硅微结构材料的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,微结构材料特别是硅基半导体微结构材料的制备及其在能源、传感器等方面的应用已经成为物理、化学、材料、生物、电子等诸多学科领域学者所共同关注的焦点。微结构材料及其器件已经成为二十一世纪初信息技术发展的主要方向之一。
     本论文从一维、二维硅微结构材料——多孔硅一维光子晶体和硅微通道入手,首先研究了HF溶液中多孔硅一维光子晶体的形成机制,同时深入地研究了该微结构材料的制备方法,并通过大量实验进行参数优化,从而得到目标多孔硅一维光子晶体的制备工艺条件,随后开展了阵列化岛状多孔硅一维光子晶体在非制冷红外探测器中的应用研究;另一方面,制备了具有较高深宽比的硅微通道结构材料,并开展了它在超级电容器、直接甲醇燃料电池和生物传感器等方面的研究工作,成功制备了基于硅微通道负载金属镍(Ni/Si-MCP)、负载氧化镍(NiO/Si-MCP)和负载金属镍-钯(Ni-Pd/Si-MCP)的纳米复合电极,进一步研究了NiO/Si-MCP电极材料的电容特性,Ni/Si-MCP和Ni-Pd/Si-MCP两种复合材料电极对甲醇和葡萄糖的电催化氧化性能。实验和理论研究结果表明:阵列化岛状多孔硅一维光子晶体的制备方法及其在非制冷红外探测领域应用有一定创新和实用价值;硅微通道负载金属镍-钯复合电极的制备及其在直接甲醇燃料电池中的应用创新更具特色,对发展新型直接甲醇燃料电池一体化电极意义重大。总之,硅微结构材料在红外探测器、超级电容器、直接醇类燃料电池、生物传感器及生物燃料电池等领域均有着巨大的潜在应用价值。本论文主要研究内容和成果包括:
     本部分主要对多孔硅一维光子晶体的形成原理及相关理论基础进行了深入探讨,并在此基础上结合MATLAB软件对多孔硅一维光子晶体的工艺过程进行了参数模拟分析和讨论,为成功制备不同禁带中心波段的多孔硅一维光子晶体提供了理论支持。
     在此部分我们首先采用传输矩阵法并利用MATLAB软件对中心波段分别位于5μm、6μm、7μm、10μm的多孔硅一维光子晶体结构进行理论模拟分析和设计;其次在EC-LAB II(自制电化学实验平台)上采用ADLink2501数据卡和Labview软件对实验过程进行实时控制,调控样品制作过程中的最佳运行参数,制备目标样品;然后通过SEM和FTIR等测量技术对其氧化前后的的形貌及光学性能进行检测分析,结果发现氧化后出现禁带中心蓝移现象;最后讨论了其红外频谱宽角度反射器实现的可行性。
     为了更好地符合实际器件制作需求,我们结合上述各波段非阵列化光子晶体的制作过程参数及实验中氧化工艺影响,通过调整理论模拟及实验程控参数成功制备了中心波段位于12μm的阵列化岛状多孔硅一维光子晶体,为构建高灵敏度的非制冷红外探测器提供了有益的基础性工作。
     本部分阐述了如何结合传统微电子加工工艺与电化学腐蚀技术来制备硅微通道的方法,其中主要包括氧化、光刻、KOH溶液中倒金字塔诱导坑的刻蚀、HF溶液中低温程控刻蚀等工艺步骤,以及一些自制高深宽比硅微通道刻蚀设备结构特点和使用方法等。最后对制备样品进行测试和表征,结果显示用该方法可制备出开口为5μm×5μm,深度最高可达250μm,且形貌均一,结构完整的硅微通道结构。此外,探索了在硅微通道板上进行无磷化学镀Ni薄膜的工艺过程,并进一步研究了以NiO/Si-MCP纳米复合材料为电极材料制备新型超级电容器的可行性。
     本部分首先研究了直接甲醇燃料电池的现状和目前阳极催化剂所存在的最主要的问题,然后对制备好的硅微通道进行修饰改性,采用化学镀技术,在其表面和内壁上沉积了镍和镍-钯镀层,并对两种复合镀层材料进行表征后制备成电极,以检测其在碱性溶液中两种结构对甲醇的催化氧化性能。实验结果显示:Ni/Si-MCP纳米复合电极对甲醇存在敏感特性,但催化氧化活化电位较高;而Ni-Pd/Si-MCP纳米复合电极可以更容易和更好地催化氧化甲醇,并能极大降低甲醇氧化活化能;说明硅微通道是一个非常好的催化剂载体,它使催化剂分布得更加均匀且可提供较大的催化反应比表面积,较规则的通道也有利于溶液的流通。同时,一系列实验测试预示Ni-Pd/Si-MCP复合材料电极在直接甲醇燃料电池领域有极广泛的应用前景,为醇类生物燃料电池一体化催化电极的进一步研究提供了良好的平台。另一方面,本部分还进行了Ni/Si-MCP与Ni-Pd/Si-MCP复合材料电极对葡萄糖催化氧化的性能实验研究,结果显示两种复合材料电极都会对葡萄糖浓度敏感,但是Ni-Pd/Si-MCP复合材料电极对葡萄糖敏感度更高,其灵敏度可达81.4μA mM-1,检测限可达5μM。显示了Ni-Pd/Si-MCP复合材料电极在构建葡萄糖燃料电池和葡萄糖传感器方面有巨大潜力。
     综上所述,本文主要成果有:首先,制备了一种应用于红外热释电探测器衬底结构的既可绝热又可对特定波段红外光有较好反射效果的阵列化岛状多孔硅一维光子晶体结构,为构建高性能的硅基红外探测器衬底提供了可行方案;其次,发展了一种以硅微通道(Si-MCP)阵列为支撑结构的非贵金属电催化电极材料(Ni-Pd/Si-MCP),其催化剂分散良好,利用效率高;第三,研究了基于Ni-Pd/Si-MCP一体化催化电极对甲醇的催化氧化性能,研究结果表明该电极作为直接甲醇燃料电池(DMFC)的阳极材料对甲醇有良好的催化氧化能力,可实现较负的开启电位和较大的催化电流密度,在构建新型DMFC方面有巨大应用潜力;最后,讨论了Ni-Pd/Si-MCP复合材料电极在新能源以及生物传感器方面的应用。
     总之,该课题的研究方法及成果一方面对构建高效红外热释电探测器提供了新的可行方案,另一方面对发展低成本、可集成、一体化新型直接甲醇燃料电池或新型可集成生物传感器系统具有重要意义,为微纳技术在绿色能源和新型传感器器件应用领域研究提供了丰富素材,具有一定科研价值,其成果的进一步发展必将产生巨大的社会和经济效益。
In recent years, the preparation and application of the microstructural materials, especially the microstructural semiconductors, have attracted more and more attention in the field of physics、chemical、material、electronics and etc.. The microsturctural and the micro-devices will initialize a new technology revolution in the 21st century.
