SiC及C/SiC复合材料的合成及在氨合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以淀粉为碳源,正硅酸乙酯(TEOS)为硅源,草酸或硝酸为TEOS水解的催化剂,以不同的金属盐为碳热还原催化剂,采用溶胶凝胶法制备淀粉-SiO_2混合凝胶,通过惰性气氛和动态真空的碳热还原方法合成了不同结构的SiC及C/SiC复合材料。用XRD、IR、SEM、TEM和低温N_2吸附-脱附等手段对合成的样品进行表征,优化合成条件。筛选出适合于氨合成反应的高比表面积SiC及C/SiC复合材料作为催化剂载体,制备一系列钌催化剂,在一定的温度和压力条件下,考察了催化剂在氨合成反应中的活性。取得了以下研究结果:
     1.用溶胶凝胶法制备的淀粉-SiO_2混合凝胶,在惰性气氛中1500℃下进行碳热还原,能制备出比表面积达130 m~2/g,孔径大约分别在2和16 nm的高比表面积的SiC。凝胶中添加铁催化剂后生成SiC的还原温度降低,但所合成的SiC比表面积随着硝酸铁含量的增加而减小,孔径分布趋于宽化。
     2.以淀粉为碳源,正硅酸乙酯为硅源,硝酸铈为碳热还原催化剂,通过溶胶-凝胶和碳热还原反应制备了具有核壳异质结构的β-SiC纳米线。
     3.利用动态真空碳热还原合成碳化硅的研究中,发现在动态真空条件下淀粉-SO_2混合凝胶转化生成SiC的温度比在惰性气氛中合成碳化硅降低550℃,在950℃动态真空条件下即可合成出晶粒尺寸约为50 nm,结晶度较高的β-SiC。
     4.将合成的SiC应用于氨合成反应研究中发现,以比表面积为130 m~2/g的SiC为载体制备的钌催化剂中,钌负载量为4 wt%(相对载体100%计算),助剂钾和钡的添加量分别为10 wt%和4 wt%时,在450℃,10.0 Mpa和10 000 h~(-1),N_2:H_2=1:3的条件下,出口氨浓度为9.89%(体积分数)。
     5.以比表面积422 m~2/g的C/SiC复合材料为载体制备的Ru4%/Ba4%/K10%/C/SiC催化剂,在450℃,10 Mpa及10000 h~(-1)的条件下,出口氨浓度达12.6%,催化剂具有较高的氨合的活性。进一步的研究发现:经CA处理后的C/SiC载体制备的催化剂中Ru的分散度显著提高,当载体中CA的吸附量为4%时,处理的载体制备的Ru4%/Ba4%/K10%/C/SiC催化剂,在450℃,10Mpa及10000h~(-1)的条件下出口氨浓度达14.4%,进一步提高了催化剂的活性,且催化剂稳定性较高。本研究制备的C/SiC可望成为氨合成反应的新载体。
Tetraethoxysilane(TEOS) was used as silicon source and starch was used as carbon source for preparing the carbonaceous starch-SiO_2 hybrids gel containing nitrate cerium or ferric nitrate.Then the starch-SiO_2 hybrids gel was treated by the carbothermal reaction at high temperature under inert gas or vacuum condition.XRD,IR,SEM,TEM and N_2 physisorption were carried out to characterize the obtain samples.A kind of high surface specific area SiC,C/SiC suit for ammonia synthesis was choosed,and it was used as support to prepare ruthenium catalyst.The ammonia synthesis activities for a series of ruthenium catalyst were measured at a high temperature and under a high pressure.The results were showed as follows:
     1.When the dried starch-SiO_2 hybrids gel were treated under inert gas,the carbothermal reduction temperature for preparing silicon carbide from the precursors without Fe need to be 1500℃.High surface areas about 130m~2/g and pore size distribution at 2 or 16 nm were obtained;the cabothermal reduction temperature would be decreased when the Fe was employed to the precursors,but the surface specific area of the obtained sample was decreased at the same time,and the pore size distributions go to diversification.
     2.The silicon carbide nanowires were synthesized by the carbothermal reduction of the carbonaceous starch-SiO_2 hybrids gel containing cerium nitrate.The results indicated that the product wasβ-SiC/SiO_2 core-shell nanowires.
     3.When the starch-SiO_2 hybrids gel were treated under vacuum,we discovered that the carbothermal reduction temperature for preparing SiC under dynamic vacuum condition was lower than that under inert gases for 550℃and high crystallineβ-SiC with average crystalline size of 50 nm could be synthesized at 950℃under dynamic vacuum condition.
