices could be used at higher temperature and in harsh conditions as functional ceramic or as a high temperature semiconductor. On the basis of comprehensive and thorough investigation of literature concerning the synthesis and application developments of silicon carbide (SiC) nanomaterials, in this dissertation, cubic silicon carbide nanowires and micro-scaled polyhedra were synthesized by several simple methods (silicon powder as silicon source, metalic as the redrctant, halogenated hydrocarbons CHI3, CBr4, CH2Cl2, and CHCl3 as the carbon source), and the phase, morphology, optics and thermal ability of the as-obtained sample were characterized. The main contents can be summarized as follows:
     1. Preparation of SiC nanowires and micro-scaled polyhedra at low temperature and the control growth of them
     Silicon Carbide (3C-SiC) nanowires was successfully synthesized through a one-step route using CHI3, Si powder, and metallic Na as reactants in a stainless steel autoclave at 230℃. When the amounts of the reactants were doubled and in the mean time the target temperature was set at 500℃, large quantities of SiC polyhedra were produced. X-ray powder diffraction (XRD) pattern of the nanowires sample can be indexed as the cubic SiC with the lattice constant a= 4.359 (?) which is close to that of the reported value (JCPDS card no.65-0360, a= 4.358 (?)). Transmission electron microscopy images show that the product mainly composed of nanowires. These nanowires has diameters ranging from 10-80 nm and lengths up to several micrometers, which have a preferential grow along the [111] direction. It is worth mentioning that one thirds of these nanowires are bent. According to the experimental analysis results and the study of the related reports, vapor-liquid-solid (VLS) mechanism is the possible growth mechanism of SiC nanowires. X-ray diffraction patterns of the polyhedra sample also can be indexed as the cubic SiC. FESEM indicates that the polyhedra sample has smooth surface, its diameter in the range of 2-5μm. TGA curve reveals that the polyhedra sample has excellent thermal stability below 1100℃; The polyhedra sample has very small weight gain even at 1200℃, this demonstrate that it possess outstanding oxidation resistance. The room-temperature photoluminescence spectra of SiC nanowire and SiC polyhedra display strong ultraviolet emission peaks centered at 360 nm and 354 nm, respectively.
     In addition, Silicon Carbide (3C-SiC) nanowires (30%) and polyhedra (60%) were also successfully synthesized through a one-step route using CHI3, Si powder, and metallic K as reactants in a stainless steel autoclave at 140℃, whereas SiC product can not be produced when the metallic K as the reducing agent at 600℃.
     2. Synthesis of branched SiC nanowires
     Cubic branched SiC nanowires were successfully prepared by using silicon powder, CBr4 and metallic Na as reductant at 300℃. X-ray powder diffraction (XRD) pattern of the branched SiC nanowires sample can be indexed as the cubic SiC with the lattice constant a= 4.355 (?) which is close to that of the reported value (JCPDS card no. 65-0360, a= 4.358 (?)). Transmission electron microscopy images show that the product mainly composed of branched nanowires. These nanowires have diameters ranging from 20-50 nm and lengths up to several micrometers, selected area electron diffraction (SAED) pattern showed that the samples were crystal SiC; The HRTEM image of a part of the sample show that the inter-planar spacing of the two adjacent frings is about 0.25 nm, which is consist with the (111) lattice planes of 3C-SiC, and it indicates that the nanowire grow along the [111] direction. The room-temperature photoluminescence (PL) spectrum of the sample show a strong emission peak centered at 400 nm. Moreover, cubic SiC nanowires were also could be synthesized when metallic Na was replaced by K in this experimental system, while keeping other parameters unchanged.
     3. Preparation of SiC materials by solvothermal routes
     3C-SiC nanowires were prepared starting from Si powder, CHCl3, and Na as reductant through a solvothermal route at 350℃. XRD patterns of the sample can be indexed to the cubic cell of SiC with the lattice constant a= 4.355 (?), which is in agreement with the reported value (JCPDS card no.65-0360, a= 4.358 (?)). Transmission electron microscopy images show that the product mainly consist of nanowires with diameters of 20-50 nm and lengths up to tens of micrometers; The HRTEM image of a part of SiC nanowires reveals that the inter-planar spacing of the two adjacent frings is about 0.25 nm, which is consistent with the (111) lattice planes of the crystalline SiC.
     In addition, cubic SiC were successfully synthesized by using Si, CH2Cl2, CCl4, and Na as reactants at 300℃. Field emission scanning electron microscopy images show that the SiC flower-like structures deposited by irregular hexagon. The room-temperature photoluminescence (PL) spectrum of the sample show a strong emission peak centered at 439 nm.
