超长排列硅及硅氧纳米管的制备和光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅与硅氧纳米管与现有的硅微电子集成工艺相兼容,并且在发光材料、纳米电子器件、玻璃纤维、催化和生物领域有着潜在的应用价值,是当今科学研究的热点和前沿领域。同时纳米组装体系也是目前纳米材料研究的新热点,科学家根据不同需求,设计、组装、创造新的体系,使该体系具有人们所希望的特性。超长排列的半导体纳米线和管状结构在材料组装和应用方面具有明显的特点和优势。本论文通过电纺丝方法制备了排列的聚合物和掺杂金属氧化物纳米线,进一步通过TUFT法制备了排列且直径可控的硅与硅氧纳米管,并对硅氧纳米管的光致发光性质进行了研究。论文中的主要研究结果总结如下:
     1.使用电纺丝平行电极法制备了PVP排列纳米线。通过对排列纺丝工艺的改进,提高了纺丝的取向程度和排列长度,制备了直径200 nm,长度在厘米量级且排列整齐的PVP纳米线。通过实验发现,要获得高的有序排列程度,必须达到的三个条件:1).使用金属片作为平行电极,且悬空放置;2).选择合适的空隙距离和固化距离;3).纺丝过程中只有一个射流,且使倒锥形稳定而不摆动。
     2.以PVP为基体制备了未掺杂和Co掺杂的排列TiO2纳米线,并对纳米线的形貌,成分和结构进行了表征。电纺丝排列后的纳米线直径为250 nm,高温退火后,纳米线变为串联在一起的TiO2颗粒,直径变小,这与PVP的高温分解有关。Co的掺入促进了TiO2从锐钛矿相向金红石相的转变,当TiO2转变为金红石相时也形成了CoTiO3,说明Co没有完全进入到TiO2金红石相的晶格中,而Co在锐钛矿相中的存在形式还有待进一步确认。同时,在VSM测试中并没有显示出室温铁磁性质,这可能与测试设备的精度有关。
     3.以排列的PVP纳米线为模板在PECVD系统中制备了超长排列且具有高比表面积的SiOx纳米管,并对纳米管的形貌,成分和光学性质进行了表征。制备过程中U型框的使用不但方便了PVP模板线的转移,而且在沉积过程中对包裹的完整性起到了很好的作用。同时,通过烘烤来控制PVP模板线直径,进而控制SiOx纳米管的内径;通过调节沉积时间来控制SiOx纳米管的壁厚。由此,可以在不影响排列长度和取向程度的情况下控制SiOx纳米管的直径。由于管壁光滑致密,随着管径的减小,大部分PVP模板线高温分解后的产物会留在管内。光致发光测试中,SiOx纳米管具有较强的蓝绿发射峰,其中514 nm的发光峰最强并伴有两个位于415 nm和624 nm的肩峰。这个蓝绿发射是由纳米管的缺陷引起的。
     4.以悬空排列的PVP纳米线为模板在HWCVD系统中制备了超长排列的Si纳米管(约4 mm),并对纳米管的形貌,成分和光学性质进行了表征。分别利用烘烤PVP纳米线和调节沉积时间来控制Si纳米管的内径和壁厚。由此,可以在不影响排列长度和取向程度的情况下控制Si纳米管的直径。在反应室不同的位置得到包裹程度不同的纳米管,这是腔体中不同区域解离气体的浓度和运动状态不同引起的。管壁由纳米颗粒或纳米柱组成,但内表面比外表面更加光滑平整。Si纳米管的微区PL谱中出现了红、绿、蓝三个发光带。这些发光带分别是由量子限制—发光中心过程和缺陷中心的辐射复合引起的。
Si nanotubes and SiOx nanotubes are compatible with Si based microelectronic existing widely in information industry and have prospective applications in the optical materials, nanodevice, glass fiber, catalysis and biological field, so they are research hotspot and frontier field nowadays. Meanwhile, the assembly system of nanomaterials also became the research emphasis at present. It emphasized that people designed, assembled and created new system according to their own will, and made this new system have expectable characteristics. Therefore, ultra-long and aligned semiconductor nanofibers and nanotubes have obvious advantages in assembly and application of nanomaterials. The thesis mainly introduced the preparation of ultra-long aligned polymer nanofibers and doped semiconductor nanofibers by electrospinning, and the fabrication of aligned Si and SiOx nanotubes by TUFT process, as well as the investigation of PL mechanism of nanotubes.