     4.The high surface specific area SiC was used as catalyst support for ammonia synthesis.The prepared SiC-supported ruthenium catalyst has a relative high active(9.89 %).
     5.The prepared C/SiC-supported(422 m~2/g) ruthenium catalyst has a relative high active(12.60%) under Ru=4%,Ba=4%,K=10%,450℃,10.0Mpa and 10 000h~(-1).A suitable amount of citric acid acid is advantageous to improve the Ru dispersion by
     further research,when the amount of citric acid in support is 4 wt%,Catalytic activity of the prepared C/SiC-supported ruthenium catalyst reaches 14.4%under Ru=4%,Ba=4%, K=10%,450℃,10.0Mpa and 10 000h~(-1),and the active would maintain when the catalyst was tested for the heat resistance at this temperature for 20 h,which showed the stability performance of the prepared C/SiC-supported catalyst.It indicated that the prepared high surface area C/SiC would be a new support for ammonia synthesis.
引文
[1]Aika K.Tamaru.K.Ammonia catalysis and manufacture.Berlin:Springer-Verlag 1995,103-148
    [2]魏可镁 俞秀金,王榕等.氨合成催化剂研究进展.工业催化.1992;1:8
    [3]Jennings J.R.,Ward S.A.,Catalyst handbook.England:Wolfe Publishing Ltd 1989,384
    [4]Slack A.V.,James G..R.Fertilizer science & Technology.New York:Marcel Dekker Inc 1973.
    [5]南京化工研究院译,合成氨催化剂手册.北京:石油化学工业出版社,1997.136
    [6]魏可镁 王榕,俞秀金等.A201型氨合成催化剂的研究.化肥工业,1985,3:10
    [7]魏可镁 俞秀金,王榕等.A202型低温氨合成催化剂的研究.工业催化,1995,3:14-20
    [8]王文祥 刘华章,张元珍等.浸钴熔铁氨合成催化剂的研究.化学通报,1996,9:51-53
    [9]刘化章 李小年.铁催化剂母体相组成的研究和FeO基氨合成催化剂的发现.中国科学(B辑),1995,25(1):1-6
    [10]a.Liang C.H.,Li Z.,Qiu J.,etal.Graphitic Nanofilaments as Novel Support of Ru-Ba Catalysts for Ammonia Synthesis.J.Catal.2002,211(1):278
    b.郑晓玲 魏可镁.第二代氨合成催化体系——钌系氨合成催化剂及其工业应用.化学进展.2001,06:472-480
    [11]Aika K.,Tamaru K.Ammonia Synthesis Catalysis and Manufacture(ed.Nielsen A).Berlin:Spring-Verlag 1995:103
    [12]Rodriguez-reinoso F.,The role of carbon materials in heterogeneous catalysis.Carbon.1998,36:159-175.
    [13]Auer E.,Freund A.,Pietsch J.,Tacke T.Carbons as supports for industrial precious metal,catalysts.Appl.Catal.A.,1998,173:259-271.
    [14]Aika K.,Hori H.,Ozaki A.Activation of nitrogen by alkali metal promoted transition metal I.Ammonia synthesis over ruthenium promoted by alkali metal.Journal of Catalysis.1972,27(3):424-431.
    [15]傅武俊,郑晓玲,许交兴,刘广臻,魏可镁.氨合成钌催化剂的制备及催化活性.福州大学学报(自然科学版).2003(03):340-343.
    [16]韩文锋,赵霍刘.活性炭及表面性质对Ru基氨合成催化剂性能的影响.催化学报.2004(03):194-198.
    [17]Zhong Z.Aika H.K.Effect of hydrogen treatment of active carbon as a support for promoted ruthenium catalysts for ammonia synthesis.Chem.Commun.1997:1223-1224.
    [18]Zhong Z.Aika H.,K.Effect of ruthenium precursor on hydrogen-treated active carbon supported ruthenium catalysts for ammonia synthesis.Inorganica Chimica Acta.1998,280(1-2):183-188.
    [19]Zhong Z.H.,Aika K.The Effect of Hydrogen Treatment of Active Carbon on Ru Catalysts for Ammonia Synthesis.Journal of Catalysis.1998,173(2):535-539.
    [20]郑晓玲,张淑娟,魏可镁.炭载体的预处理对钌催化剂金属分布状态及催化性能的影响.燃料化学学报.2001,(S1):99-101.
    [21]Zheng X.,Zhang S.,Xu J.Wei K.Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts.Carbon.2002,40(14):2597-2603.