引文
[1]朱静等编著纳米材料和器件,清华大学出版社,北京,2003.
    [2]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [3]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [4]王翠,纳米科学技术与纳米材料概述,延边大学学报(自然科学版)[J],2001,27,66.
    [5]F. Fievet, F.F. Vincent J.P. Lagier, et al, Controlled nucleation and growth of micormetre-size copper particles prepared by polyol process [J], J. Mater. Chem.,1993,3,627-633.
    [6]陶向明,劳燕锋,叶全林等,楔形A1薄膜的物理特性[J],物理学报,2001,50(10),1991-1995.
    [7]L. Dloczik, R. Engelhardt, K. Emst, etal, Hexagonal nanotube ZnS by chemical conversion of monocrystalline ZnO columns [J], Appl. Phys. Let.,2001,78,3687-3689.
    [8]J.Q. Hu, Q.Y. Lu, K.B. Tang, etal, Low temperature synthesis of nanocrystalline titanium nitride via a benzenel-thermal route [J], J.Am. Ceram.Soc.,2000,83, 430-432.
    [9]B.H. Hong, S.C. Bae, C.W. Lee, et al, Ulrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J], Science.,2001,294,348-351.
    [10]C. Mirkin, T. Taton, Semiconductors meet biology [J], Nature.,2000,405, 626-627.
    [11]T.S. Ahmadi, Z.L. Wang, T.C. Green, et al, Shape controlled synthesis of colloidal platinum [J], Nanoparticles science,1996,272,1924-1926,
    [12]X. Qian, J. Yin, S. Feng, et al, Preparation and characterization of polyvinyl-py rrolidone films containing sulfide nanoparticles[J], J. Mater.Chem.,2001,11, 2504-2506.
    [13]V. Vollath, K.E. Sickafus, Synthesis of ceramics oxides powders by micro wave Plasma pyrolysis [J], J. Mater.Sci.,1993,28,5943-5948
    [14]K. J. Klabunde, J. Stark, O. Koper, et al.. Nanocrystals as stoichiometric reagents with unique surface chemistry[J],J. Phys. Chem.,1996,100,12142-12145.
    [15]A. Henglein, Small research:physicochemical properties of extremely colloidal metal and semiconduct or particles [J], Chem. Rev.,1989,89(8),1861-1873.
    [16]T. Trindade, P. O. Brien, N. L. Pickett. Nanocrystalline semiconductors: synthesis, properties and perspectives [J]. Chem. Mater.,2001,13(11), 3843-3858.
    [17]Y. Ping, G. C. Hdjinanayis, C. M. Sorensen. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. Appl. Phys.,1990,67:4502-4504.
    [18]李泉,曾广赋,席时权,纳米粒子[J],化学通报,1995,6,29-34
    [19]J. A. Legget, S. Chakravarty. et al, Dynamics of the dissipative two-state system [J]. Rev. Mod. Phys.,1987,59(3),1-86.
    [20]U. A. Joshi, et al, Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios [J]. J. Sol. Stat. Chem.,2005,178,755-760.
    [21]T. Takagahara. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J]. Phys. Rev. B., 1993,47 (8),4569-4584.
    [22]M. Giersig. A. Eychmuller, H. Weller, Advances in photochemistry [M], Vol.20, New York, John Wiley&Sons.Inc.,1995.
    [23]H. F. Schaefer, R.Wurschum. Positron lifetime spectroscopy in nanocrystalline iron. Phys. Lett.1987, A119,370.
    [24]张修庆,朱心昆.反应球磨技术制备纳米材料[J],材料科学与工程,2001,19(2),95-97.
    [25]I. P. Parkin. Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides:ionic or elemental pathways [J]. Chem. Soc. Rev.,1996,25: 199-207.
    [26]J. L. Shi, T. S. Yen, Characterization of agglomerate strength of coprecipitated superfine zirconia powders [J].J. Eur. Ceram. Soc.,1994,13,265-273.
    [27]肖良质,王德军,洪广言.链状超微碳酸钙的合成机理与热稳定性研究[J]. 精细化工,1989,5,5-8.
    [28]范福康,周全,莫绍芬.化学共沉淀法制备草酸氧钛钡的研究[J].硅酸盐通报,1993,6,17-21.
    [29]K. N. Clson, R. L. Cook. Constitution of copper-red glazes [J]. J. Am. Ceram. Soc.,1959,42,499-503.
    [30]J. L. Shi, Z. X. Lin, W. J. Qian, T. S. Yen, Characterization of agglomerate strength of coprecipitated superfine zirconia powders[J]. J. Eur. Ceram. Soc., 1994,13,265-273.