     In this thesis, the preparations of one-dimensional and two-dimensional silicon microstructural materials, on the one hand, one-dimensional oxidized porous silicon photonic crystal were investigated firstly. The formation mechanisms and the preparation methods of one-dimensional oxidized porous silicon photonic crystal were studied deeply. Based on a large number of experimental a series of optimality conditions in experiment were obtained. The islands array of 1D porous silicon photonic crystal reflector for far infrared image detector was realized. On the other hand, Silicon microchannel (Si-MCP) thin film with high surface to volume ratio has been fabricated by conventional microelectronics technology. The technology of electroless plating nickel on Si-MCP and their potential application such as electrochemical supercapacitors, directed methanol fuel cells (DMFCs), biosensor and bio-fuel cells were studied deeply. Some innovative progresses had been achieved in the application in uncoolled infrared sensor based on 1D porous silicon photonic crystal reflector islands array, but the fabrication of Ni-Pd/Si-MCP electrode and their application in DMFCs and biosensor as well as bio-fuel cells were the key innovative content of this thesis. The mainly works are listed as following:
     The mechanism and the related theory of one dimensional porous silicon photonic crystal had been analyzed. Then in combination with the principle of silicon electrochemical etching and the software of Matlab, the parameters were proposed for the formation of one dimensional porous silicon photonic crystal.
     The most optimized parameters, such as current density, HF concentration, the type of substrate, the formation temperature, the RTO time and temperature were obtained by a serial of experiment. Then through the transfer-matrix method (TMM) designed, the porous silicon photonic crystals with the PBG gap ranging in mid 5,6,7μm were formatted. Considering device application of photonic crystal for uncoolled infrared sensors, concerns must be taken on the following issues. One was the cool part and the interconnections doesn't need thermal insulator. Moreover, when fabricated large area Photonic crystal layers for sensor, the mechanical properties must had better stability. But the experimental results show that if increase the layers to enhance the optical properties, the surface of the photonic crystal will crack. More importance the interconnection between each unit was difficulty during application in devices. So the localization islands array of photonic crystal area was fabricated which PBG gap ranging in mid 12μm. Fourier transform infrared spectroscopy (FTIR) was applied to check the difference before and after oxidation, contrast and comparison with simulation. It is found that the center wavelength was shifted to short. When the incidence angle reaches 50°, it still had a wide bandwidth which proves to be a good reflective mirror within wide incidence angles (50°) for far-infrared wavelength.
     In this part, the fabrication process and the equipment of MCP were introduced briefly by the combination of lithography and electrochemical etching technology. From SEM images, it is clearly that the connective film is composed of a regular cube array with silicon walls between them. Both the length and width of the silicon MCP can be varied by choosing the etching time, enchant and temperature. In our experiments, the distance between each cube is about 1μm, the side length of each cube is about 5μm, and the depth can reach about 250μm. There are little impurities in each channel. Then the optimum conditions of electroless plating nickel films on Si-MCP were studied. The feasibility of Electrochemical Supercapacitors based on NiO/Si-MCP nanocomposite was discussed.
     The fabricated high surface to volume ratio silicon microchannel plates were modified by electroless plating Ni and Ni-Pd technology, the morphologies of the Ni/Si-MCP and Ni-Pd/Si-MCP composites were studied by SEM. The compositions of them were determined by EDS, and the catalytic abilities were obtained by a LK3200A electrochemical workstation (Tianjin, China).
     It is found that the 3D structure constitutes a proton conductive path from the catalysts to electrolyte membranes thereby playing an important role in the performance of the DMFCs and glucose biosensors or bio-fuel cells. Besides the good electronic conductivity, the silicon MCP had well-ordered channels that bode well for facile molecular transport of the reactants and products enhancing molecular conversion. The high volume to surface ratio increases the reaction area, and so more catalyst nanoparticles can be deposited onto the electrode surface resulting in the high surface reactivity. So this new catalyst supported by the silicon MCP electrode can significantly enhance the electrode kinetics.
     In conclusion, the silicon micorstuctural materials of one-dimensional oxidized porous silicon photonic crystal and silicon microchannel plates can be formed by electrochemical method under normal conditions. Their good performance make some potential cells and sensor application like direct methanol fuel cells and glucose biosensor.
引文
[1]S.I. Raider, R. Flitsch and M.J. Palmer, Oxide growth on etched silicon in air at room temperature [J]. J. Electrochem. Soc.122 (1975) 413-418
    [2]Japan Patent 49-19090,1974, USA Patent 3640 806,1972
    [3]M. Zdeblick, Microfabricated thermopneumatic actuator for use in fluid regulation systems and other integrated fluidic circuits, ARPA Report, Redwood Micro-system, Menlo park,1995, (CA):17-19
    [4]吴一辉,《微机电系统(MEMS):》专题文章导读[J].光学精密工程,13(2005)117