    [22]郑晓玲,傅武俊,俞裕斌,林建新,魏可镁.活性炭载体的微波处理对氨合成催化剂Ru/C催化性能的影响.催化学报.2002(06)562-566
    [23]于凤文,计建炳,霍超,韩文锋,李小年,刘化章.活性炭载体的超声波处理对钌/活性炭氨合成催化剂催化性能的影响.催化学报.2005(06).485-488.
    [24]Kowalczyk Z.,Sentek J.,Jodzis S.,Mizera E.,Goralski J.,Paryjczak T.,Diduszko R.An alkali-promoted ruthenium catalyst for the synthesis of ammonia,supported on thermally modified active carbon.Catal Lett.1997,45:65-72.
    [25]Kowalczyk Z.,Sentek J.,Jodzis S.,Diduszko R.,Presz A.,Terzyk A.Thermally modified active carbon as a support for catalysts for NH_3 synthesis.Carbon.1996;34(3):403-9.
    [26]Kowalczyk Z.,Jodzis S.,Sentek J.Studies on kinetics of ammonia synthesis over ruthenium catalyst supported on active carbon.Applied Catalysis A:General. 1996;138(1):83-91.
    [27]Foster A.I.,James D.G.,McCarroll J.J.,Tennison S.R.US patent,4163773,1979.
    [28]McCarroll J.J.,Tennison S.R.,Wilkinson N.P.US Patent,4600 571,1986.
    [29]Forni L.,Molinari D.,Rossetti I.,Pemicone N.Carbon-supported promoted Ru catalyst for ammonia synthesis.Applied Catalysis A:General.1999;185(2):269-275.
    [30]Rossetti I.,Pernicone N.,Forni L.Graphitised carbon as support for Ru/C ammonia synthesis catalyst.Catalysis Today.2005;102-103:219-224.
    [31]Wei G.,Wang L.H.,Lin Y.J.,Jun Y.I.,Chen H.B.,Liao D.W.Novel Ruthenium Catalyst(K-Ru/C_(60/70)) for Ammonia Synthesis.Chinese Chemical Letters.1999(05).
    [32]Liang C.,Wei Z.,Xin Q.,Li C.Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds.Applied Catalysis A:General.2001,208(1-2):193-201.
    [33]Chen H.B.,Lin J.D.,Cai Y.,Wang X.Y.,Yi J.,Wang J.,et al.Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure.Applied Surface Science.2001,180(3-4):328-235.
    [34]Liang C.,Li Z.,Qiu J.,Li C.Graphitic Nanofilaments as Novel Support of Ru-Ba Catalysts for Ammonia Synthesis.Journal of Catalysis.2002,211(1):278-282.
    [35]Li Z.,Liang C.,Feng Z.,Ying P.,Wang D.,Li C.Ammonia synthesis on graphitic-nanofilament supported Ru catalysts.Journal of Molecular Catalysis A:Chemical.2004,211(1-2):103-109.
    [36]Baker R.T.K.Factors controlling the mode by which a catalyst operates in the graphite-oxygen reaction.Carbon.1986,24(6):715-717.
    [37]Goethel P.J.,Yang R.T.Mechanism of graphite hydrogenation catalyzed by ruthenium particles.Journal of Catalysis.1988,111(1):220-226.
    [38]Urabe K.,Yoshioka T.,Ozaki A.Ammonia synthesis activity of a Raney ruthenium catalyst.Journal of Catalysis.1978,54(1):52-56.
    [39]Urabe K.,Aika K.I.,Ozaki A.Activation of nitrogen by alkali metal-promoted transition metal:Ⅱ.Isotopic exchange in molecular nitrogen over potassium-promoted ruthenium-carbon catalyst.Journal of Catalysis.1974, 32(1):108-113.
    [40]Urabe K., Aika K. I., Ozaki A. Activation of nitrogen by alkali metal-promoted transition metal : VI. Hydrogen effect on isotopic equilibration of nitrogen and rate-determining step of ammonia synthesis on potassium-promoted ruthenium catalysts. Journal of Catalysis. 1976,42(2): 197-204.
    [41]Aika K., Ohya A., Ozaki A., Inoue Y., Yasumori I. Support and promoter effect of ruthenium catalyst: II. Ruthenium/alkaline earth catalyst for activation of dinitrogen. Journal of Catalysis. 1985, 92(2):305-311.
    [42]Aika K., Shimazaki K., Hattori Y, Ohya A., Ohshima S., Shirota K., et al. Support and promoter effect of ruthenium catalyst : I. Characterization of alkali-promoted ruthenium/alumina catalysts for ammonia synthesis. Journal of Catalysis. 1985, 92(2):296-304.