    [31]T. W. Shaw. Liquid Redistribution during Liquid-Phase Sintering[J]. J. Am. Ceram. Soc.,1986,69 (1),27-34.
    [32]K. S. Mazdiyasni, R. T. Dolloff, J. S. Smithii. Preparation of High-Purity Submicron Barium Titanate Powders [J]. J. Am. Ceram. Soc.,1969,52 (10), 523-526.
    [33]X. Li, H. Zhang, S. Li, B. Xu, M. Zhao. Synthetic study of nanocrystalline complex oxides LaFel-yCoyO3 [J]. J. Mater. Chem.,1993,3,547-550.
    [34]肖汉宁,杜海清.溶胶-凝胶法合成β-SiC超细粉末[J].无机化学学报,1993,0,96-99.
    [35]苏品书,超微粒子材料技术[M].武汉出版社,1989:56-80.
    [36]M. Boutonnet, J. Kizling, P. Stenius. The preparation of monodisperse colloidal metal particles from microemulsions [J]. Colloids Surf.,1982,5,209-225.
    [37]J. Nagy. Multinuclear NMR characterization of microemulsions:Preparation of monodisperse colloidal metal boride particles[J]. Colloids Surf.,1989,35, 201-220.
    [38]Kazue Kurihara, Jerzy Kizling, Per Stenius, Janos H. Fendler. Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions [J]. J. Am. Chem. Soc.,1983,105,2574-2579.
    [39]K. Kandori, K. Kon-no, A. Kitahara. Formation of ionic water/oil microemulsions and their application in the preparation of CaCO3 particles [J]. J. Colloid Interface Sci.,1988,122 (1),78-82.
    [40]吴晓春,汤国庆,张桂兰,邹炳锁,余保龙,陈文驹.不同制备条件对纳米Bi203发光的影响[J].化学学报,1996,54,146-151.
    [41]L. A. Switzer, M.J. Shane, R. Phillips. Electrodeposited ceramic superlattices[J]. Science,1990,247,444-446.
    [42]段亚东,张志戚,徐项凌.纳米材料的辐射合成法[J].化学通报,1998,12:21-23.
    [43]T. S. Ahmadi, Z. L.Wang, T. C.Green, et al.. Shape controlled synthesis of colloidal platinum [J]. Nanoparticles science,1996,272,1924-1926.
    [44]J. Shen, Z.Y. Li, Q. J. Yan, Y. Chen. Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles [J]. J. Phys. Chem.,1993,97,8504-8511.
    [45]R W. Siegles, S. Ramasamy. Synthesis characterization and properties of nanophase TiO2 [J]. J. Mater. Res.,1988,3(6),1367-1372.
    [46]苏品书.超微粒子材料技术[M].武汉:武汉出版社,1989:165-187.
    [47]H. Hahn, R. S. Averback. The production of nanocrytalline powders by magnetron sputtering [J]. J. Appl. Phys.,1990,67(2),1113-1115.
    [48]黄永攀,王锐,李道火.激光诱导化学气相沉积法制备纳米a-Si3N4粉体及粉体光谱特性的研究[J].应用激光,2004,24(6),405-408.
    [49]S. Feng, R. Xu. New materials in hydrothermal synthesis [J]. Acc. Chem. Res., 2001,34,239-247.
    [50]张永才,水热与溶剂热合成亚稳相功能材料研究[D].北京工业大学:北京工业大学材料科学与工程学院.2003.
    [51]吕振林,高积强,金志浩.碳化硅陶瓷材料及制备[J].机械工程材料,199923(3):1-4.
    [52]郑水林.非金属矿物加工技术与制备[M].北京:中国建材工业出版社,1998:6-14.
    [53]莱利·斯米尔滕斯,“碳化硅高温半导体”,上海,上海科学技术出版社,1962,7-8.
    [54]Nakashima, "Silicon carbide and it's properties", International Conference on Silicon carbide and related materials, Kyoto, Japan,1995,78-79.
    [55]陈治明,碳化硅电力电子器件及其应用的研发新进展,电力电子[J],2004,2,21
    [56]W.J. Choyke, G. Pensl, Physical propenies of SiC, MRS Bulletin,1997,22(3): 25-29.
    [57]J.A. Lely, Darstellung von Einkristallen von Silicium carbid und Beherrschung von Art and Menge der eingebautem Verunreingungen, Ber. Deut. Keram. Ges., 1995,32,229-236
    [58]Y. M. TairOV,V-F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth,1978,43(2),209-212.
