C-Si粉体反应制备SiC纳米线及合成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高能球磨后的C、Si纳米粉末为原料,在900~1450℃反应合成了βSiC纳米线。利用扫描电子显微镜(SEM)、能量色散谱分析(EDS)、X射线衍射分析( XRD)、透射电子显微镜( TEM)、高分辨电镜(HRTEM)、傅里叶变换红外光谱(FT IR)及拉曼光谱(Raman)等多种分析测试手段对SiC纳米线的形貌、结构以及光谱性能进行了表征;研究了制备工艺中不同基片、反应温度、保温时间、环境气氛和粉体中的碳硅比等因素对SiC纳米线生长的影响;通过热力学理论计算,分析了SiC纳米线生长的生长过程及生长机理。
     对形貌观察发现,SiC纳米线大量生长,直径在十几到几十个纳米的范围内,粗细均匀,纳米线较长,可达到几百个微米。纳米线的表层存在一层均匀的SiOx非晶层,厚度约为十几个纳米。纳米线主要有直线交错状和弯曲缠绕状两种形态,局部有分叉现象。对纳米线进行结构分析表明,本方法制备的纳米线为面心立方结构的βSiC。SiC纳米线中存在堆垛层错、孪晶等结构缺陷,孪晶面由{111}面组成,纳米线的生长方向为<111>方向。
     各影响因素对SiC纳米线制备的影响:低温下纳米线弯曲生长,直径较细,随着制备温度的升高,SiC纳米线逐渐变为直线生长,直径也变粗;纳米线的生长存在一个孕育期,在1000℃、真空条件下制备时,SiC纳米线生长的孕育期约为90~120min;在Si基片上制备SiC纳米线时,增加粉体中碳粉的比例,有利于SiC纳米线的生长,当采用纯C粉和Si基片反应制备SiC纳米线时,可以得到没有SiOx非晶层外壳的SiC纳米线。SiC纳米线的生长满足热力学条件, Si(s,l)+C(s)→SiC(s),SiO(g)+3C(s)→SiC(s)+2CO(g), 3SiO(g)+CO(g)→SiC(s)+2SiO2 (g)等反应是本方法合成SiC纳米线主要反应形式。反应中的SiO和CO气体来自于C Si纳米粉体的氧化。SiC纳米线主要通过C粉吸附SiO气体发生气固反应,或SiO和CO直接发生气相反应形成SiC晶核的,在C Si纳米粉体球磨时产生的SiC纳米晶粒起到了籽晶的作用。在生长过程中,纳米线的Si/SiOx端头充分吸收了周围的Si、C、SiO及CO,从中达到过饱和析出,维持纳米线的生长。
βSiC nanowires were synthesised at 900~1450℃from carbon and silicon nanopowders, which were prepared by high energy ball milling. Scanning electron spectroscopy (SEM), energy disperse spectrum (EDS), X ray diffraction (XRD), transmission electron microscopy (TEM), high resolution electron microscopy (HREM), Fourier transform infrared spectroscopy (FT IR) and Raman spectra were used to analysis the morphology, structure and spectrum properties ofβSiC nanowires. We researched different technological parameters in the preparation processing, such as substrates, temperature, time, atmosphere, ratio of carbon and silicon. At last, thermodynamic parameters were calculated, the growth process and mechanism of SiC nanowires were analyzed.
     By morphology analysis, SiC nanowires were synthesized in large quantity with uniform diameter from ten to several tens nanometer and longth of several hundreds micrometer. There is a uniform SiOx amorphous layer on the surface of SiC nanowires. There are two kinds of SiC nanowires, which are linearity and forniciform. The microstructure analysis indicate that the nanowires areβSiC with face centered cubic structure. There are stacking faults and twin lamellaes in the SiC nanowires, and the growth direction of SiC nanowire is <111>.
     SiC nanowires can be prepareed at the temperture from 900 to 1450℃. The nanowires grow at low temperture are forniciform, and the diameter is thiner than that grow at high temputerture. As preparation temperture increased, the nanowires become straight and thick. There is a incubation period before SiC nanowires nucleating, the incubation period is about 90~120min in vacuum at 1000℃. When the SiC nanowires prepared on the silicon substrate, if we increase the proportion of carbon powder in the mixed powders, the nanowires will grow better. If we only use pure carbon powder react with silicon substrate, the pure SiC nanowires without any amorphous layer can be obtain.