    [43]Aika K. I., Takano T., Murata S. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis : 3. A magnesia-supported ruthenium catalyst. Journal of Catalysis. 1992,136(1): 126-140.
    [44]Murata S., Aika K. I. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis. : 1. An alumina-supported ruthenium catalyst. Journal of Catalysis. 1992,136(1):110-117.
    [45]Murata S., Aika K. I. Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis : 2. A lanthanide oxide-promoted Ru/Al_2O_3 catalyst. Journal of Catalysis. 1992;136(1):118-125.
    [46]Murata S., Aika K. I. Removal of chlorine ions from Ru/MgO catalysts for ammonia synthesis. Applied Catalysis A: General. 1992, 82(1):1-12.
    
    [47]Saito M., Itoh M., Iwamoto J., Li C., Machida Y. Synergistic effect of MgO and CeO_2 as a support for ruthenium catalysts in ammonia synthesis. Catal Lett. 2006, 106:107-110.
    [48]Szmigiel D., Rar-Pilecka W., Miskiewicz E., Glinski M., Kielak M., Kaszkur Z., et al. Ammonia synthesis over ruthenium catalysts supported on high surface area MgO and MgO-Al2O3 systems. Applied Catalysis A: General. 2004, 273(1-2): 105-112.
    [49]Wu S., Chen J. X, Zheng X. F., Zeng H. S., Zheng,C. M. Guan N. J. Novel preparation of nanocrystalline magnesia-supported caesium-promoted ruthenium catalyst with high activity for ammonia synthesis.Chem.Commun.2003,2488-2489.
    [50]Pietro M.,Giovanni P.,Andrea M.Ru/MgO Sol-Gel Prepared Catalysts for Ammonia Synthesis.Catal.Lett.2002,79:7-15.
    [51]张新波,李小年,霍超,岑亚青,祝一锋,刘化章.氧化铝负载钌基氨合成催化剂的制备条件及载体改性.催化学报.2002(03)207-213
    [52]Rao K.,Rama S.,Rao P.K,Masthan S.K.,Kaluschnaya L.,Shur V.B.New type of carbon coated alumina supports for the preparation of highly ctive ruthenium catalysts for atnmonia synthesis.Applied Catalysis.1990,62(1):L19-L22.
    [53]Rao K.S.R,Masthan S.K,Prasad P.S.S,Rao P.K.Effect of barium addition on the ammonia synthesis activity of a caesium promoted ruthenium catalyst supported on carbon-covered alumina(CCA).Applied Catalysis.1991,73(1):L1-LS.
    [54]K.Aika TK,S.Murata,T.Onishi.Promoter Effect of Alkali-Metal Oxides and Alkali Earth Metal-Oxides on Active Carbon-Supported Ruthenium Catalyst for Ammonia-Synthesis.Bull Chem Soc Jpn.1990.63:1221-1225.
    [55]Niwa Y,Aika K-i.The Effect of Lanthanide Oxides as a Support for Ruthenium Catalysts in Ammonia Synthesis.Journal of Catalysis.1996,162(1):138-142.
    [56]Izumi Y.,Iwata Y.,Aika K.Catalysis on ruthenium clusters supported on CeO_2 or Ni-doped CeO_2:Adsorption behavior of H_2 and ammonia synthesis.J.Phys.Chem.B.1996,100:9421-9428.
    [57]Jacobsen Claus J.H.,Dalai S.,Hansen P.L.,Tnqvist E.,Jensen L.,Tops H.,et al.Structure sensitivity of supported ruthenium catalysts for ammonia synthesis.Journal of Molecular Catalysis A:Chemical.2000,163(1-2):19-26.
    [58]Huang G.Y.,Lin J.D.,Xu Z.X.,Liao D.W.Combinatorial Supports for Ru-based Ammonia Synthesis Catalysts.Chinese Chemical Letters.2005,16(02):273-274
    [59]Seetharamulu P.,Siva Kumar V.,Padmasri A.H.,David R.B.,Rama Rao K.S.A highly active nano-Ru catalyst supported on novel Mg-A1 hydrotalcite precursor for the synthesis of ammonia.Journal of Molecular Catalysis A:Chemical.2007,263(1-2):253-258.
    [60]Bielawa H.,O.Hinrichsen H.,Birkner A..The ammonia-synthesis catalyst of the next generation:Barium-promoted oxide-supported ruthenium.Angew Chem Int Ed.2001,40:1061-1063.