    [59]K. YaSui,K. Asada,T. Maeda,T. Akahane, Growth of high quality silicon carbide films on Si by triode plasma CVD using monomethylsilane, Appl. Surf. Sci,2001, 175-176,495-498.
    [60]D. H. Hofmann, M. H. Mull er,Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals,Mater.Sci. Eng., B, (1999),61-62, 29-39.
    [61]D. Zhou,S. Serapllin,Production of silicon carbide wlliskers from carbon nanoclusters, Chem. Phys. Lett.,1994,222,223-238.
    [62]H.J.DLi, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature,1995,375,769-772.
    [63]W.Q. Han, S.S. Fan, Q.Q. Li, W.J. Lung, B.L. Gu, D.P. Yu, Continuous synthesis and characterization of silicon carbide nanorods, Chem. Phys. Lett., 1997,65,374-378.
    [64]A.I. Kharlamov, N.V. Kirillova, S.N. Kaverina, Hollow silicon carbide nanostructures, Theor. Exp. Chem.,2002,38,237-241.
    [65]X.H. Sun, C.P. Li, W.K. Along, N.B. Along, C.S. Lee, S. T. Lee,B. K Teo, Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes, [J]. Am. Chem. Soc.,2002,124,14464-14471.
    [66]H.H. Ye, N. Titchenal, Y. Gogotsi, F. Ko, SiC nanowires synthesized from electrospun nanofiber templates, Adv. Mater.,2005,17,1531-1535.
    [67]Z.J. Li, J.L. Zhang, A.L. Meng, J.Z. Guo, Large-area highly-oriented SiC nanowire arrays:synthesis, raman, and photoluminescence properties [J]. J. Phys. Chem. B.,2006,110(45),22382-22386.
    [68]N. Klinger, et al., Reactions between silica and graphite [J]. J. Am. Ceram. Soc., 1966,49:369.
    [69]张洪涛,徐重阳,电子元件与材料,2000,19(3),9.
    [70]T. Seeger, P. Redlich-Redlich, M. Ruhle, Synthesis of nanometer-sized SiC whiskers in the arc-discharge [J]. Adv Mater.,2000,12(4),279-282.
    [71]Y. B. Li, S. S. Xie, X. P. Zou, et al., Large-scale synthesis of β-SiC nanorods in the arc-discharge [J]. J. Cryst. Growth,2001,223,125.
    [72]Y. J. Zhang, N. L. Wang, R. R. He, et al., Synthesis of SiC nanorods using floating catalyst [J]. Solid State Commun.,2001,118,595-598.
    [73]J.Q. Hu, Q.Y. Lu, K.B. Tang, B. Deng, R.R. Jiang, Y.T. Qian, W.C. Yu, G.E. Zhou, X.M. Liu, J.X. Wu, Synthesis and characterization of SiC nanowires through a reduction-carburization route [J]. J. Phys. Chem.B.2000,104,5251-5254.
    [74]Z.C. Ju, Z. Xing, C.L. Guo, L.S. Yang, L.Q. Xu, Y.T. Qian, Sulfur-Assisted approach for the low-temperature synthesis of β-SiC [J]. Eur. J. Inorg. Chem., 2008 24,3883.
    [75]J.Q. Hu, Q.Y. Lu, K.B. Tang, Y.T. Qian, GE. Zhou, X.M. Liu, J.X. Wu, A new rapid reduction-carbonization route to nanocrystalline β-SiC [J]. Chem. Mater., 1999,11,2369-2371.
    [76]Q.Y. Lu, J.Q. Hu, K.B. Tang, and Y.T. Qian, Growth of SiC nanorods at low temperature [J]. Appl. Phys. Lett.,1999,75,507-509.
    [77]G.F. Zou, C. Dong, K. Xiong, H. Li, C.L. Jiang, and Y.T. Qian, Low-temperature solvothermal route to 2H-SiC nanoflakes [J]. Appl. Phys. Lett.,200688,071913
    [78]G.Z. Shen, D. Chen, K.B. Tang, Silicon carbide hollow nanospheres, nanowires and coaxial nanowires [J]. Chem. Phys. Lett.,2003,375,177-184.
    [79]G.C. Xi, Y.Y. Peng, S.M. Wan, T.W. Li, W.C. Yu, Y.T. Qian, Lithium-Assisted synthesis and characterization of crystalline 3C-SiC nanobelts [J]. J. Phys. Chem. B.,2004,108,20102-20104
    [80]Z.C. Ju, X.C. Ma, N. Fan, P. Li, L.Q. Xu, Y.T. Qian, High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route [J]. Materials Letters.,2007,61,3913-3915
    [81]P. Li, L.Q. Xu, Y.T. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires [J]. Cryst. Growth Des.,2008,8,2431.