     1. Electrospinning with two parallel electrodes is used for fabricated aligned PVP nanofibers. The orientation degree and the length of aligned nanofibers are enhanced by improving the electrospinning technological process. The highly oriented nanofibers were 200 nm in diameter and their length was up to several millimeter. There are three basic requirements for obtaining highly aligned PVP nanofibers in this process:(i) using the suspended sheet metal as parallel electrode; (ii) choosing a suitable gap width and a suitable needle tip-to-target distance; (iii) the jet emerging from the Talylor's cone has only one and stabilized in the effect of electric field.
     2. Using PVP as carrier, undoped and Co-doped TiO2 nanofibers array were fabricated by electrospinning. The nanofibers were 250 nm in diameter. After annealing, the nanofibers decreased and transferred to a succession of nanoparticle, this is relate to the pyrolysis of PVP nanofibers. The doping of Co promoted the TiO2 transformation process from anatase to rutile. CoTiO3 is formed when TiO2 transferred rutile, this result indicates that Co2+didn't enter into the crystal lattice of rutile. And the further investigation of existing form of Co in anatase of TiO2 is still needed. Meanwhile, the Co-doped TiO2 didn't show the room-temperature ferromagnetism by VSM, which may be related to the precision of equipment.
     3. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx) nanotubes with very high aspect ratios have been prepared by plasma enhanced chemical vapor deposition process. In fabrication, the U-shape frame not only offered convenience for transferring the aligned nanofibers, and also made the integrity degree of coating layer well. The inner diameter and wall thickness of tubes were controlled respectively by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. Considering that the SiOx nanotubes are ultra-long and have a smooth tube wall, more remainder of PVP pyrolysis is left in the tubes channel when the diameter of nanotubes decreased. The micro-PL spectrum of SiOx nanotubes shows a strong blue-green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue-green emission is caused by the defects in the nanotubes.
     4. Using aligned suspended polyvinyl pyrrolidone nanofibers array as template, aligned ultra-long (about 4 mm) silicon nanotubes have been prepared by a hot wire chemical vapor deposition process. The inner diameter and wall thickness of Si tubes are controlled respectively by baking the electrospun nanofibers and by coating time. So the outer diameter is easily controlled without sacrificing the orientation degree and the length of arrays. Furthermore, it is found that the integrity degree of coating layer is different at different zones of reaction chamber, which is caused by the different concentration and motion state of dissociated gas in various zones. The tube wall is composed of nano-particle or nano-pillar. and the inner surface of the wall is smoother than the outer surface of the wall. The PL spectra of the thinner Si nanotubes show three light emission bands in the red, green and blue regions. And the luminescence mechanism is explained according to the quantum confinement-luminescence center process and radiative recombination from the defect centers.
引文
1.张立德,牟季美,纳米材料和纳米结构,科学出版社,2001年3月
    2. S. Iijima, Nature 354,56 (1991).
    3.张立德,牟季美,纳米材料学,辽宁科学出版社1994
    4. R.P. Feynman,1960 Eng. Sci.23 22; reprinted in 1992, J. Micromech. Systems.160.
    5. H. Gleiter, Progress in Mater. Sci.33 (1989) 223.
    6.吴越,刘持标,石油化工,1998(27),2112.
    7.都有为、倪刚,物理27(1998)524.
    8. R. E Cavicchi, R. H. Silsbee, Phys. Rew. Lett.52 (1984) 1453.
    9. P. Ball, Li Garwin, Nature 355 (1992) 761.
    10. R. Kubo, A. Kawabata, S. Kobayashi, Annu. Rev. Material. Sci.,1984 (14),49.
    11. A. J. Leggett, S. Chakravarty et al., Rev. Mod. Phys.,1987 (59),1.
    12. K. E. Johnson, J. Appl. Phys.,2000 (87),5365.
    13. S. Y. Chou, Proc. IEEE,1997 (85),652.
    14.钱军民,李旭祥,黄海燕,化工新型材料,2001(29),7.
    15. K. Eberl, Physics World,1997,47.
    16. W. P. Cai, L. D. Zhang, J. Phys.:Condens. Matter.,1996 (8), L591.
    17. S. S. Smith, Nano. Lett.,2001 (1),51.
    18. S. A. Davis, M. Breulmann, K. H. Rhodes, et al., Chem. Mater.,2001 (13),3218.
    19. Z.L. Wang, Adv. Mater.2000,12,1295.
    20. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res.1999,32,435.
    21. Andrei Kolmakov, Martin Moskovits Annu. Rev. Mater. Res.2004.34:151
    22. Y. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides, Chem. Rev.1999,99,1823.
    23. E. I. Givargizov, Highly Anisotropic Crystals (Eds:M. Senechal, S. College), Reidel, Dordrecht, The Netherlands 1987.