    [61]Mahdi W.,Sauerlandt U.,Wellenbuscher J.,Schutze J.,Muhler M.,Ertl G.,Schlogl R.Application of Ru Exchanged Zeolite-Y in Ammonia-Synthesis.Catal Lett.1992,14:339-348.
    [62]Cisneros M.D,Lunsford J.H.Characterization and Ammonia Synthesis Activity of Ruthenium Zeolite Catalysts.Journal of Catalysis.1993,141(1):191-205.
    [63]Fishel C.T.,Davis R.J.,Garces J.M.Ammonia Synthesis Catalyzed by Ruthenium Supported on Basic Zeolites.Journal of Catalysis.1996,163(1):148-157.
    [64]Bue T,Davis R.J,Garces J.M.Effect of Cationic Promoters on the Kinetics of Ammonia Synthesis Catalyzed by Ruthenium Supported on Zeolite X.Journal of Catalysis.1998,179(1):129-137.
    [65]McClaine B.C.,Becue T.,Lock C.,Davis R.J.Kinetic analysis of ammonia synthesis catalyzed by barium-promoted ruthenium supported on zeolite X.Journal of Molecular Catalysis A:Chemical.2000,163(1-2):105-116.
    [66]Hansen T.W.,Wagner J.B.,Hansen P.L.,Dahl S.,Topsoe H.,Jacobsen C.J.H..Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst.Science,2001,294,1508-1510.
    [67]Jacobsen C.J.H.Boron Nitride:A Novel Support for Ruthenium-Based Ammonia Synthesis Catalysts.J.Catal.,2001,200,1-3.
    [68]Szmigie D.,Rarog-Pilecka W.,Miskiewicz E.,Maciejewska E.,Kaszkur Z.,Sobczak J.W.,Kowalczyk Z..Ammonia synthesis over the Ba-promoted ruthenium catalysts supported on boron nitride.Catal.Lett.,2005,100,79-87.
    [69]迟伟光.孔径可控的碳化硅多孔陶瓷的制备和性能.中国科学院上海硅酸盐研究所硕士学位论文 2003,3-4
    [70]Knippenberg W.F.,Philips Research Reports,1963,18:161
    [71]刘振宇,郑经堂,王茂章.超耐环境性的碳化硅.新型炭材料.2000;15(2):75-79
    [72]G.W.Berichte der Deutschem.Keramichan Gesellshaft.1960,37:219
    [73]郭全贵 宋进仁,刘朗.B_4C_2SiC/C复合材料高温自愈合抗氧化性能研究Ⅰ.复合材 料恒温氧化行为研究.新型炭材料.1998;13(1)2-6
    [74]张伟刚,沈祖洪,等.TiC对C-SiC-B_4C复合材料氧化行为的影响.新型炭材料.1998;13(1):13-18
    [75]张伟刚 成会明,沈祖洪等.碳化硅抗氧化涂层的失效分析.新型炭材料.1998;13(2):11-15
    [76]芦时林 B.R,Keith D.Bartle.新颖抗氧化炭硅纤维的研制.新型炭材料.1998,13(3):1-6
    [77]Pham-Huu C,Bouchy C.,Dintzer T.,Ehret G.,Estoumes C.,Ledoux M.J.High surface area silicon carbide doped with zirconium for use as catalyst support.Preparation,characterization and catalytic application.Applied Catalysis A:General.1999,180(1-2):385-397.
    [78]Meunier F.,Delporte P.,Heinrich B.,Bouchy C.,Crouzet C.,Pham-Huu C.,et al.Synthesis and Characterization of High Specific Surface Area Vanadium Carbide;Application to Catalytic Oxidation.Journal of Catalysis.1997;169(1):33-44.
    [79]Leroi P.,Madani B.,Pham-Huu C.,Ledoux M.J.,Savin-Poncet S.,Bousquet J.L.Ni/SiC:a stable and active catalyst for catalytic partial oxidation of methane.Catalysis Today.2004,91-92:53-58.
    [80]Moene R.,Makkee M.,Moulijn J.A.High surface area silicon carbide as catalyst support characterization and stability.Applied Catalysis A:General.1998,167(2):321-330.
    [81]张劲松,曹丽华,杨永进.微波诱导甲烷在活性炭/碳化硅上直接转化制C-2烃.催化学报.1999,20:45-50
    [82]Keller N.,Keller V.,Barraud E,etal.Novel Synthesis of High Surface Area Silicon Carbide by RAPET.J.Mater.Chem.2004,14:1887.