     The growth of SiC nanowires satisfy the thermodynamics condition, Si(s,l)+C(s)→SiC(s), SiO(g)+3C(s)→SiC(s)+2CO(g), 3SiO(g)+CO(g)→SiC(s)+2SiO 2(g) are main reactions in the growth process. The SiC crystal nucleus comes from gas phase reaction or gas solid reaction. The Si/SiOx meltdown particle on the end of nanowires just like the metal catalyst particles in VLS mechanism, absorb Si, C, SiO and CO, when it reaches saturation, SiC phase precipitat and then the SiC nanowires grow continuously.
引文
1 H. Gleiter. Nanostruetured Materials. Proeeedings of the Sceond International Symposium on Metallurgy and Materials Seienee. Denmark, Roskilde, 1981: 15~29
    2马江虹,翟玉春,于旭光,田彦文.一维纳米材料的研究进展.稀有金属与硬质合金. 2004, 32(4): 41~42
    3张立德,牟季美.纳米材料和纳米结构.科学出版社. 2001: 5~11
    4 J. Zhu, H. Wu, H. T. Chen, X. L. Wub, X. Xiong. Tunable Violet blue Emission from 3C SiC Nanowires. Physics Letters A. 2009, 373: 1697~1700
    5 E. L. Zhang, Y. H. Tang, Y. Zhang, C. Guo. Synthesis and Photolumine scence Property of Silicon Carbon Nanowires Synthesized by the Thermal Evaporation Method. Physica E. 2009, (41): 655~659
    6陈建军.碳化硅纳米线的制备、性能与机理研究.浙江大学博士论文. 2008: 2~4
    7 S. Iijima. Helical Microtublules of Graphitic Carbon. Nature. 1991, (354): 56~58
    8 X. X. Zhao, G. M. Zhang. Theoretical Opitimization of Nanowire Density of Thin Film Field Emission Cathodes. Vacuum Science and Technology (China). 2002, (5): 357~359
    9郦剑,李昆仑,倪兆荣,朱流.纳米线研究进展.材料科学与工程学报. 2005, 23(2): 290~292
    10 Y. C. Ying, Y. L. Gu, Z. F. Li, H. Z. Gu, L. Y. Cheng, Y. T. Qian. A Simple Route to Nanocrystalline Silicon Carbide. Journal of Solid State Chemistry. 2004, (177): 4163~4166
    11吴玲玲,吴仁兵,杨光义,陈建军,翟蕊,林晶,潘颐.硅热蒸发法制备SiC纳米线及其结构表征.浙江大学学报(工学版). 2008, 42(3): 485~486
    12 S.F. Liu, Y. P. Zeng, D. L. Jiang. Effects of CeO2 Addition on the Properties of Cordierite bonded Porous SiC Ceramics. Journal of the European Ceramic Society. 2009, 29(9): 1795~1802
    13李昌龄.碳纳米管模板法制备SiC纳米线的研究.天津理工大学研究生学位论文. 2006: 1~3
    14 D. Chaira, B. K. Mishra, S. Sangal. Synthesis and Characterization of Silicon Carbide by Reaction Milling in a Dual drive Planetary Mill. Materials Scienceand Engineering A. 2007, (460): 111~120
    15 H. L. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber. Synthesis and Characterization of Carbide Nanorods. Nature. 1995, (375): 769~772
    16 Z. C Ju, X. C. Ma, N. Fan, P. Li, L. Q. Xu, Y. T Qian. High yield Synthesis of Single crystalline 3C SiC Nanowiresby a Facile Autoclave Route. Materials Letters. 2007, (61): 3913~3915
    17 Y. Cui, L. F. Wang, J. Y. Ren. Multi functional SiC/Al Composites for Aerospace Applications. Chinese Journal of Aeronautics. 2008, 21(6): 578~584
    18 W. M. Zhou, Y. J. Wu, E. S. Kong, F. Zhu, Z. Y. Hou, Y. F. Zhang. Field Emission from Nonaligned SiC Nanowires. Applied Surface Science. 2006, (253): 2056~2058
    19 T. Taguchi, N. Igawa, H. Yamamotoa, S. Shamotoa, S. Jitsukawa. Prepara tion and Characterization of Single phase SiC Nanotubes and C SiC Coaxial Nanotubes. Physica E. 2005, (28): 431~438