    24. J.J. Stejny,. Dlugosz, A. Keller, J. Mater. Sci.1979,14,1291.
    25. W. Noll, Z. Anorg. Chem.1950,261,1.
    26. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett.1964,4,89.
    27. X.F. Duan, C.M. Lieber, Adv. Mater.2000,12,298.
    28. Elemental semiconductors:Y. Wu, P. Yang, Chem. Mater.2000,12,605
    29. Trentler T J, Hickman K M,Goel S C,et al. Science,1995,270 1791
    30. Feldman Y,Wasserman E,Srolovitz D J, et al. Science,1995,267 222
    31. J. A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge 2000, p.4.
    32. Z.L. Wang, J. Phys. Chem. B 2000,104,1153.
    33. Y. Sun, Y. Xia, Science 2002,298,2176.
    34. J.S. Bradley, B. Tesche, W. Busser, M. Maase, M.T. Reetz, J. Am. Chem. Soc.2000, 122,4631.
    35.X.G Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 2000,404,59.
    36. L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc.2000,122,12 700
    37. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y Xia, Chem. Mater.2002,14,4736.
    38. L. Isaacs, D. N. Chin, N. Bowden, Y. Xia, G. M. Whitesides, in Supermolecular Technology (Ed:D. N. Reinhoudt), John Wiley & Sons, New York 1999, pp.1-46.
    39. G.F. Taylor, Phys. Rev.1924,23,655.
    40. Silicon Chemical Etching (Ed:J. Grabmaier), Springer-Verlag, Berlin 1982.
    41. H. Schmid, H. Biebuyck, B. Michel, O.J.F. Martin, Appl. Phys. Lett.1998,72,2379
    42. Whisker Technology (Ed:A. P. Levitt), Wiley-Interscience, New York 1970.
    43. J.R. Heath, F.K. LeGoues, Chem. Phys. Lett.1993,208,263.
    44. G J. Dolan, Appl. Phys. Lett.,1977 (31),337.
    45. J. Jorritsma, M.A.M. Gijs, J.M. Kerkhof, J.G.H. Stienen, Nanotechnology 1996,7. 263.
    46. M. Walther, E. Kaplon, J. Christen, et al. Appl. Phys. Lett.1992,60,521.
    47. T. Muller, K.H. Heinig, B. Schmidt, Nucl. Instrum. Methods Phys. Res.2001,175, 468
    48. A. Sugawara, T. Coyle, G.G. Hembree, et al. Appl. Phys. Lett.1997,70,1043
    49. G Fasol, Science 1998,280,545
    50. R.M. Penner, J. Phys. Chem. B 2002,106,3339.
    51. Y Lu, Y Yin, Z.-Y. Li, Y. Xia, Nano Lett.2002,2,785.
    52. J. C. Hulteen, C. R. Martin, J. Mater. Chem.,1995 (7),1075.
    53. C. R. Martin, Ace. Chem. Res.,1995 (28),61.
    54. R. L. Fleisher, P. B. Price, R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley, CA 1975.
    55. A. Despic, V. P. Parkhutik, in Modern Aspects of Electrochemistry (Eds:J. O. Bockris, R. E. White, B. E. Conway), Vol.20, Plenum Press, New York,1989, Ch6.
    56. H. Masuda, K. Yasui, K. Nishio, Adv. Mater.,2000 (12),1031.
    57. Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying, Chem. Mater.,1999 (11),1659.
    58.吴俊辉,邹建平,濮林,化学物理学报,2000(13),203.
    59. D. Ugarte, A. Chatelain, W. A. de Heer, Science,1996 (274),1897.
    60. R. Ryoo, S. H. Joo, Jun S. J. Phys. Chem. B,1999 (103),7743.
    61. Y. Yin, Y. Lu, Y. Sun, Y. Xia, Nano Lett.,2002 (2),427.
    62. Y. Zhang, N. W. Franklin, R. J. Chen, H. Dai, Chem. Phys. Lett.,2000 (331),35.
    63. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, P. Yang, J. Am. Chem. Soc.125,5254 (2003).
    64. M. Boutnoner, J. Kizling, P. Stenivs, Colloics Surf.,1982 (5),209
    65. S. S. Smith, Nano Lett.,2001 (1),51.
    66. G. S. Attard, J. C. Glyde, C. G. Goltner, Nature,1995 (378),366.
    67. D. Zhang, L. Qi, J. Ma, H. Cheng, Chem. Mater.,2001 (13),2753.
    68. J. H. Fendler, Membrane Mimetic Chemistry,1982, Wiley, New York.
    69. A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez Jr., P. G. Schultz, Nature,1996 (382),609.
    70. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature,1996 (382),607.