    [5]端木庆铎,李野,卢耀华等,高长径比微孔阵列及其应用[J].第四届全国微米/纳米技术学会议专刊(上海),(2000)276-279
    [6]V.K. Dwivedi, R. Gopal, and S. Ahmad, Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices [J]. Microelectronics Journal 31 (2000) 405-410
    [7]V. Lysenko, S. Perichon, B. Remaki, and D. Barbier, Thermal isolation in microsystems with porous silicon [J]. Sens. Actuators A 99 (2002) 13-24
    [8]V. Kochergin, H. Foell, Novel optical elements made from porous Si [J]. Mater. Sci. Eng. R 52 (2006) 93-140
    [9]D.R. Huanca, F.J. Ramirez-Fernandez, W.J. Salcedo, Porous silicon optical cavity structure applied to high sensitivity organic solvent sensor [J]. Microelectron. J. 39 (2008) 499-506
    [10]X.M. Chen, J.L. Lin, D. Yuan, P.L. Ci, P.S. Xin, S.H. Xu, L.W. Wang, Obtaining a high area ratio free-standing silicon microchannel plate via a modified electrochemical procedure [J]. J. Micromech. Microeng.18 (2008) 037003-037005
    [11]J.L. Lin, X.M. Chen, S.H. Xu, P.S. Xin, L.W. Wang, Investigation of the formation of undercut during the fabrication of silicon microchannels by electrochemical etching [J]. The 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (2008) 74-77
    [12]R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth [J]. Appl. Phys. Lett.4 (1964) 89-90
    [13]S.S. Brenner, G.W. Sears, Mechanism of Whisker Growth-Ⅲ Nature of Growth Sites [J]. Acta Met.4 (1956) 268-270
    [14]Y.W. Wang, V. Schmidt, S. Senz, Epitaxial growth of silicon nanowires using an aluminium catalyst [J]. Nature nanotechnology 1 (2006) 186-189
    [15]X.X. Li, T. Ono, Y.L. Wang, M. Esashi, Ultrathin single-crystalline-silicon cantilever resonoatrs:Fabrication technology and significant specimen size effect on Young's Modulus [J]. Applied Physics letters 83 (2003) 3081-3083
    [16]T. Toriyama, Y. Tanimototo, S. Sugiyama, Characteristics of silicon nano wire as piezoresistor for nano electro mechanical systems [J]. IEEE conference of MEMS (2001) 305-308
    [17]D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Small-diameter silicon nanowire surfaces [J]. Science 299 (2003) 1874-1877
    [18]L.T. Canham, Silicon Quantum Wire Array Fabricated by Electrochemical and Chemical Dissolution of Wafers [J]. Appl.Phys.Lett.57 (1990) 1046-1048
    [19]刘小兵,史向华,多孔硅与全硅基纳米薄膜发光理论及应用[J].长沙国防科技大学,(2002)6
    [20]A. Loni, L.T. Canham, M.G. Berger, et al., Porous Silicon Multilayer Optical Waveguides [J]. Thin Solid Films 267 (1996) 143-146
    [21]O. Bisi, S. Osscini, L. Pavesi, Porous Silicon: a Quantum Sponge Structure for Silicon Based Optoelectronics [J]. Surface Science Reports 38(1-3) (2000) 1-126
    [22]Z.M. Rittersma, A. Bodecker, et al., A Novel Surface-Micromachined Capacitive Porous Silicon Humidity Sensor [J]. Sensor and Actuators 68(1-3) (2000) 210-217
    [23]J. Charrier, M. Kloul, et al., Structural and optical studies of porous silicon buried waveguides:Effects of oxidation and pore filling using DRI dyes [J]. Optical Materials,2007,doi:10.1016/j.optmat.2006.12.003
    [24]龙永福,郭杰荣,多孔硅在射频/微波电路中的研究进展[J].湖南文理学院学报,17(3)(2005)20-23
    [25]田斌,胡明,基于热绝缘的多孔硅技术及其在微传感器中的应用[J].无机材料学报,20(3)(2005)545-549
    [26]陈忠民,刘泽文,用于RF无源器件的氧化多孔硅隔离层技术[J].清华大学学报,45(4)(2005)561-564
    [27]O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics [J]. Surface Science Reports 38 (2000) 1-40
    [28]谢克文,王晓红,陈兢,用于MEMS的选择性形成多孔硅技术的研究[J].半导体学报,23(6)(2002)668-672
    [29]H. Foll, M. Christophersen, J. Carstensen, et al.,Formation and application of porous silicon [J]. Mater Sci Eng R 39 (2002) 93-141
    [30]O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, et al., Progress on the development of icon microchannel plates [J]. In: Proc. SPIE 4497 (2002) 139-148
    [31]V. Lehmann, V. Foll, Formation mechanism and properties of electrochemically etched trenches in n-type silicon [J]. Electrochem Soc 137(2) (1990) 653-659
    [32]M. Christophersen, J. Carstensen, H. Foll, Pore formation mechanisms for the Si-HF system [J]. Mater Sci Eng R.69 (2000) 23-28
    [33]V. Lehmann, H. Foll, Formation mechanism and properties of electrochemically etched trenches in n-type silicon [J]. J. Electrochem. Soc.137 (1990) 653-659
    [34]V. Lehmann, The physics of macropore formation in low doped N-type silicon [J]. J. Electrochem. Soc.140 (1993) 2836-2843
    [35]V. Lehmann, V. Foll, Formation mechanism and properties of electrochemically etched trenches in n-type silicon [J]. Electrochem Soc.137 (1990) 653-659
    [36]S. John, Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.58 (1987) 2486-2489
    [37]E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics [J]. Phys. Rev. Lett.58 (1987) 2059-2061
    [38]K. Sakoda, Optical Properties of Photonic Crystals. Springer [M]. Berlin (2001) ISBN 3-540-41199-2
    [39]B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon [J]. J.Appl.Phys.36 (1965) 3770-3778
    [40]V.K. Dwivedi, R. Gopal, and S. Ahmad, Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices [J]. Microelectronics Journal 31 (2000) 405-410
    [41]J.R. Ligenza, Oxidation of silicon by High Pressure Steam [J]. J.Electrochem Soc.109(1962)73-76
    [42]范洪雷,侯晓远,张甫龙等,用脉冲腐蚀制备发光多孔硅[J].半导体学报,16(1995)113-117
    [43]A. Spinter, J. Sturmann, W. Benecke, Novel Porous Silicon Formation Technology Using Internal Current Generation [J]. Materials Science and Engineering C 15 (2001) 109-112
    [44]R.C. Schroden, N. Balakrishnan, Inverse opal photonic crystals-a laboratory guide [J]. the univeisity of Minnesota Materials Reaserch Science and Engineering Center,2001.
    [45]T.F. Krauss, R.M. DeLaRue, S. Brand [J]. Nature 383 (1996) 699-702
    [46]张万忠,乔学亮,陈建国,王洪水,纳米材料的表面修饰与应用[J].化工进展,23(2004)1069-1070
    [47]刘莹,何领好,宋锐,纳米氧化锌表面修饰的进展[J].化学通报,11(2007)823-828
    [48]唐元洪,硅纳米线及硅纳米管[M].化学工业出版社,221-227
    [49]陈扬文,唐元洪,裴立宅,郭池,硅纳米线的表面改性[J].化学通报,69(2006)1-7