    [83]Moene R,Tijsen E.P.A.M,Makkee M,Moulijn J.A.Synthesis and thermal stability of Ni,Cu,Co,and Mo catalysts based on high surface area silicon carbide.Applied Catalysis A:General.1999,184(1):127-141.
    [84]Jin G.Q.,Guo X.Y.Synthesis and characterization of mesoporous silicon carbide.Microporous and Mesoporous Materials.2003,60(1-3):207-212.
    [85]Jin G..Q.,Li P.,Guo X.Y.Novel method for synthesis of silicon carbide nanowires.J. Mater.Sci.Lett.2003,22:767.
    [86]a.刘水刚.高比表面碳化硅的制备与应用.化工新型材料.2004,03:17-19
    b.将碳化硅用于催化剂载体的研究进展.山东陶瓷.2004,01:6-12
    c.多孔碳化硅的制备与应用研究进展.陶瓷 2004,02:13-17
    [87]Ledoux M.J.,Hantzer S.,Huu C.P.,Guille J.,Desaneaux M-P.New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance.Journal of Catalysis.1988,114(1):176-185.
    [88]Parmentier J.,Patarin J.,Dentzer J.,Vix-Guterl C.Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase:a new route to produce high surface area SiC.Ceramics International.2002,28(1):1-7.
    [89]Moene R,Kramer L.F.,Schoonman J.,Makkee M.,Moulijn J.A.Synthesis of high surface area silicon carbide by fluidized bed chemical vapour deposition.Applied Catalysis A:General.1997,162(1-2):181-191.
    [90]Zhao D.,Feng J.,Huo Q,Melosh N.,Fredrickson G.H.,Chmelka B.F.,Stucky G.D.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300Angstrom Pores.Science.1998,279:548.
    [91]Krawiec P.,Kaskel S.Thermal stability of high surface area silicon carbide materials.Journal of Solid State Chemistry.2006,179(8):2281-2289.
    [92]Krawiec P.,Geiger D.,Kaskel S.Ordered mesoporous silicon carbide(OM-SiC) via polymer precursor nanocasting.Chem.Commun.2006,23:2469-70.
    [93]Yan J.,Anjie W.,Kim D.P.Preparation of ordered mesoporous SiC from preceramic polymer templated by nanoporous silica.J.Phys.Chem.B.2006,110,(11) 5433.
    [94]Shi Y.F.,Meng Y.,Chen D.H.,Cheng S.J.,Chen P.,Yang H.F.,Wan Y.,Zhao D.Y.Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability.Adv.Fun.Mater.2006,16:561-567.
    [95]郭梦雄,王耀祖.碳化硅晶须的发展概况.北京:中国建筑工业出版社 1991.
    [96]孟广耀.化学气相沉积与无机新材料.北京:科学出版社 1984.
    [97]Wei J.,Li K.Z.,Li H.J.,Fu Q.G.,Zhang L.Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant.Materials Chemistry and Physics.2006,95(1):140-144.
    [98]Zhou D.,Seraphin S.Production of silicon carbide whiskers from carbon nanoclusters.Chemical Physics Letters.1994,222(3):233-238.
    [99]Kharlamov A.I.,Kirillova N.V.,Kaverina S.N.Hollow Silicon Carbide Nanostructures Theoretical and Experimental Chemistry.2002,38:237-241.
    [100]Meng G.W.,Cui Z.,Zhang L.D.,Phillipp F.Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO_2 xerogels containing carbon nanoparticles.Joumal of Crystal Growth.2000,209(4):801-806.
    [101]Liang C.H.,Meng G.W.,Zhang L.D.,Wu Y.C.,Cui Z.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles.Chemical Physics Letters.2000,329(3-4):323-328.
    [102]吴旭峰,凌一鸣.电弧放电法制备SiC纳米丝的实验研究.真空科学与技术.2005,1(25):30-32.
    [103]Seeger T.,Kohler-Redlich P.,R(u|¨)hle M.Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge J Am Ceram Soc.2000,12(4):279-282.
    [104]Shi W.S.,Zheng Y.F.,Peng H.Y.,Wang N.,Lee C.S.Lee S.T.Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires.Journal of the American Ceramic Society 2000,83:3228-3231.
    [105]孙莹,江东亮.多孔碳化硅材料的制备及其催化性能.无机材料学报.2003,18:830-836.
    [106]Ledoux M.J.,Pham-Huu C.,Keller N.,Nougayre J.B.,Savin-Poncet S.,Bousquet J.Selective oxidation of H2S in Claus tail-gas over SiC supported NiS_2 catalyst.Catalysis Today.2000,61(1-4):157-163.