    71. S. N. Ruddlesden, P. Popper, Acta Crys.11,465 (1958)
    72. A. F. Wells, Structural Inorganic Chemistry,3,4841962
    73. R. Tenne, Nature Nanotechnology 1,103 (2006).
    74. M. Harada, M. Adachi,Adv. Mater:2000,12,839.
    75. Z. L. Wang, R. P. Gao, J. L. Gole, J. D. Stout, Adv. Mater.2000,12,1938.
    76. M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, P. Pirouz, Appl. Phys. Lett. 2002,80,491.
    77. Y. D. Yin, Y. Lu, Y. G. Sun, Y. N. Xia, Nano Lett.2002,2,427.
    78. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, P. Yang, J. Am. Chem. Soc.2003,125, 5254.
    79. C. Zollfrank, H. Scheel, P. Greil, Adv. Mater,2007,19,984.
    80. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, Adv. Mater.2003,15,70.
    第一章 绪论
    81. Y.B. Li, Y. Bando, D. Golberg, Adv. Mater.16,37 (2004).
    82. A.K. Singh, V. Kumar, Y. Kawazoe, Phys. Rev. B 72,155422 (2005).
    83. M.W. Zhao, R.Q. Zhang, Y.Y. Xia, J. Appl. Phys.102,024313 (2007).
    84. G.G. Qin, Y.Q. Jia, Solid State Commun.86,559 (1993).
    85. H.Z. Song, X.M. Bao, Phys. Rev. B 55,6988 (1997).
    86. Z. Jiang, T. Xie, X.Y. Yuan, B.Y. Geng, G.S. Wu, G.Z. Wang, G.W. Meng, L.D. Zhang, Appl. Phys. A 81,477 (2005).
    87. M. Law, J. Goldberger, and P. D. Yang, Annu. Rev. Mater. Res.34,83 (2004)
    88. W. Shi, H. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, J. Am. Chem. Soc.123,11095(2001)
    89. J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, et al. Adv. Mater.14,1219 (2002)
    90. D. Wang, B. A. Sheriff, M. C. McAlpine, and J. R. Heath, Nano Res.1,9 (2008)
    91. Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, Nano Lett.3,149 (2003).
    92. D. F. Perepichka and F. Rosei, Small 2,22 (2006).
    93. S. B. Fagan, R. J. Barierle, R. Mota, A. J. R. Silva, and A. Fazzio, Phys.Rev. B: Condens. Matter Mater. Phys.61,9994 (2000).
    94. S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. H. Choi, H. K. Kang, C. W. Yang, and Y. H. Lee, Adv. Mater.15,1172 (2003).
    95. J. Hu, Y. Bando, Z. Liu, J. Zhan, D. Golberg, T. Sekiguchi. Angew. Chem. Int. Ed. 2004,43,63.
    96. Y.W. Chen, Y.H. Tang, L.Z. Pei, C. Guo, Adv. Mater.17,564 (2005).
    97. Y. Dzenis, Science 304,1917 (2004).
    98. D. Li, Y. Xia, Adv. Mater.16,1151 (2004).
    99. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, and A. Greiner, Adv. Mater.12,637 (2000).
    100. H. Hou, Z. Jun, A. Reuning, A. Schaper, J.H. Wendorff, A. Greiner, Macromolecules, (2002) 35 2429
    101. W. Liu, M. Graham, E. A. Evans, and D. H. Reneker, J. Mater. Res 17,3206 (2002).
    102. H. Dong, S. Prasad, V. Nyame, W. E. Jones, Jr, Chem Mater,2004,16,371
    1. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, and A. Greiner, Adv. Mater.12,637 (2000).