    [50]L.D. Zhu, J.L. Zhai, R.L. Yang, C.Y. Tian, L.P. Guo, Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes [J]. Biosensor.Bioelectron.22 (2007) 2768-2773
    [51]I. Moser, T. Schalkhammer, F. Pittner, Surface techniques for an electrochemical DNA b iosensor [J]. Biosens.Bioelectron.12(8) (1997) 729-737
    [52]刘有芹,沈含熙,氯化血红素修饰玻碳电极的制备及其作用机理[J].分析化学,32(1)(2004)4145
    [53]X. Chen, Y. Yang, M.Y. Ding, Electrocatalytic oxidation and sensitive detection of cysteine at layer-by-layer assembled carbon nanotube-modified electrode [J]. Anal.Chem.Acta 557 (2006) 52-26
    [54]陆琪,庞代文,胡深,DNA共价键合和吸附DNA-SAM/Au修饰电极的制备及表征[J].中国科学(B辑),29(4)(1999)41-347
    [55]M. Kawasaki, M. Lino, Self-assembly of alkanethiol monolayers on Ag-Au(111) alloy surfaces [J]. J.Phys.Chem B.110 (2006) 21124-21127
    [56]K. Shigehara, N. Oyama, F.C. Anson, Electrochemical responses of electrodes coated with redox polymers. Evidence for control of charge-transfer rates across polymeric layers by electron exchange between incorporated redox sites [J]. J. Am. Chem.Soc.103(10) (1981) 2552-2558
    [57]G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams, Nafion-coated electrodes with high selectivity for CNS electrochemistry [J]. Brain Res.290(2) (1984)390-395
    [58]M. Yang, R.Y.C. Kong, N. Kazmi, Covalent immobilization of oligonucleotides on modified glass/silicon surfaces for solid-phase DNA hybridization and amplification [J]. Chem.Lett.3 (1988) 257-258
    [59]M.L. Guo, J.H.Chen, J.Li, B. Tao, Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite [J]. Anal·Chem.Acta 532 (2005) 71-77
    [60]G.F. Cheng, J. Zhao, Y.H. T1, P.G. He, A sensitive DNA electrochemical biosensor based on magnetite with a glassy-carbon electrode modified by multiwalled carbon nanotubes in polypyrrole [J]. Anal-Chem-Acta 533 (2005) 11-16
    [61]S. Dong, F. Li, Researches on chemically modified electrodes:Part XV Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode [J]. J. Electroanal.Chem.210(1) (1986) 31-44
    [62]A.B. Bocarsly, S.A. GalVin, S. Sinha, Properties of chemically derivatized nickle electroodes the synthesis of an electrocatalytic interface [J]. J.Electrochem.Soc. 130(6) (1983)1319-1325
    [63]L.M. Siperko, and T. Kuwana, Electrochemical and spectroscopic studies of metal hexacyanometalate films-Ⅲ.Equilibrium and kinetics studies of cupric hexacyanoferrate [J]. J.Electrochem.Soc.130(6) (1983) 396-402
    [64]K.M. Millan, A. Saraullo, S.R. Mikkelsen, Sequence-selective biosensor for DNA based on electroactive hybridization indicators [J]. Anal.Chem.66(18) (1994)2943-2948
    [65]R.C. Anderson, R.S. Muller, C.W. Tobias, Investigation of the electrical properties of porous silicon [J]. J. Electrochem. Soc.138 (1991) 3406-3411
    [66]A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, A. Boyer, Porous silicon layer coupled with thermoelectric cooler: a humidity sensor [J]. Sens. Actuators A 79 (2000) 189-193
    [67]E.J. Connolly, G.M. O'Halloran, H.T.M. Pham, P.M. Sarro, P.J. French, Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications [J]. Sens. Actuators A 99 (2002) 25-30
    [68]G.D. Francia, A. Castaldo, E. Massera, I. Nasti, L. Quercia, I. Rea, A very sensitive porous silicon based humidity sensor [J]. Sens. Actuators B 111-112 (2005)135-139
    [69]S.J. Kim, S. Lee, Intermittent strange nonchaotic attractors in quasiperiodicallyforced systems [J]. Journal of the Korean Physical Society 44 (2004)514-517
    [70]M. Ryoo, R. Joo, S.H. Kruk, M. Jaroniec, Ordered mesoporous carbons [J]. AdV. Mater.13(2001)677-681
    [71]J.S. Lee, S.H. Joo, R. Ryoo, Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters [J]. J. Am. Chem. Soc.124 (2002) 1156-1157
    [72]R. Kruk, M. Jaroniec, M. Kim, T.W. Ryoo, Synthesis and characterization of hexagonally ordered carbon nanopipes [J]. Chem. Mater.15 (2003) 2815-2819
    [73]F. J. Miao, J. Zhang, S.H. Xu, L. W. Wang, An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector [J]. China. Phys. Lett.26 (2009) 044207-044230
    [74]F.J. Miao, J. Zhang, S.H. Xu, L.W. Wang, J.H. Chu, Fabrication of a reflective mirror within wide incidence angles for mid-infrared wavelength [J]. META08-Proceedings of the 2008 International Workshop on Metamaterials (2008) 173-176
    [75]F.J. Miao, B.R. Tao, L.W. Wang, Paul K. Chu,3D Ordered NiO / Silicon MCP Array Electrode Materials for Electrochemical Supercapacitors [J]. Materials Research Bulletin 44 (2009) 1920-1925
    [76]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, Paul K. Chu, Preparation and Characterization of Novel Nickel-Palladium Electrodes Supported by Silicon Microchannel Plates for Direct Methanol Fuel Cells [J]. Journal of Power Sources 195 (2010) 146-150
    [77]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, Paul K. Chu, Amperometric Glucose Sensor based on 3D Ordered Nickel-Palladium Nanomaterial Supported by Silicon MCP Array [J]. Sensors and Actuators B 141 (2009)338-342
    [1]S. John, Strong localization of photons in certain disordered dielectric super-lattices [J]. Phys. Rev. Lett.58(23) (1987) 2486-2489
    [2]E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics [J]. Phys. Rev. Lett.58(20) (1987) 2059-2061
    [3]K. Sakoda, Optical Properties of Photonic Crystals.Springer [J]. Berlin (2001) ISBN 3-540-41199-2
    [4]R.D. John, D. Joannopoulos and J.N. Winn, Molding the Flow of Light [M]. Princeton University press,1995
    [5]J.D. Joannopolulous, P.R. Villeneuve, S. Fan, Photonic Crystals [J]. Solid State Commun.102 (1997) 165-173
    [6]K.M Ho, C.T. Chan, C.M. Soukoulis, Existence of a Photonic Gap in Periodic Dielectric Structures [J]. Phys.Rev.Lett.65 (1990) 3152-3155