    [107]Keller N.,Pham-Huu C.,Crouzet C.,Ledoux M.J.,Savin-Poncet S.,Nougayrede J.B.,Direct oxidation of H2S into S.New catalysts and processes based on SiC support.Catalysis Today.1999,53(4):535-42.
    [108]Nhut J.M.,Vieira R.,Pesant L.,Tessonnier J.P.,Keller N.,Ehret G..Synthesis and catalytic uses of carbon and silicon carbide nanostructures.Catalysis Today.2002,76(1):11-32.
    [109]Ledoux M.J.,Crouzet C.,Pham-Huu C.,Turines V.,Kourtakis K.,Mills P.L.High-Yield Butane to Maleic Anhydride Direct Oxidation on Vanadyl Pyrophosphate Supported on Heat-Conductive Materials:[beta]-SiC,Si_3N_4,and BN.Journal of Catalysis.2001,203(2):495-508.
    [110]Yamashita H.,Nishida Y.,Yuan S.,Mori K.,Narisawa M.,Matsumura Y.Design of TiO_2-SiC photocatalyst using TiC-SiC nano-particles for degradation of 2-propanol diluted in water.Catalysis Today.2007,120(2):163-167.
    [111]Pan S.,Zhang J.,Yang Y.,Song G..Effect of process parameters on the production of nanocrystalline silicon carbide from water glass.Ceram.In.2008,34(2):391-395.
    [112]Pujar V.V.,Cawley J.D.Effect of Stacking Faults on the X-ray Diffraction Profiles of SiC Powders.J.Am.Ceram.Sol.1995,78(3) 774-782.
    [113]Shi L.,Zhao H.,Yan Y.,Li Z.,Tang C.Synthesis and characterization of submicron silicon carbide powders with silicon and phenolic resin.Powder Technology.2006,169(2):71-76.
    [114]Vix-Guterl C.,Ehrburger P.Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation.Carbon.1997,35(10-11):1587-1592.
    [115]Kresge C.T.,Lenonwicz M.E.,Roth W.J.,Vartuli J.C.,Beck J.S.Nature.1992,359:710.
    [116]林建新 郑勇,郑瑛等.制备高比表面积碳化硅的几种影响因素.无机化学学报.2006,22(10):1778-1782
    [117]郑勇.高比表面积碳化硅的合成及在氨合成反应的应用.福建师范大学硕士学位论文.2007.
    [118]沈晓女.高比表面积碳化硅的合成及其在CO氧化反应中的应用.福建师范大学硕士学位论文.2008
    [119]Lin Y.J.,Chuang C.M.The effects of transition metals on carbothermal synthesis of β-SiC powder.Ceramics International.2007,33(5):779-84.
    [120]翟蕊,杨光义,吴仁兵,陈建军,晶林,吴玲玲.FeSi熔体中SiC晶须的VLS 生长.复合材料学报.2007,24(05):97-102.
    [121]武向阳,靳国强,郭向云溶.胶凝胶中Fe催化剂用量对SiC堆积缺陷和形貌的影响.新型炭材料.2005,12(4):324-328
    [122]Dai H.,E.Wong W.,Lu Y.Z.,Fan,S.,Lieber C.M.Synthesis and characterization of silicon carbide nanorode.Nature.1995,375:769-772.
    [123]Han W.,Fan S.,Li Q.,Liang W.,Gu B.,Yu D.Continuous synthesis and characterization of silicon carbide nanorods.Chemical Physics Letters.1997,265(3-5):374-8.
    [124]Raman V.,Bhatia G.,Bhardwaj S.Systhesis of silicon carbide nanofibers by sol-gel and polymer blend techniques.Journal of material science 2005,40:1521-1527.
    [125]Zheng Y.,Zheng Y.,Lin L.X.,Ni J.,Wei K.M.Synthesis of a novel mesoporous silicon carbide with a thorn-ball-like shape.Scripta Materialia.2006,55(10):883-886.
    [126]Hao Y.J.,Jin G.Q.,Han X.D.,Guo X.Y.Synthesis and characterization of bamboo-like SiC nanofibers.Materials Letters.2006,60(11):1334-1337.
    [127]周伟民 一维碳化硅纳米材料的制备与性能的基础研究.上海交通大学博士学位论文.2007
    [128]Zhang H.F.,Wang C.M.,Wang L.S.Helical CrystallineSiC/SiO_2Core-Shell Nanowires.NANO LETTERS.2002,2:941-944.