    [82]T. Li, L.Q. Xu, L.C. Wang, L.S. Yang, Y.T. Qian, Synthesis and Characterization of 3C and 2H-SiC nanocrystals starting from SiO2, C2H5OH and metallic Mg [J]. J. Alloys Compd.,2009,484,341.
    [1]V.D. Krstic, Production of Fine, High-purity beta silicon carbide powders [J]. J. Am. Ceram. Soc.,1992,75,170-174.
    [2]Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai, Side-by-side silicon carbide-silica biaxial nanowires:synthesis, structure, and mechanical properties [J]. Appl. Phys. Lett.,2000,77,3349.
    [3]G.C. Xi, R.J. Yu, R. Zhang, M. Zhang, D.K. Ma, Y.T. Qian, Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes:synthesis and optical properties [J]. J. Phys. Chem. B.,2005,109, 13200.
    [4]江东亮,潘振更等,反应烧结碳化硅陶瓷材料的研究,无机材料学报,1988,3(2),130-137
    [5]王零,特种陶瓷,长沙,中南工业大学出版社,1980:160—163
    [6]郝寅雷,赵文兴,翁志成.新型反射镜材料-碳化硅,宇航材料工艺,2001,4,11-14.
    [7]S. K Lee,YC. Kim,and C. H. Kim, Microstrucmral Development and Mechanical Properties of Pressureless-Sintered SiC with Plate-like Grains Using A120:Y20; Additives[J]. J. Mater. Sci.,1994,29(20),5321-5326.
    [8]K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida, High-resolution electron microscopy observations of stacking faults in β-SiC [J]. J. Am. Ceram. Soc., 1989,72,1985-1987.
    [9]L.S. Liao, X.M. Bao, Z.F. Yang, N.B. Min, Intense blue emission from porous β-SiC formed on C+-implanted silicon [J]. Appl. Phys. Lett.,1995,66,2382.
    [10]D.Olego, M. Cardona, Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC [J]. Phys. Rev. B.,1982,25,3889.
    [11]Z.C. Feng, A.J. Mascarenhas, W.J. Choyke, J.A. Powell, Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si [J]. J. Appl. Phys.,1988,64,3176.
    [12]Z.X. Yang, Y.D. Xia, M. Robert, High Surface Area Silicon carbide whisker and nanotubes nanocast using mesoporous silica [J]. Chem. Mater.,2004,16, 3877-3884.
    [13]R. Moene, M. Makkee, J.A. Moulijn, High surface area silicon carbide as catalyst support characterization and stability [J]. Appl. Catal. A.,1998,167, 321-330.
    [14]H.W. Shim, K.C. Kim, Y.H. Seo, Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition [J]. Appl. Phys. Lett.,1997,70,1757.
    [15]P. Li, L.Q. Xu, Y.T. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires [J]. Cryst. Growth Des.,2008,8,2431.
    [16]J.J. Chen, R.B. Wu, G.Y. Yang, Y. Pan, J. Lin. L.L. Wu, R. Zhai, Synthesis and photoluminescence of needle-shaped 3C-SiC nanowires on the substrate of PAN carbon fiber [J]. J. Alloys Compd.,2008,456,320.
    [17]R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett.,964,4,89.
    [18]Y. Cui, L.J. Lauhon, M.S. Gudiksen, Diameter-controlled synthesis of single-crystal silicon nanowires [J]. Appl. Phys. Lett.,2001,78,2214.
    [19]Z.C. Ju, Z. Xing, C.L. Guo, L.S. Yang, L.Q. Xu, Y.T. Qian, Sulfur-Assisted approach for the low-temperature synthesis of β-SiC [J]. Eur. J. Inorg. Chem., 2008,24,3883.
    [20]D.L. Ou, A.B. Seddon. Near-and mid-infrared spectroscopy of sol-gel derived ormosils:vinyl and phenyl silicates [J]. J. Non-Cryst. Solids.,1997,210,187.
    [21]X.H. Wang, L. Wang, L.Q. Wong, Q. Wang, H. Wang, G.A. Tai, Preparation and characterization of organic-inorganic hybrid nanocompsites and coatings [J]. Funct Mater.,2004,35,2995.
    [22]N. Keller, C. Pham-Huu, S. Roy, M.J. Ledoux, Influence of the preparation conditions on the synthesis of high surface area SiC for use as a heterogeneous catalyst support [J]. J. Mater. Sci.,1999,34,3189.