    20 J. J. Chen, R. B. Wu, G. Y. Yang, Y. Pan, J. Lin, L. L. Wu, R. Zhai. Synthesis and Photoluminescence of Needle shaped 3C SiC Nanowires on the Substrate of PAN Carbon Fiber. Journal of Alloys and Compounds. 2008, (456): 320~323
    21 W. Yang, H. Araki, Q. L. Hu, N. Ishikawa, H. Suzuki, T. Noda. In Situ Growth of SiC Nanowires on RS SiC Substrate(s). Journal of Crystal Growth. 2004, (264): 278~283
    22 G. Attolini, F. Rossi, M. Bosi, B. E. Watts, G. Salviati. Synthesis and Characterization of 3C SiC Nanowires. Journal of Non Crystalline Solids. 2008, (354): 5227~5229
    23张爱霞,蔡克峰.一维碳化硅纳米材料的研究进展.材料导报. 2006, 20(6): 106~108
    24 D. Zhou, S. Seraphin. Production of Silicon Carbide Whiskers from Carbon Nanoclusters. Chem Phys Lett. 1994, (222): 223~224
    25 C. C. Tang, S. S. Fan, H. Y. Dang, J. H. Zhao, C. Zhang, P. Li, Q. Gu. Growth of SiC Nanorods Prepared by Carbon Nanotubes confined Reaction. Journal of Crystal Growth. 2000, (210): 595~599
    26 Z. W. Pan, H. L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, S. Xie. Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties. Advanced Materials. 2000, 12(16): 1186~1190
    27 J. Q. Hu, Q. Y. Lu, K. B. Tang, B. Deng, R. R. Jiang, Y. T. Qian, W. C. Yu, G. E. Zhou, X. M. Liu, J. X. Wu. Synthesis and Characterization of SiC Nanowires through a Reduction carburization Route. J. Phys. Chem. B, 2000, (104): 5251~5254
    28郝雅娟,靳国强,郭向云.碳热还原制备不同形貌的碳化硅纳米线.无机化学学报. 2006, 22(10): 1833~1837
    29 J. S. Lee, Y. K. Byeun, S. H. Lee, S. C. Choi. In situ Growth of SiC Nanowires by Carbothermal Reduction using a Mixture of Low purity SiO2 and Carbon. Journal of Alloys and Compounds. 2008, (456): 257~263
    30 T. Seeger, M. Ruhle. Synthesis of Nanometer sized SiC Whiskers in the Arcdischarge. Advanced Materials. 2000, (12): 279~282
    31 Y. B. Li, S. S. Xie, X. P. Zhou, D. S. Tang, Z. Q. Liu, W. Y. Zhou, G. Wang. Large scale Synthesis ofβSiC Nanorods in the Arc discharge. J. Crystal Growth. 2001, (223): 125~127
    32吴旭峰,凌一鸣.电弧放电法制备SiC纳米丝的实验研究.真空科学与技术学报. 2005, 25(1): 30~32
    33卢斌,刘吉轩,朱华伟,焦羡贺.微波加热合成SiC纳米线的研究.无机材料学报. 2007, 22(6): 1135~1138
    34 W. S. Shi, Y. F. Zheng, H. Y. Peng. Easel ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. J. Am. Ceram Soc. 2000, 83(12): 3228~3230
    35 X. T. Zhou, N. Wang, C. S. Lee, S. T. Lee, et al. Growth and Emission Properties ofβSiC Nanorods. Materials Science and Engineering A. 2000, (286): 119~122
    36 J. C. Li, C. S. Lee, S. T. Lee. Direct Growth ofβSiC Nanowires from SiOx Thin Films Deposited on Si(100) Substrate. Chem Phys Lett. 2002, (355): 147~148
    37 H. J. Choi, H. K. Seong, J. C. Lee, Y. M. Sung. Growth and Modulation of Silicon Carbide Nanowires. J Crystal Growth. 2004, (269): 472
    38李昌龄,刘技文,赵燕平,李延辉,李娟. SiC纳米线的制备研究现状与展望.材料导报. 2005, 19(4): 99~101
    39周伟民.一维碳化硅纳米材料的制备与性能的基础研究.上海交通大学博士学位论文. 2007: 4~7