    [129]Meng G.W.,Zhang L.D.,Zhang Y."Formation of β-SiC nanorods with amorphous SiO_2 wrappin layers.Journal of Materials Science Letters.1999,18:1255-1257.
    [130]Deng S.Z.,Wu Z.S.,Zhou J.,Xu N.S.,Chen J.Synthesis of silicon carbide nano-junctions in a catalyst-assisted process.Chemical Physics Letters.2002,364(5-6):608-611.
    [131]张立德,牟季美.纳米材料和纳米结构.北京 科学出版社 2001
    [132]Saulig-Wenger K.,Comu D.,Chassagneux F.,Ferro G.,Epicier T.,Miele P.Direct synthesis of β-SiC and h-BN coated β-SiC nanowires.Solid State Communications.2002,124(4):157-161.
    [133]Wagner R.S.,Ellis W.C.,Vapor liquid solid mechanism of single crystal growth.App.Phy.Lett.,1964,4,89-92.
    [134]Tang C.C.,Fan S.S.,Chapelle M.L.,Li P.Silica-assisted catalytic growth of oxide and nitride nanowires.Chemical Physics Letters.2001,333(1-2):12-15.
    [136]Tang C.C.,Fan S.S.,Li P.,Chapelle M.L.,Dang H.Y.In situ catalytic growth of Al2O_3 and Si nanowires.Journal of Crystal Growth.2001,224(1-2):117-121.
    [137]Liu Z.Q.,Pan Z.W.,Sun L.F.,Tang D.S.,Zhou W.Y.,Wang G.Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate.Journal of Physics and Chemistry of Solids.2000,61(7):1171-1174.
    [138]Lao J.Y.,Huang J.Y.,Wang D.Z.,Ren Z.F.ZnO Nanobridges and Nanonails.Nano Lett.2003,3(2):235-238.
    [139]Wang Z.L.,Pan Z.W.Junctions and Networks of SnO Nanoribbons.Advanced Materials.2002,14(15):1029-1032.
    [140]Lee J.S.,Byeun Y.K.,Lee S.H.,Choi S.C.In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO_2 and carbon.Journal of Alloys and Compounds.2008,456(1-2):257-263.
    [141]王启宝,郭梦熊.稻壳SiC晶须合成的热力学基础及VLS催化生长机理.人工晶体学报.1997,26(1):33-39.
    [142]丘泰,徐洁,李远强,龚亦农,SiO_2-C-N_2系统中气相对相稳定的影响,无机材料学报,1995,10(3):326-3
    [143]Zhang X.,Golding J.,Burgar I.Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy.Polymer.2002,43(22):5791-5796.
    [144]李喜坤,修稚萌,孙旭东,郑龙熙.淀粉还原氢化钛制备Ti(C,N)纳米粉.东北大学学报.2003,24:272-275.
    [145]Vix-Guterl C.,Alix I.,Ehrburger P.Synthesis of tubular silicon carbide(SIC) from a carbon-silica material by using a reactive replica technique:mechanism of formation of SiC.Acta Materialia.2004,52(6):1639-51.
    [146]Jacobsen Claus J.H.Boron Nitride:A Novel Support for Ruthenium-Based Ammonia Synthesis Catalysts.Journal of Catalysis.2001,200(1):1-3.
    [147]Kyotani T.,Nakazaki S,Xu W.H.,Tomita A.Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation.Carbon.2001,39(5):782-785.
    [148]El-Hendawy,Abdel-Nasser A.Influence of HNO_3 oxidation on the structure and adsorptive properties of corncob-based activated carbon.Carbon.2003,41(4):713-722.
    [149]Radkevich V.Z.,Senko T.L.,Wilson K.,Crishenko L.M.,Zaderko A.N.,Diyuk V. Y.The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation.Applied Catalysis A:General.2008,335(2):241-251.
    [150]Hernadi K.,Siska A.,Thi-Nga L.,Forr L.,Kiricsi I.Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes.Solid State Ionics.2001,141-142:203-209.
    [151]Chen J.P.,Wu S.,Chong K.H.Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption.Carbon.2003,41(10):1979-86.
    [152]Kowalczyk Z.,Jodzis S.,Rar W.,Zielinski J.,Pielaszek J.,Presz A.Carbon-supported ruthenium catalyst for the synthesis of ammonia.The effect of the carbon support and barium promoter on the performance.Applied Catalysis A:General.1999,184(1):95-102.
    [153]俞秀金,郑瑛,郑勇,王榕,魏可镁.C/SiC复合材料的合成及在氨合成反应中的应用 分子催化.2008,05:423-428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700