    [23]W.J. Li, E.W. Shi, Z.Z. Chen, Z.W. Yin, Coordination polyhedron growth
    mechanism model and growth habit of crystals [J]. Sci. China, Ser. B.,2001, 44,123.
    [24]Z.G. Ju, Y.M. Lu, J.Y. Zhang, X.J. Wu, K.W. Liu, C.X. Shan, B.S. Li, D.X. Zhao, Z.Z. Zhang, B.H. Li, B. Yao, and D.Z. Shen, Structural and optical properties of Cd1-xFexSe microstructures grown by metalorganic Chemical Vapor Deposition [J]. Cryst. Growth Des.,2008,8,2733-2735.
    [25]Y.H. Tong, Y.C. Liu, C.L. Shao, R.X. Wu, Structural and optical properties of ZnO nanotower bundles [J]. Appl. Phys. Lett.,2006,88,123111.
    [26]J. Gravesena, M. Willatzenb, Quantum eigenstates of curved nanowire structures, Physica B.371 (2006) 112.
    [27]X.C. Zhang, S.X. Qu, Electron transport in curved nanorod, J. Shannxi Norm. Univ (Nat. Sci. Ed).36 (2008) 33.
    [1]H.P. Martin, R. Ecke, E. Muller, Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction [J]. J. Eur. Ceram. Soc.,1998,18, 1737-1742.
    [2]J. Narayan, R. Raghunathan, R. Chowdhury, K. Jagannadham, Mechanism of combustion synthesis of silicon carbide [J].J. Appl. Phys.,1994,75, 7252-7257.
    [3]I.S. Seog, C.H. Kim, Preparation of monodispersed spherical silicon carbide by the sol-gel method [J]. J. Mater. Sci.,1993,28,3277-3282.
    [4]C. Vix-Guterl, P. Ehrburger, Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation [J]. Carbon.,1997,35, 1587-1592.
    [5]G.W. Meng, Z. Cui, L.D. Zhang, F. Phillipp, Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles [J]. J. Cryst. Growth.,2000,209,801-806.
    [6]J.Q. Hu, Q.Y. Lu, K.B. Tang, B. Deng, R.R. Jiang, Y.T. Qian, W.C. Yu, G.E. Zhou, X.M. Liu, J.X. Wu, Synthesis and characterization of SiC nanowires through a reduction-carburization route [J]. J. Phys. Chem.B.2000,104,5251-5254.
    [7]Z.C. Ju, Z. Xing, C.L. Guo, L.S. Yang, L.Q. Xu, Y.T. Qian, Sulfur-Assisted approach for the low-temperature synthesis of β-SiC [J]. Eur. J. Inorg. Chem., 2008 24,3883.
    [8]J.Q. Hu, Q.Y. Lu, K.B. Tang, Y.T. Qian, G.E. Zhou, X.M. Liu, J.X. Wu, A new rapid reduction-carbonization route to nanocrystalline β-SiC [J]. Chem. Mater., 1999,11,2369-2371.
    [9]Q.Y. Lu, J.Q. Hu, K.B. Tang, and Y.T. Qian, Growth of SiC nanorods at low temperature [J]. Appl. Phys. Lett.,1999,75,507-509.
    [10]G.F. Zou, C. Dong, K. Xiong, H. Li, C.L. Jiang, and Y.T. Qian, Low-temperature solvothermal route to 2H-SiC nanoflakes [J]. Appl. Phys. Lett.,2006,88,071913
    [11]G.Z. Shen, D. Chen, K.B. Tang, Silicon carbide hollow nanospheres, nanowires and coaxial nanowires [J]. Chem. Phys. Lett.,2003,375,177-184.
    [12]G.C. Xi, Y.Y. Peng, S.M. Wan, T.W. Li, W.C. Yu, Y.T. Qian, Lithium-Assisted synthesis and characterization of crystalline 3C-SiC nanobelts [J]. J. Phys. Chem. B.,2004,108,20102-20104
    [13]Z.C. Ju, X.C. Ma, N. Fan, P. Li, L.Q. Xu, Y.T. Qian, High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route [J]. Materials Letters.,2007,61,3913-3915
    [14]P. Li, L.Q. Xu, Y.T. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires [J]. Cryst. Growth Des.,2008,8,2431.
    [15]T. Li, L.Q. Xu, L.C. Wang, L.S. Yang, Y.T. Qian, Synthesis and Characterization of 3C and 2H-SiC nanocrystals starting from SiO2, C2H5OH and metallic Mg [J]. J. Alloys Compd.,2009,484,341.