    2. X. Lord Rayleigh, Dublin Philos 14,184 (1882)
    3. X. Lord Rayleigh, Phil. Mag 48,321 (1899).
    4. Xinhua Zong, Kwangsok Kim et al. Polymer 43,4403 (2002).
    5. Christopher J Buchko, Loui C Chen et al. Polymer 40,7397 (1999).
    6. G. I. Taylor, London:Proceedings of the Royal Society 291,156(1966).
    7. G. I. Taylor, London:Proceedings of the Royal Society 313,453(1969).
    8. J.M. Deitzel, J.Kleinmeyer, D.Harris, N.C. Beck Tan, Polymer 42,261 (2001)
    9. J.M.Deitzel, J.D.Kleinmeyer et al. Polymer 42,8163 (2001).
    10. Y.M.Shin, M.M.Hohman et al, Polymer 42,9955 (2001).
    11. D.H. Reneker, A.L. Yarin et al, Journal of Applied Physics 87,4531 (2000)
    12. T.A.Kowalewski, S.Blonski, Bulletin of the Polish Aeademy of sciences Teehnieal Seienees 53,385 (2005).
    13. A. L. Yarin, D. H. Reneker, Journal of Applied Physics 98,064501 (2005).
    14. A. L. Yarin, D. H. Reneker, Polymer 49,2387 (2008).
    15. E. Zussman, A. L. Yarin et al. Applied Physics Letters 82,973 (2003).
    16. G.. C. Rutledge, M. Y. Shin et al. National Textile Center Annual Report:November 2000:1-9.
    17. A.F. Spivak, Y.A. Dzenis, Appl Phys Lett,173,3067 (1998).
    18. Larsen G, Velarde-Ortiz R, Minchow K, J. Am. Chem. Soc.125 (2003) 1154.
    19. Wang Y, Furlan R, Ramos I, et al. Appl. Phys. Lett.78 (2004) 1043.
    20. Shao Changlu, Guan Hongyu, Liu Yichun, et al. Journal of Crystal Growth 267 (2004) 380.
    21. Guan Hongyu, Shao Changlu, Wen Shangbin, et al. Inorganic Chemistry Communications (6) (2003) 1302.
    22. Guan Hongyu, Shao Changlu, Wen Shangbin, et al. Materials Chemistry and Physics 82(2003) 1002.
    23. Shao Changlu, Guan Hongyu, Liu Yichun. et al. Journal of Solid State Chemistry 177(2004)2628.
    24. Guan Hongyu, Shao Changlu, Chen Bin, et al. Inorganic Chemistry Communications (6) (2003) 1409.
    25. Choi S S, Lee S G, Im S S, et al. Sci. Lett.22 (2003) 891.
    26. Li Dan, Xia Younan, Nano Letter 3(4) (2003) 555.
    27.姚永毅,朱谱新,叶海,吴大诚,21世纪高技术、高性能、高附加值新型化纤发展论坛-论文集.中国纺织工程学会:2004.5,27-28
    28.王波,胡平,新材料产业6,58(2007)
    29. D.H. Sun. L.W. Lin, et al. Nano Letter 6,839 (2006)
    30. A.L. Yarin, S. Koombhongse, D.H. Reneker, J. Appl. Phys.90,4836 (2001).
    31. K.H. Lee, H.Y. Kim, M.S. Khil et al. Polymer,44.1287 (2003).
    32. Y.M. Shin, M.M.Hohman, M.P.Brenner, G.C. Rutledge, Polymer 42,9955 (2001).
    33. A.L. Yarin, YA. Dzenis, D.H. Reneker, Mechanics Research Communications 27,37 (2000).
    34. D.H. Reneker, A.L. Yarin, HaoFong, et al. J. Appl. Phys.87,4531 (2000).
    35. H. Fong, I. Chun, D.H. Reneker, Polymer 40,4585 (1999).
    36.I. Chun, D.H. Reneker, H. Fong et al. Journal of Advanced Mater 31,36 (1999)
    37. Sun Z, Zussman E,Yarin A L. Wendorff J H and Greiner A 2003, Adv. Mater.15 1929
    38. Zhang Y, Huang Z M, Xu X, Lim C T and Ramakrishna S 2004 Chem. Mater.16 3406
    39. Li D and Xia Y 2004 Nano Lett.4933
    40. Schreuder-Gibson H. Gibson P, Tsai P, Gupta P and Wilkes G 2004, INJ 13 39
    41. Gupta P and Wilkes G L 2003 Polymer 44 6353
    42. S. Maheshwari, H.C. Chang, Adv. Mater.20 1
    43. C.J. Thompson, G.G. Chase, A.L. Yarin, Polymer 48,6913 (2007)
    44. H. Fong. I. Chun, D.H. Reneker, Polymer 40,4585 (1999)
    45. A. Koski, K. Yim, S. Shivkumar, Materials Letters,58,493 (2004).
    46. M.S. Khil, H.Y. Kim, M.S. Kim, S.Y. Park, D.R. Lee, Polymer 45,295 (2004)
    47.张玉军,黄玉东,陆春,材料科学与工艺6,287(2004)
    48. Christopher J. Hogan Jr., Ki Myoung Yun, Da-Ren Chenb, I.Wuled Lenggoro, Pratim Biswas, Kikuo Okuyama, Colloids and Surfaces A:Physicochem. Eng. Aspects 311 (2007)67-76