    40 H. J. Choia, H. K. Soong, J. C. Lee, Y. M. Sung. Growth and Modulation ofSilicon Carbide Nanowires. J. Crystal Growth. 2004, (269): 472~475
    41 Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconducting Oxides. Science. 2001, (291): 1947~1949
    42 M. Giannis, E. F. George, P. L. George, S. Jannis. SiC Nanotubes: A Novel Material for Hydrogen Storage. Nano Letters. 2006, 6(8): 1581~1583
    43 J. Wei, K. Z. Li, H. J. Li, Q. G. Fu, L. Zhang. Growth and Morphology of onedimensional SiC Nanostructures without Catalyst Assistant. Materials Chemistry and Physics. 2006, (95): 140~144
    44 Y. J. Xing, Q. L. Hang, H. F. Yan, H. Y. Pan, J. Xu, D. P. Yu, Z. H. Xi, Z. Q. Xue, S. Q. Feng. Solid liquid solid(SLS) Growth of Coaxial Nanocables: Silicon Carbide Sheathed With Silicon Oxide. Chemical Physics Letters. 2001, 345(1): 29~32
    45 S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang. Oxide assisted Semiconductor Nanowire Growth. MRS Bulletin. 1999, 24(8): 36~42
    46张亚利,郭玉国,孙典亭.纳米线研究进展(2):纳米线的表征与性能.材料科学与工程. 2001, 19(2): 89~90
    47杨晶.扫描隧道显微镜和扫描电子显微镜的联用.科技创新导报. 2008, (4): 2~3
    48解挺,叶敏,吴玉程,张立德.αSi3N4单晶纳米线的Fourier变换红外光谱和Raman光谱分析.硅酸盐学报. 2008, 36(1): 43~47
    49杜希文,原续波.材料分析方法.天津大学出版社. 1988: 42~205
    50朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用.东北大学出版社. 1998: 7~30
    51巨新,胡天斗,宫竹芳,苏庆德,熊曹水.球磨纳米碳粉的表征和光声光谱.应用基础与工程科学学报. 1996, 4(1): 40~43
    52杨晓云,黄震威,吴玉砚,叶恒强.球磨Si、C混合粉末合成纳米SiC的高分辨电镜观察.金属学报. 2000, 36(7): 684~688
    53揭晓华,程秀,蔡莲淑,谢光荣.稀土对SiC纳米粉体机械合金化形成的影响.材料科学与工程学报. 2004, 22(1): 55~58
    54严红革,陈振华.反应球磨技术原理及其在材料制备中的应用.功能材料. 1997, 28(1): 15~18
    55 C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui. Large scale SynthesisofβSiC Nanowires by using Mesoporous Silica Embedded with Fe Nanoparticles. Chemical Physics Letters. 2000, (329): 323~328
    56 W. Y. Yang, H. Z. Miao, Z. P. Xie, L. G. Zhang, L. N. An. Synthesis of Silicon Carbide Nanorods by Catalyst assisted Pyrolysis of Polymeric Precursor. Chemical Physics Letters. 2004, (383): 441~444
    57 S. Rohmfeld, M. Hundhausen, L. Ley. Influence of Stacking Disorder on the Raman Spectrum of 3C SiC. Physica Status Solidi (b). 1999, 215: 115~119
    58 H. J. Dai, E. W. Wong, Y. Z. Lu, S, S Fan, C. M. Lieber. Synthesis and Characterization of Carbide Nanorods. Nature. 1995, (375): 769~772
    59 P. H. Cuong, N. Keller, G. Ehret, M. J. Ledoux. The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. Journal of Catalysis. 2001, (200), 400~410
    60 D. Q. Zhang, A. Alkhateeb, H. M. Han, H. Mahmood, D. N. Mcllroy. Silicon Carbide Nanosprings. Nano Letters. 2003, 3(7): 983~985
    61吴玲玲.一维SiC纳米材料的合成制备与测试表征.浙江大学硕士学位论文. 2007: 15~19
    62梁英教,车荫昌.无机物热力学数据手册.东北大学出版社. 1993: 83~338
    63朱奇妙.碳化硅纳米晶须的热蒸发法合成与表征.浙江大学硕士学位论文. 2008: 36~39
    64阂乃本.晶体生长的物理基础.上海科学技术出版社. 1982: 215~219
    65 B. R. Pamplin. Crystal Growth. Pergamon Press. 1980: 58~60
    66唐元洪.硅纳米线及硅纳米管.化学工业出版社. 2007: 122~133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700