    [16]K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida, High-resolution electron microscopy observations of stacking faults in β-SiC [J]. J. Am. Ceram. Soc., 1989,72,1985-1987.
    [17]L.S. Liao, X.M. Bao, Z.F. Yang, N.B. Min, Intense blue emission from porous β-SiC formed on C+-implanted silicon [J]. Appl. Phys. Lett.,1995,66,2382.
    [18]H.W. Shim, K.C. Kim, Y.H. Seo, Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition [J]. Appl. Phys. Lett.,1997,70,1757.
    [19]P. Li, L.Q. Xu, Y.T. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires [J]. Cryst. Growth Des.,2008,8,2431.
    [20]J.J. Chen, R.B. Wu, G.Y. Yang, Y. Pan, J. Lin. L.L. Wu, R. Zhai, Synthesis and photoluminescence of needle-shaped 3C-SiC nanowires on the substrate of PAN carbon fiber [J]. J. Alloys Compd.,2008,456,320.
    [1]K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida, High-resolution electron microscopy observations of stacking faults in β-SiC [J]. J. Am. Ceram. Soc., 1989,72,1985-1987.
    [2]L.S. Liao, X.M. Bao, Z.F. Yang, N.B. Min, Intense blue emission from porous β-SiC formed on C+-implanted silicon [J]. Appl. Phys. Lett.,1995,66,2382.
    [3]H.W. Shim, K.C. Kim, Y.H. Seo, Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition [J]. Appl. Phys. Lett.,1997,70,1757.
    [4]P. Li, L.Q. Xu, Y.T. Qian, Selective synthesis of 3C-SiC hollow nanospheres and nanowires [J]. Cryst. Growth Des.,2008,8,2431
    [1]A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefeltal, Appl. Phys. Lett.71 (1997) 90.
    [2]V.D. Krstic, J. Am. Ceram. Soc.75 (1992) 170.
    [3]Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai, Appl. Phys. Lett.77 (2000) 3349.
    [4]G.C. Xi, R.J. Yu, R. Zhang, M. Zhang, D.K. Ma, Y.T. Qian, J. Phys. Chem. B.109 (2005) 13200.
    [5]T. Ito, K. Sano, T. Akiyama and K. Nakamura, Thin Solid Film.508 (2006) 243.
    [6]M.V. William, D. Michael, J. Cryst. Growth.260 (2004) 201.
    [7]T. Furusho, M. Sasaki, S. Ohshima, S. Nishino, J. Cryst. Growth.249 (2003) 216.
    [8]W. Yang, H. Arki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda, AdV. Mater.17 (2005) 1519.
    [9]P. Li, L.Q. Xu, Y.T. Qian, Cryst. Growth Des.8 (2008) 2431.
    [10]H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Nature 375 (1995) 769.
    [11]J.Q. Hu, Q.Y. Lu, K.B. Tang, Y.T. Qian, G.E. Zhou, X.M. Liu, J.X. Wu, Chem. Mater.11 (1999)2369-2371.
    [12]Y.B. Li, P.S. Dorozhkin, Y. Bando, D. Golberg, AdV. Mater.17 (2005) 545.
    [13]C.C. Tang, Y. Bando, Appl. Phys. Lett.83 (2003) 659.
    [14]J.Q. Hu, Q.Y. Lu, K.B. Tang, B. Deng, R.R. Jiang, Y.T. Qian, W.C. Yu, G.E. Zhou, X.M. Liu, J.X. Wu, J. Phys. Chem. B.104 (2000) 5251.
    [15]E. BorowiakPalen, M. H. Ruemmeli, T. Gemming, M. Knupfer, K. Biedermann, A. Leonhardt, T. Pichler, R. J. Kalenczuk, J. Appl. Phys.97 (2005) 056102.
    [16]G.Z. Shen, D. Chen, K.B. Tang, Chem. Phys. Lett.375(2003)177.
    [17]G. Gundiah, G.V. Madhav, A. Govindaraj, M.M. Seikh, C.N. R. Rao, J. Mater. Chem. 12(2002)1606.
    [18]J.Q. Hu, Y. Bando, J.H. Zhan, D. Golberg, Appl. Phys. Lett.85 (2004) 2932.
    [19]G.C. Xi, Y.Y. Peng, S.M. Wan, T.W. Li, W.C. Yu, Y.T. Qian, J. Phys. Chem. B 108 (2004)20102.
    [20]C.H. Liang, G.W. Meng, L.D. Zhang, Y.C. Wu, Z. Cui, Chem. Phys. Lett.329 (2000) 323.