    49. Megelski S, Stephens J S, Chase D B, et al. Macromoecules 35 (2002) 8456.
    50. Chan Kim, Young Il Jeong, Bui Thi Nhu Ngoc, Kap Seung Yang, Masahito Kojima, Yoong Ahm Kim, Morinobu Endo, and Jae-Wook Lee, Small 3,91 (2007)
    51. D. Li, G. McCann, M. Gratt, Y. Xia, Chem. Phys. Lett.350 (2004) 671.
    52. Riboldi Stefania A, Sampaolesi Maurilio, Ncucnschwander Pete, et al. Biomaterials 26,4606 (2005)
    53. J.A. Matthews, G.E. Wuek, D.C. Simpson, et al.3,232 (2002)
    54. Chu Benjamin, Benjamin S, Fang Dufei, et al. US 6685956,2004-02-03
    55. E.R. Kenawy, G.L. Bowlin, et al. Journal of Controlled Release 81,57 (2002)
    56. Smith Daniel, et al. US 879386,2001-06-12.
    57. S.K. Dhirendra, W.R. Kyle, K.K. Frank, et al. Biomed. Mater. Res. Part B:Appl. Biomater 70B,286 (2004)
    58. R. Gopal, S. Kaur, C.Y. Feng, et al. Journal of Membrance Science 289,210 (2007)
    59. K. Gao, X.G. Hu, C.S. Dai, et al. Materials Science and Engineering 131,100 (2006)
    60. Chang Huu Lee, Ho Joon Shin, In Hee Cho,et al. Biomaterial 26,1261 (2005)
    61. Y.F. Yao, Z.Z. Gu, J.Z. Zhang, et al. Adv. Mater 19,3701 (2007)
    62. Matthews J A, Wnek G E, Simpson D G and Bowlin G L 2002 Biomacromolecules 3 232
    63. Kim KW, Lee K H, Khil M S, Ho Y S and Kim H Y 2004 Fiber Polym.5 122
    64. Chew S Y, Wen J, Yim E K F and Leong K W 2005 Biomacromolecules 6 2017
    65. Katta P, Alessandro M, Ramsier R D and Chase G G 2004 Nano Lett.4 2215
    66. Sundaray B, Subramanian V, Natarajan T S, Xiang R Z, Chang C C and Fann W S 2004 Appl. Phys. Lett.84 1222
    67. H. Pan, L.M. Li, L. Hu, X.J. Cui, Polymer 47,4901 (2006)
    68. Teo WE, Kotaki M, Mo X M and Ramakrishna S 2005 Nanotechnology 16 918
    69. Theron A, Zussman E and Yarin A L 2001 Nanotechnology 12 384
    70. Smit E, Buttner U and Sanderson R D 2005 Polym. Commun.46 2419
    71. Li D,Wang Y and Xia Y 2004 Adv. Mater.16 361
    72. Teo WE and Ramakrishna S 2005 Nanotechnology 16 1878
    73. R. Dersch, T.Q. Liu, A.K. Schaper, A. Greiner, J.H. Wendorff, Journal of Polymer Science:Part A:Polymer Chemistry 41,545 (2003)
    74. Dalton P D, Klee D and Moller M 2005 Polym. Commun.46 611
    75. J. Rafique, J. Yu, J.L. Yu, G Fang, Appl. Phys. Lett.91,063126 (2007)
    76. D.Y. Yan, B. Lu, Y. Zhao, X.Y. Jiang, Adv. Mater.19,3702 (2007).
    77. R. Schropp, K. Feenstra, E. Molenbroek, H. Meiling, and J. Rath, Phil. Mag. B 76, 309(1997).
    78. H. Wiesmann, A. K. Gosh, T. McMahon, and M. Strongin, J. Appl. Phys.50,3752 (1979)
    79. H. Matsumura and H. Tachibana, Appl. Phys. Lett.47,833 (1985)
    80. H. Matsumura, Jap. J. Appl. Phys., Part 2 25. L949 (1986).
    81. J. K. Rath, A. J. Hardeman, C. H. M. van der Werf. P. A. T. T. van Veenendaal, M. Y. S. Rusche, and R. E. I. Schropp. Thin Solid films 430,67 (2003)
    82. J. Jang and K. Lim, Jpn. J. Appl. Phys. Part Ⅰ 35.5625 (1996).
    1. Chew S Y, Wen J, Yim E K F and Leong K W 2005 Biomacromolecules 6 2017。
    2. Li D,Wang Y and Xia Y 2004 Adv. Mater.16 361.
    3. D. Li, Y. Wang, Y. Xia, Nano Lett.3 (2003) 1167.
    4. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science 291 (2001) 854.