    [7]E. Yablonovith, T.J. Gmitter, K.M. Leung, Photonic band structure:The face-centered-cubic case employing nonspherical atoms [J]. Phys. Rev.Lett.67 (1991) 2295-2298
    [8]S. Jon, Localization of light [J]. Physics Today 44 (1991) 32-44
    [9]R.C Schroden, N. Balakrishnan, Inverse opal photonic crystals-a laboratory guid [M]. the univeisity of Minnesota Materials Reaserch Science and Engineering Center,2001
    [10]L.P. Biro, Z. Balint, K. Kertesz, Z. Vertesy, et al, Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sisiter species pair [J]. Phys.Rev.E 67 (2003) 021901-021907
    [11]R.C. McPhedran, N.A. Nicorovici, L.C. Botten, Learning Optics in Nature's School [J]. Aust.Opt.Soc.NEWS 15 (2001) 7-9
    [12]J. Zi, X.D. Yu et al., Coloration strategies in peacock feathers [J]. The National Academy of Science of the USA 100(22) (2003) 12576-12578
    [13]U. Gruning, V. Lehmann and C.M. Engelhardt, Two-dimensional infrared photonic band gap structure based on porous silicon. [J]. Appl.Phys.Let.66 (1995) 3254-3256
    [14]T.F. Krauss, R.M. De La Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths [J]. Nature 383 (1996) 699-702
    [15]A. Birner, M. Fetal, Macroporous Silicon:A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range [J]. Phys.Stat.Sol. (a) 165 (1998) 111-117
    [16]O.D. Velev, T.A Jede, R.F Lobo, et al., Porous silica via colloidal crystallization [J]. Nature 281 (1997) 538-540
    [17]H.S. Sozer and J.P. Dowling, Photonic band calculations for wodpile structures [J]. J.Mod.Opt.41(2) (1994) 231-239
    [18]S.D. Hart, G.R. Maskaly, B. Temelkura, P.H. Prideaux, J.D. Joannopoulos, Y. Fink, Exteranl Reflection from Omnidirectional Dielectric Fibers [J]. Science 296(2002)510-513
    [19]Y. Frink, A dielectric omnidirection reflectror [J]. Science 282 (1998) 1679-1682
    [20]E.R. Brown and O.B. McMahon, High zenithal directivity from a dipole antenna on a photonic crystal [J]. Appl. Phys. Lett.68 (1996) 1300-1302
    [21]X.Y. Lei, et al., Novel Application of a Perturbed Photonic Crystal:High-quality Filter [J]. Appl.Phys. Lett.71 (1997) 2889-2891
    [22]J. Martorell, R. Vilaseca, et al., Second harmonic generation in a photonic crystal [J]. Appl.Phys. Lett.70 (1991) 702-704
    [23]N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, Hexagonally poled Lithium Niobate:A Two-Dimension Nonlinear Photonic Crystal [J]. Phys.Rev.Lett.84 (2000) 4345-4348
    [24]T. Hattor, N. Tsurumachi, et al., Analysis of optical nonlinearity by defect states in one-dimensional photonic crystal [J]. J.Opt.Soc.Am.B.14 (1997) 348-355
    [25]V.K. Vladimir, K. Vladimir, Simultanous sencond-and thied-harmonic genration in one-dimensional photonic crystals [J]. J.Opt.Soc.Am.B.16 (1999) 1370-1376
    [26]M. Sergei, K. Yuri, Nonlinear photonic crystal toward all-optical technologies [J]. Optics & Photonics News 13 (2002) 48-51
    [27]M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, Free-standing porous silicon single and multiple cavities [J]. J. Appl. Phys.93 (2003) 9724-9729
    [28]J. Diener, N. Kunzner, D. Kovalev, E. Gross, V.Y. Timoshenko, G. Polisski, and F. Koch, Dichroic Bragg reflectors based on birefringent porous silicon [J]. Appl. Phys. Lett.78 (2001) 3887-3889
    [29]A. Bruyant, G. Lerondel, P.J. Reece and M. Gal, All-silicon omnidirectional mirrors based on one-dimensional photonic crystals [J]. Appl. Phys. Lett.82 (2003) 3227-3229
    [30]J.E. Lugo, H.A. Lopez, S. Chan, and P.M. Fauchet, Porous silicon multilayer structures:a photonic band gap analysis [J]. J. Appl. Phys.91 (2002) 4966-4972
    [31]K. Kordas, A.E. Pap, Optical properties of porous silicon: Part I:Fabrication and investigation of single layers [J]. Opti. Mater.25 (2004) 251-255
    [32]A. Bruyant, G. Lerondel, P.J. Reece and M. Gal, All-silicon omnidirectional mirrors based on one-dimensional photonic crystals [J]. Appl. Phys. Lett.82 (2003) 3227-3229
    [33]C. Mazzoleni, L. Paavesi, Application to optical components of dielectric porous silicon multilayers [J]. Appl. Phys. Lett.67 (2003) 2983-2985
    [34]P.J. Reece, G. Lerondel, W.H. Zheng and M. Gal, Optical microcavities with subnanometer linewidths based on porous silicon [J]. Appl. Phys. Lett.81 (2002) 4895-4897
    [35]V. Agarwal, J.A. del Rio, Tailoring of Photonic Bandgap of Porous Silicon Dielectric Mirrors [J]. Appl. Phys. Lett.82 (2003) 1512-1514
    [36]W.H. Zheng, P. Reece, B.Q. Sun and M. Gal, Broadband laser mirrors made from porous silicon [J]. Appl. Phys. Lett.84 (2004) 3519-3521
    [37]包晓清,钱敏,王连卫,朱自强,基于p型多孔硅的一维光子晶体的微结构分析[J].功能材料与器件学报,12(2006)59-62
    [38]T.A. Witten, L.M. Sander, Diffusion-limited aggregation [J]. Phys. Rev. B 27 (1983)5686-5697
    [39]V. Lehman and U. Gosele, Electrochemical trench etching of silicon triggered via mechanical nanocontacts [J]. Appl. Phys. Lett.58 (1991) 856-858
    [40]J.B. pendry, Photonic Structure [J]. Journal of Mordern Optics 41 (1994) 209-213
    [41]J.B. pendry, A.M. Kinnon, Calculation of Photon Dispersion Relation [J]. Phys.Rev.Lett.69(19) (1992) 2772-2775
    [42]J.B. Pendty, Lower Energy Electron Diffraction [M]. Academic London (1974) 89-95
    [43]J.R. Martin-Palma, J.M. Martinez-Zuart, A. Macleod, Determination of Optical Constants of Semiconductior [J]. Thin Film Employing the Matrix Method.IEEE Transactions on Education 43(1) (2000) 63-68
    [44]C. Mazzoleni and L. Pavesi, Application to optical components of dielectric porous silicon multilayers [J]. Appl. Phys. Lett.67 (1995) 2983-2985
    [45]http://www.mathworks.com/products/matlab/
    [46]薛定宇,陈阳泉,基于MATLAB Simulink的系统模拟技术与应用[M].北京:清华大学出版社,2002
    [47]M. Kristensen, Ultraviolet-light-induced processes in germanium-doped silica [J]. Phys. Rev. B.64 (2001) 144201-144213
    [48]梁辁廷,物理光学[M].北京: 机械工业出版社,1980