    [21]M. Ohkohchi and Y. Ando, J. Ceram. Soc. Jpn.98 (1990) 417.
    [22]Y. Ando and M. Ohkohchi, Jpn. J. Appl. Phys.29 (1990) 2429.
    [23]Y.G. Yang, R.B. Wu, J.J. Chen, M.X. Gao, R. Zhai, L.L. Wu, J. Lin, Y. Pan, J. Zhejiang Uni. (Eng. Sci).41 (2007) 1042.
    [24]D. Chaussende, F. Mercier, A. Boulle, F. Conchon, M. Soueidan, G. Ferro, A. Mantzari, A. Andreadou, E.K. Polychroniadis, C. Balloud, S. Juillaguet, J. Camassel, M. Pons, J. Cryst. Growth.310 (2008) 976-981
    [25]H.P. Martin, R. Ecke, E. Muller, J. Eur. Ceram. Soc.18 (1998) 1737-1742.
    [26]J. Narayan, R. Raghunathan, R. Chowdhury, K. Jagannadham, J. Appl. Phys.75 (1994) 7252-7257.
    [27]I.S. Seog, C.H. Kim, J. Mater. Sci.28 (1993) 3277-3282.
    [28]C. Vix-Guterl, P. Ehrburger, Carbon 35 (1997) 1587-1592.
    [29]G.W. Meng, Z. Cui, L.D. Zhang, F. Phillipp, J. Cryst. Growth.209 (2000) 801.
    [30]Z.C. Ju, Z. Xing, C.L. Guo, L.S. Yang, L.Q. Xu, Y.T. Qian, Eur. J. Inorg. Chem..24 (2008)3883.
    [31]T. Li, L.Q. Xu, L.C. Wang, L.S. Yang, Y.T. Qian, J. Alloys Compd.484 (2009) 341.
    [32]K. Koumoto, S. Takeda, C. Pai, T. Sata, H. Yanagida, J. Am. Ceram. Soc.72 (1989) 1985.
    [33]L.S. Liao, X.M. Bao, Z.F. Yang, N.B. Min, Appl. Phys. Lett.66 (1995) 2382.
    [34]D.L. Ou, A.B. Seddon. J. Non-Cryst. Solids.210 (1997) 187.
    [35]X.H. Wang, L. Wang, L.Q. Wong, Q. Wang, H. Wang, G.A. Tai, Funct Mater.35 (2004)2995.
    [36]D. Olego, M. Cardona, Phys. Rev. B 25 (1982) 3889.
    [37]Z.C. Feng, A.J. Mascarenhas, W.J. Choyke, J.A. Powell, J. Appl. Phys.64 (1988) 3176.
    [38]Z.X. Yang, Y.D. Xia, M. Robert, Chem. Mater.16 (2004) 3877.
    [39]R. Moene, M. Makkee, J.A. Moulijn, Appl. Catal. A 167 (1998) 321.
    [40]Y. Yao, S.T. Lee, F.H. Li, Chem. Phys. Lett.381 (2003) 628.
    [41]H.W. Shim, K.C. Kim, Y.H. Seo, Appl. Phys. Lett.70 (1997) 1757.
    [42]J.J. Chen, R.B. Wu, G.Y. Yang, Y. Pan, J. Lin. L.L. Wu, R. Zhai, J. Alloys Compd. 456(2008)320.
    [43]N. Keller, C. Pham-Huu, S. Roy, M.J. Ledoux, J. Mater. Sci.34 (1999) 3189.
    [44]J. Gravesena, M. Willatzenb, Physica B.371 (2006) 112.
    [45]X.C. Zhang, S.X. Qu, J. Shannxi Nor. Uni (Nat. Sci. Ed).36(2008)33.
    [46]R.S. Wagner, W.C. Ellis, Appl. Phys. Lett.4 (1964) 89.
    [47]Y. Cui, L.J. Lauhon, M.S. Gudiksen, Appl. Phys. Lett.78 (2001) 2214.
    [48]Z.G. Ju, Y.M. Lu, J.Y. Zhang, X.J. Wu, K.W. Liu, C.X. Shan, B.S. Li, D.X. Zhao, Z.Z. Zhang, B.H. Li, B. Yao, and D.Z. Shen, Cryst. Growth Des.8 (2008) 2733.
    [49]Y.H. Tong, Y.C. Liu, C.L. Shao, R.X. Wu, Appl. Phys. Lett.88 (2006) 123111.
    [50]W.J. Li, E.W. Shi, Z.Z. Chen, Z.W. Yin, Sci. China, Ser. B.44 (2001) 123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700