    5. S. A. Chambers, T. Droubay, C. M. Wang, A. S. Lea, R. F. C. Farrow, L. Folks, V. Deline, and S. Anders, Appl. Phys. Lett.82 (2003) 1257.
    6. K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnana, J. Appl. Phys.97 (2005) 10D320.
    7. H. H. Nguyen, W. Prellier, J. Sakai, and A. Ruyter, J. Appl. Phys.95 (2004) 7378.
    8. C. M. Wang, V. Shutthanandan, S. Thevuthasan, T. Droubay, S. A. Chambers, J. Appl. Phys.97 (2005) 073502.
    9. R. Suryanarayanana, V. M. Naikb, P. Kharela, P. Talagalaa and R. Naik, Solid State Commun.133(2005)439.
    1. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, C. R. Martin, Science 2002.296,2198.
    2. D. T. Mitchell, S. B. Lee, L. Trofin, N. C. Li, T. K. Nevanen, H. Soderlund, C. R. Martin, J. Am. Chem. Soc.2002,124,11864.
    3. M. Harada, M. Adachi, Adv. Mater.2000,12,839.
    4. Z. L. Wang, R. P. Gao, J. L. Gole, J. D. Stout, Adv. Mater.2000,12.1938.
    5. M. Zhang. E. Ciocan. Y. Bando, K. Wada, L. L. Cheng, P. Pirouz, Appl. Phys. Lett. 2002,80,491.
    6. Y. D. Yin, Y. Lu, Y. G. Sun, Y N. Xia, Nano Lett.2002,2,427.
    7. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, P. Yang, J Am. Chem. Soc.2003,125. 5254.
    8. C. Zollfrank, H. Scheel, P. Greil, Adv. Mater,2007,19,984.
    9. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, Adv. Mater.2003,15,70.
    10. Y.B. Li, Y. Bando, D. Golberg, Adv. Mater.16,37 (2004).
    11. A.K. Singh, V. Kumar, Y. Kawazoe, Phys. Rev. B 72,155422 (2005).
    12. M.W. Zhao, R.Q. Zhang, Y.Y. Xia, J. Appl. Phys.102,024313 (2007).
    13. G.G. Qin, Y.Q. Jia, Solid State Commun.86,559 (1993).
    14. G.G. Qin, X.S. Liu, S.Y. Ma, J. Lin, G.Q. Yao, X.Y. Lin, K.X. Lin, Phys. Rev. B 55, 12876 (1997).
    15. H.Z. Song, X.M. Bao, Phys. Rev. B 55,6988 (1997).
    16. G.R. Lin, C.J. Lin, K.C. Yu, J. Appl. Phys.96,3025 (2004).
    17. Z. Jiang, T. Xie, X.Y. Yuan, B.Y. Geng, G.S. Wu, G.Z. Wang, G.W. Meng, L.D. Zhang, Appl. Phys. A 81,477 (2005).
    18.严瑞瑄,水溶性高分子,化学工业出版社,1998.6.
    19. H. Schmiers, J. Friebel, P. Streubel, R. Hesse, and R. Kopsel, Carbon 37,1965 (1999).
    20. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, and A. Greiner, Adv. Mater.12,637 (2000).
    21. W. Liu, M. Graham, E. A. Evans, and D. H. Reneker, J. Mater. Res 17,3206 (2002).
    22. H. Dong, S. Prasad, V. Nyame, W. E. Jones, Jr, Chem Mater,2004,16,371.
    23. F.G. Bell, L. Ley, Phys. Rev. B 37,8383 (1988).
    24. A. Barranco, F. Yubero, J.P. Espinos, J.P. Holgado, A. Caballero, A.R. Gonzalez-Elipe, J. A. Mejias, Vacuum 67,491 (2002).
    25. G.E. Jellison, Jr., M.F. Chisholm, S.M. Gorbatkin, Appl. Phys. Lett.62,3348 (1993).
    26. S. Hazra, I. Sakata, M. Yamanaka, E. Suzuki, Phys. Rev. B 69,235204 (2004).
    27. Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You, Mater. Sci. Eng. B.72,117 (2000).
    28. G.R. Lin, C.J. Lin, C.K. Lin, L.J. Chou, Y.L. Chueh, J. Appl. Phys.97,094306 (2005).
    29. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G.F. Cerofolini, L. Meda, E. Grilli, M. Guzzi, Appl. Phys. Lett.66,851 (1995).