    [49]M. Born and E. Wolf, Principles of Optics.7th ed. (Cambridge Univ. Press, UK, 1999)
    [50]ADLINK DAQ-2500 Series Data Book 2005 http://www.adlinktech.com/pd
    [51]R.L. Smith and S.D. Collins. Porous silicon formation mechanisms [J]. J. Appl. Phys.71(8) (1992) 11-22
    [52]G. Lerondel, R. Romestain, and S. Barret, Roughness of the porous silicon dissolution interface [J]. J. Appl. Phys.81 (1997) 6171-6178
    [53]Z.J. Wang, J. Zhang, S.H.Xu, L.W.Wang, 1D partially oxidized porous silicon photonic crystal reflector for mid-infrared application [J]. J. Phys. D:Appl.Phys. 40 (2007) 4482-4484
    [54]田斌,胡明,张之圣,电化学方法制备多孔硅[J].天津大学学报,37(9)(2004)823
    [55]C. Mazzoleni and L. Pavesi, Application to optical components of dielectric porous silicon multilayers [J]. Appl. Phys. Lett.67 (20) (1995) 2983-2985
    [56]G. Lerondel and R. Romestain, Quantitative analysis of the light scattering effects on porous silicon optical measurements [J]. Thin Solid Films.297 (1996) 114-117
    [57]G. Lerondel, R. Romestain, F. Madeore, et al., Light-Scattering from Porous Silicon [J]. Thin Solid Films.276 (1996) 80-83
    [58]S. Setzu, G. Lerondel and R. Romestain, Temperature effect on the roughness of the formation interface of p-type porous silicon [J]. J. Appl. Phys.84 (1998) 3129-3133
    [59]P.J. Reece, G. Lerondel, W.H. Zheng, et al., Optical microcavities with subnanometer linewidths based on porous silicon [J]. Appl. Phys. Lett.81 (2002) 4895-4897
    [60]王哲金,应用于中红外波段的多孔氧化硅一维光子晶体研究[D].华东师范大学,硕士论文
    [61]张洁,中红外波光子晶体应用于热释电传感器[D].华东师范大学,硕士论文
    [1]雷亚贵,王戎瑞,陈苗海,国外非制冷红外焦平面阵列探测器进展,激光与红外,37(2007)801-805
    [2]N. Volkmar, H. Guenter, M. Sikle, B. Helmut, Pyroelectric IR single-element detectors and arrays based on LiNbO3 and LiTaO3 [J]-Proceeding of SPIE-The International Society for Optical Engineering 1685 (1992) 155-163
    [3]N.M. Shorrocks, A. Patel, M.J. Walker, et al., Integrated thin film PZT pyroelectric detector array [J]. Microelectron Eng.29 (1995) 59-66
    [4]M. Noda, K. Hashimoto, R. Kubo, et al., A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor [J]. Sensors and Actuators A 77 (1999) 39-44
    [5]S.T. Piezo-, pyro- and ferroelectric thin films [J]. Proceedings of the 6th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, USA,11993
    [6]R. Takayama, Pyroelectric linear array infrared sensors made of c-axis-oriented La-modified PbTiO3 thin films [J]. J Appl. Phys.63(12) (1988) 5868-5872
    [7]C. Chsueh, Sol-gel derived ferroelectric thin films in silicon micromachining [J]. Integrated Ferroelectrics 3 (1993) 21-32
    [8]L. Pham, W. Tjhen, C. Ye, et al., Surface micro-machined pyroelectric infrared imaging array with vertically integrated signal processing circuitry [J]. IEEE Trans Ultrasonic, Ferroelectrics, and Frequency Control 41(4) (1994) 552
    [9]C. Marshall, N. Butler, R. Blackwell, et al., Uncooled infrared sensor with digital focal plane array [J]. SPIE 2746 (1996) 23-31
    [10]P.W. Kruse, D.D. Skatrud, Uncooled infrared imaging arrays and systems [M]. USA: Academic Press,47 (1997) 103-109
    [11]D. Goustouridis, G. Kaltsas, and A.G. Nassiopoulou, A Silicon Thermal Accelerometer Without Solid Proof Mass Using Porous Silicon Thermal Isolation [J]. IEEE Sensors Journal 7(7) (2007) 983-989
    [12]H.S Choi, C.T. Seo, D.S. Eun, et al., Fabrication of a Microbiochemical Reactor with Thick Thermal Isolation Layer and Integrated Pt Heater/Sensor in the Microwell [J]. Japanese Journal of Applied Physics 43 (2004) 3868-3871
    [13]G. Kaltsas, A.A. Nassiopoulos, and A.G. Nassiopoulou, Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation [J]. IEEE Journal of Sensors 2 (2002) 463-475
    [14]张小玲,吕长治等,AlGaN / GaN HEMT器件的研制[J].半导体学报,08(2003)847-849
    [15]J. Michel, J.D. Joannopoulos, and E.L. Thomas, A Dielectric Omnidirectional Reflector [J]. Science 282 (1998) 1679-1682
    [16]张洁,中红外波光子晶体应用于热释电传感器[D].华东师范大学,硕士论文,2008
    [1]A.S. Tremsin, D.F.R. Mildner, W.B. Feller, Plate Neutron Collimators [J]. 0-7803-8257-9/04, IEEE,2004
    [2]F. Muller, A. Birner, J. Schilling, A.P. Li, K. Nielsch, U. Gosele, V. Lehmann, High aspect ratio microstructures based on anisotropic porous materials [J]. Microsystem Technologies 8 (2002) 7-9
    [3]Z.Y. Guo, Hot issues in international heat transfer at present-Cooling of micro electronic components [J]. Bulletin of National Natural Science Foundation of China 2 (1988) 20-25
    [4]C.P. Beetz, et al., Silicon etch icon etching reocess for marking microchannel plates, US Patent:5997713,1999
    [5]O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, et al., Progress on the development of silicon microchannel plates [J]. In: Proc. SPIE 4497 (2002) 139-148
    [6]端木庆铎等,硅微通道板电子倍增器[J].电子学报,29(12)(2001)1680
    [7]尚森宇,电化学腐蚀技术制备微通道列阵[D].硕士论文,长春理工大学,2004
    [8]袁丁,由光辅助电化学刻蚀制备大面积p型硅微通道板[D].华东师范大学,硕士论文,2009
    [9]O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics [J]. Surface Science Reports 38 (2000) 1-40
    [10]V. Lehmann, The physics of macropore formation in low doped N-type silicon [J]. J. Electrochem. Soc.140 (1993) 2836-2843
    [11]P.A. Kohl, D.B. Harris, and J. Winnick, Photoelectrochemical etching of semiconductors [J]. J. Electrochem. Soc.138 (1991) 608-614
    [12]O. Bisi et al., Porous Silicon: a Quantum. Sponge. Structure for Silicon based. Optoelectonics [J]. Surface Science Reports.38 (2000) 1-126
    [13]M. Christophersen, J. Carstensen, H. Foll, Pore formation mechanisms for the Si-HF system [J]. Mater Sci Eng R 23 (2000) 69-70
    [14]X.M. Chen, J.L. Lin, D. Yuan, P.L. Ci, P.S. Xin, S.H. Xu and L.W. Wang, Obtaining of high area-ratio free-standing silicon microchannel plate via modified electrochemical procedure [J]. Journal of Micromechanics and Microengineering 18 (2008) 037003-037005.
    [15]H. Ashassi-Sorkhabi, H. Dolati, N. Parvini-Ahmadi, J. Manzoori, Electroless deposition of Ni-Cu-P alloy and study of the influences of some parameters on the properties of deposits [J]. Appl. Surf. Sci.185 (2002) 155-160
    [16]N. Takano, N. Hosoda, T. Yamada, T. Osaka, Nickel Deposition Behavior on n-Type Silicon Wafer for Fabrication of Minute Nickel Dots [J]. Electrochim. Acta 44 (1999) 3743-3749
    [17]B.E. Conway In: F.M. Delnick and M. Tomkiewicz, Electrochemical capacitors [J]. The Electrochemical Society Proceedings Series Pennington NJ (1995) 15-18
    [18]Y. Wang, Q.Z. Qin, A Nanocrystalline NiO Thin Film Electrode Prepared by Pulsed laser Ablation for Li-Ion Batteries [J]. J. Electrochem. Soc.149 (2002) A873-A877
    [19]K.C. Liu, M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors [J]. J. Electrochem. Soc.143 (1996) 124-131
    [20]V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors [J]. J. Electrochem. Soc.144 (1997) L210-L212
    [21]V. Srinivasan, J.W. Weidner, Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration [J]. J. Electrochem. Soc.147 (2000) 880-885
    [22]E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide [J]. J. Power Sources 92 (2001) 163-167
    [23]K.W. Nam, K.B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism [J]. J. Electrochem. Soc.149 (2002) A346-A354
    [24]K.W. Nam, W.S. Yoon, K.B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors [J]. Electrochim. Acta 47 (2002)3201-3209
    [25]K.W. Nam, K.B. Kim, Synthesis and Electrochemical Investigations of Nanostructured Nickel Oxides for Supercapacitors [J]. Electrochemistry 69 (2001) 467-474
    [26]F.B. Zhang, Y.K. Zhou, H.L. Li, Nanocrystalline NiO as an electrode material for electrochemical capacitor [J]. Mater. Chem. Phys.83 (2004) 260-264
    [27]M.W. Xu, S.J. Bao, H.L. Li, Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor [J]. J. Solid State Electrochem.11 (2007) 372-377
    [28]Y.G. Wang, Y.Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15 [J]. Electrochim. Acta 51(2006)3223-3227
    [29]W. Xing, F. Li, Z.F. Yan, G.Q. Lu, Synthesis and electrochemical properties of mesoporous nickel oxide [J]. J. Power Sources 134 (2004) 324-330
    [30]V.Srinvasan, J.W.Weidner, Mathematical Modeling of Electrochemical Capacitors [J]. J. Electrochem. Soc.146 (1999) 1650-1658
    [1]沈培康,电池,32(3) (2002) 183-186
    [2]. A.J. Appleby and F.R. Foulkess Fuel Cell Handbook [M]. Van Nostrand Reinhold, New York (1989) Ch.11
    [3]衣宝廉,燃料电池-原理技术应用[M].化学工业出版社(北京),2004
    [4]C. Pu, W. Huang, L. Kevinll, et al., A methanol impermeable proton conducting composite electrolyte system [J]. J. Electrochem.Soc.142 (1995) 119-120
    [5]Vincenzot, Proton and methanol transport in poly (perfluorosulfonate) Membranes containing Cs and H cations [J]. J.Electrochem.Soc.145 (1998) 3798-3801
    [6]L. Carrette, K.A. Friedrich, U. Stimming, Fuel cell:principles, types, fuels, and applications [J]. Chemphyschem 1(4) (2000) 162-193
    [7]G. Halpert, H. Frank, S. Surampudi, Batteries and Fuel Cell in Space [J]. J.Electrochem.Soc. Interface 8(3) (1999) 25-30
    [8]李磊,直接甲醇燃料电池聚合物电解质的研究[D].天津大学,博士论文,2003
    [9]陆天红,邢巍,燃料电池一定不十分遥远的环保型电化学发动机[J].产业论坛,9(2003)23
    [10]W.J. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G.Q. Sun, Q. Xin, S. Douvartzides, P.Tsiakaras, Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performance [J]. J. Power Sources 140 (2005) 50-58
    [11]C. Coutanceau, L. Demarconnay, C. Lamy, J.M. Leger, Development of electrocatalysts for solid alkaline fuel cell (SAFC) [J]. J. Power Sources 156 (2006)14-19
    [12]K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Alkaline Direct Alcohol Fuel Cells Using an Anion Exchange Membrane [J]. J. Power Sources 150(2005)27-31
    [13]J. Bagchi, S.K. Bhattacharya, The effect of composition of Ni-supported Pt-Ru binary anode catalysts on ethanol oxidation for fuel cells [J]. J. Power Sources 163(2007)661-670
    [14]P. Paul, J. Bagchi, S.K. Hattacharya, Inorganic, physical, theoretical & analytical [J]. Indian J. Chem.:Sect. A 45 (2006) 1144-1152
    [15]V. Rao, C.C. Hariyanto, U. Stimming, Investigation of the Ethanol Electro-Oxidation in Alkaline Membrane Electrode Assembly by Differential Electrochemical Mass Spectrometry [J]. Fuel Cells 7 (2007) 417-423
    [16]Z. Ogumi, K. Matsuoka, S. Chiba, M. Matsuoka, Y. Iriyama, T. Abe, M. Inaba, Preliminary study on direct alcohol fuel cells employing anion exchange membrane [J]. Electrochemistry 70 (2002) 980-983
    [17]A.J. Appleby, Fuel celltechnology and innovation, Heat treatment of a- and b-battery lead dioxide and its relationship to capacity loss [J]. J.Power Sources 37(1996)223-239
    [18]K.Scott, W.M.Taama, Engineering aspects of the direct methanol fuel cell system [J]. J. Power Sources 79 (1999) 43-59
    [19]B.D. McNicol, D.A. J. Rand, K.R. Williams, Directm ethanol-air fuel cells for road transportation [J]. J.P ower Sources 83(1-2) (1999) 15-31
    [20]S. Wasmus, A. Kuver, Methanol oxidation and direct methanol fuel cells:a selective review [J]. J.E lectroanalytical Chemistry 46 (1999) 14-31
    [21]R.C. Koffi, C. Coutanceau, E. Gamier, et al., Synthesis characterization and electro Catalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectro catalysts for the oxygen reduction reaction(ORR) [J]. Electrochim.Acta 50 (2005) 4117-4127
    [22]Y. Wang, L. Li, L. Hu, et al., A feasibility analysis for alkaline membraned irect methanol fuel cell:thermo dynamic disadvantages versus kinetic advantages [J]. Electrochemistry Communications 5 (2003) 662-665
    [23]E.H. Yu, K. Scott, Direct methanol alkaline fuel cell with catalysed metal mesh anodes [J]. Electrochemistry Communications 6 (2004) 361-365
    [24]J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membrane in low temperature fuel cell [J]. Fuel Cell 4(4) (2004) 1-14
    [25]夏朝阳,黄爱宾,汪洋,碱性电解质膜直接甲醇燃料电池[J].电池,34(3)(2004)227-228
    [26]R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons [J]. AdV. Mater.13 (2001) 677-681
    [27]J.S. Lee, S.H. Joo, R. Ryoo, J. Am, Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters [J]. Chem. Soc.124 (2002) 1156-1157
    [28]M. Kruk, M. Jaroniec, T.W. Kim, R. Ryoo, Synthesis and characterization of hexagonally ordered carbon nanopipes [J]. Chem. Mater.15 (2003) 2815-2823