    30. H. Takagi, H. Owada, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett.56, 2379(1990).
    31. L.T. Canham, Appl. Phys. Lett.57,1046 (1990).
    32. J.C. Cheang-Wong, A. Oliver, J. Roiz, J.M. Hernandez, L. Rodrigues-Fernandez, J.G. Morales, A. Crespo-Sosa, Nucl. Instrum. Methods Phys. Res. B 175-177,490 (2001).
    1. S.B. Fagan, R. Mota, R.J. Baierle. G. Paiva, A.J.R. da Silva, A. Fazzio, Journal of Molecular Structure (Theochem) 539,101 (2001).
    2. R.Q. Zhang, S.T. Lee, Chi-Kin Law, Wai-Kee Li, Boon K. Teo. Chemical Physics Letters,364,251 (2002).
    3. M. Zhang, Y.H. Kan, Q.J. Zang, Z.M. Su, R.S. Wang. Chemical Physics Letters 379, 81 (2003)
    4. S. B. Fagan, R. J. Barierle, R. Mota. A. J. R. Silva, and A. Fazzio. Phys.Rev. B: Condens. Matter Mater. Phys.61.9994 (2000).
    5. S.Iijima, Nature 354,56(1991).
    6. Alfredo M. Morales and Charles M. Lieber, Science 279,208 (1998).
    7. M. Menon, N. Antonis, G. Froudakis, Nano Lett.2,301 (2002).
    8. K.A. Singh, T.M. Briere, V. Kumar, Y. Kawazoe, Phys. Rev. lett.91,146802 (2003).
    9. A.K. Singh, V. Kumar, T.M. Briere, Y. Kawazoe, Nano Lett 2,1243 (2002).
    10. V. Kumar, Y. Kawazoe, Phys. Rev. lett.90,05502 (2003).
    11. J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, and D. Yang, Adv. Mater.14,1219 (2002).
    12. S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. H. Choi, H. K. Kang, C. W. Yang, and Y. H. Lee, Adv. Mater.15,1172 (2003).
    13. J. Hu, Y. Bando, Z. Liu, J. Zhan, D. Golberg, T. Sekiguchi, Angew. Chem. Int. Ed.43, 63 (2004).
    14. Y.W. Chen, Y. H. Tang, L.Z. Pei, C. Guo, Adv. Mater.17,564 (2005).
    15. S. Mukhopadhyay, C. Das, and S. Ray, J. Phys. D:Appl. Phys.37,1736 (2004).
    16. S. Klein, F. Finger, R. Carius, M. Stutzmann, J. Appl. Phys.98,024905 (2005).
    17.陈国,郭晓旭,朱美芳,孙景兰,许怀哲,韩一琴,物理学报,46,2015(1997).
    18. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Phys. Rev. B 48,2827 (1993).
    19. S. R. Jadkar, J. V. Sali, M. G. Takwale, D. V. Musale, and S. T. Kshirsagarb, Thin Solid Films 395,206 (2001).
    20. S. He, B. Hoex, D. Inns, I. C. Brazil, P. I. Widenborg, and A. G. Aberle, Solar Energy Materials and Solar Cells,93,1116 (2009).
    21. Q. Cheng, S. Xu, Kostya (Ken) Ostrikov, Nanotechnology 20,215606 (2009).
    22. S. Veprek, F.-A. Sarott, Z. Iqbal, Phys. Rev. B 36,3344 (1987).
    23. Z. H. Kang, C. H. A. Tsang, Z. D. Zhang, M. L. Zhang, N. B. Wong, J. A. Zapien, Y. Y. Shan, and S. T. Lee, J. Am. Chem. Soc.129,5326 (2007).
    24. Z. H. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N. B. Wong, and S. T. Lee, Adv. Mater.21,661 (2009).
    25. B. B. Li, D. P. Yu, and S. L. Zhang, Phys. Rev. B 59,1645 (1999).
    26. Md. N. Islam and S. Kumar, Appl. Phys. Lett.78,715 (2001)
    27. G.G. Qin, H.Z. Song, B.R. Zhang, J. Lin, J.Q. Duan, and G.Q. Yao, Phys. Rev. B 54, 2548(1996).
    28. H. Z. Song and X. M. Bao, Phys. Rev. B 55,6988 (1997).
    29. G. G. Qin, Mater. Res. Bull.33,1857 (1998).
    30. Z. G. Bai, D. P. Yu, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, S. Q. Feng, J. Xu, and L. P. You, Mater. Sci. Eng. B.72,117 (2000).
    31. Z. Jiang, T. Xie, X. Y. Yuan, B. Y. Geng, G. S. Wu, G. Z. Wang, G. W. Meng, and L D. Zhang, Appl. Phys. A 81,477 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700