    [29]J.B. Goodenough, A. Hamntt, B.J. Kennedy, XPS investigation of platinized carbon electrodes for direct methanol air fuel cell [J]. Electrochim.Acta 32(8) (1987) 1233-1238
    [30]胡为工,聚合物电解质膜瀚料电池的发展及预测[J].化工新型材料,27(2000)16-19
    [31]P.A. Attwood, B.D. Mcniwl, R.T. Short, Temperature programmed reduction and cyclic voltammetry of Pt/carbon-fiber paper catalyst for methanol electrooxidation [J]. J. Catal 46 (1997) 289-293
    [32]成会明,纳米碳管制备、结构、物性及应用[J].北京:化学工业出版社,2002
    [33]T.C. Liu, Y.Y. Li, Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method [J]. Carbon 44 (2006) 2045-2050
    [34]P. Ball, Roll up for the revolution [J]. Nature 414 (2001) 142-144
    [35]B.D. McNicol, D.A.J. Rand, K.R. Williams, Directm ethanol-air fuel cells for road transportation [J]. J.P owerS ources 83 (1999) 15-31
    [36]S. Wasmus, A. Kuver, Methanol oxidation and direct methanol fuel cells:a selective review [J]. J.E lectroanalytical Chemistry 461 (1999) 14-31
    [37]R.C. Koffi, C. Coutanceau, E. Gamier, et al., Synthesis, characterization and electro-catalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR) [J]. Electrochim.Acta 50 (2005) 4117-4127
    [38]A. Bettelheim, L. Soifer and E. Korin, Use of electropolymerized films of macrocyclic compounds in direct methanol fuel cell components [J]. Journal of Power Sources 130 (2004) 158-162
    [39]E.H. Yu, K. Scott, Direct methanol alkaline fuel cell with catalysed metal meshAnodes [J]. Electrochemistry Communications 6 (2004) 361-365
    [40]J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membrane in low temperature fuel cell [J]. FuelCell 4(4) (2004) 1-14
    [41]夏朝阳,黄爱宾,汪洋,碱性电解质膜直接甲醉燃料电池[J].电池,34(3)(2004)227-228
    [42]A. Hamnett, B.J. Keedy, Bimetallic carbon supported anodes for the direct Methanol air fuel cell [J]. Electrochimi.Acta 33 (1988) 1613-1618
    [43]M. Watanabe, S. Motoo, Electro-catalysis by ad-atoms part II.Enhancement Of the oxidation of methanol on platinum by ruthenium ad-atoms [J]. J. Electroanal, Chem.60(1975)267-273
    [44]M. Beltowska-Brzezinska, T. Luczak, R. Holze, Electro-catalytic oxidation of Mono-and polyhydric alcohols on gold and platinum [J]. J.Appl.Electrochem. 27(9) (1997) 999-1011
    [45]E. Yeager, Electrocatalysts for O2 reduction [J]. Electrochimica Acta.29 (1984) 1527-1537
    [46]M. arkovic, N.M. Ross, P.N. Jr, Surface science studies of model fuel cell electrocatalysts [J]. Surface Science Reports 45 (2002) 117-229
    [47]M.L. Avramov-Ivic, N.A. Anastasijevic and R.R. Adzic, A study of the oxidation of formaldehyde on Au(332) by rotating disc-ring method [J]. Electrochimica Acta.4(1990)725-729
    [48]N.M. Markovic, R.R. Adric, E.B. Yeager, Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions [J]. J.Electrananl.Chem 377 (1994) 249-259
    [49]R.R. Adzic, Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction [J]. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical 111 (24) (2007) 6772-6775
    [50]M.C. Morin, C. Lamy, J.M. Le'ger, Structural effects in electrocatalysis: Oxidation of ethanol on platinum single-crystal electrodes [J]. J. Electroanal. Chem.283(1990)287-302
    [51]J.C. Huang, Z.L. Liu, C.B. He, L.M. Gan, hydrosilylation reaction and application as catalyst for direct methanol fuel cell [J]. J. Phys. Chem. B 109 (2005) 16644-16649
    [52]P.L. Schilardi, R.C. Salvarezza, A.H. Creus, A.J. Arvia, S.L. Marvhino, Kinetics and growth modes of quasi-2d silver branched electrodeposits produced in the presence of a supporting electrolyte [J]. Journal of Electroanalytical Chemistry 431(1997)81-98
    [53]K.Uosaki, R.Yoneda, H. Kita, Effect of platinization on the electrochemical behavior of titanium dioxide electrode in aqueous solutions [J]. J. Phys. Chem. 89(19) (1985) 4042-4046
    [54]B. Beden, F. Hahn, J.M. Leger, C. Lamy, C.L. Perdriel, N.R.D. Tacconi, R.O. Lezna, A.J. Arvia, Electromodulated infrared spectroscopy of methanol electrooxidation on electrodispersed platinum electrodes: Enhancement of reactive intermediates [J]. J. Electroanal. Chem.301 (1991) 129-138
    [55]C.W. Xu, P.K. Shen, Catalysts for electrooxidation of alcohols in alkaline media [J]. Chem. Commun.19 (2004) 2238-2239
    [56]Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochimica Acta 54 (2009)2203-2208
    [57]Y.L. Lo, B.J. Hwang, In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution [J]. Langmuir 14 (1998) 944-950
    [58]E.T. Hayes, B.K. Bellingham, H.B. Mark Jr, A. Galal, An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode [J]. Electrochim. Acta 41 (1996) 337-344
    [59]J. Munk, P.A. Christensen, A. Hammnett, E. Skou, particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry [J]. J. Electroanal. Chem.401 (1996) 215-522
    [60]C.W. Xu, L.Q. Cheng, P.K. Shen, Y.L. Liu, Evaluation of ethanol,1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell a real-time mass spectrometry study [J]. Electrochem. Commun.9 (2007) 997-1001
    [61]Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochim. Acta 54 (2009) 2203-2208
    [62]Y.Y. liao, T.C. Chou, An amperometric alcohol sensor by using electroless nickel as working electrode [J]. Electroanalysis 12 (2000) 55-59
    [63]F.J. Miao, B.R. Tao, L. Sun, T. Liu, J.C. You, L.W. Wang, P.K. Chu, Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells [J]. J. Power Sources 195 (2010)146-150
    [1]C.G. Wermuth, Meditional Chemistry for the 21st Century (IUPAC Chenistry for the 21stCe ntu ry) [M]. London:BlackwellS cientific Publications,1992,38-84
    [2]焦克芳,袁越,李松,21世纪药物化学展望[J].外医学药学分册,21(6)(1994)321.325
    [3]T.W. Rademacher, R.B. Parekh, R.A. Dwek, Glycobiology [J]. Ann Rev Biochem. 57(1988)785-818
    [4]王克夷,作为信息分子的糖类[J].化学进展,8(2)(1996)98-108
    [5]王克夷,糖类研究的进展和前沿[J].生命的化学,14(5)(1994)4-8
    [6]王克夷,正在来临的糖组学[J].生命的化学,20(6)(2000)286-287
    [7]蒋秋燕,乔旭光,生命科学的新领域-糖生物学[J].山东农业大学学报(自然科学版),34(2)(2003)294-298
    [8]沈同,王镜岩,高等学校教材,生物化学(上册)[M].高等教育出版社,北京,10(1990)28
    [9]P.K. Shen, A.C.C. Tseung, Co-deposited Pt-WO3 electrodes. Part1:methanol oxidation and in-situ studies [J]. J. Electrochem. Soc.141 (1994) 3082-3090
    [10]P.K. Shen, K.Y. Chen. A.C.C. Tseung, Performance of CO-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic acid at room temperature [J].J. Electroanal. Chem.389 (1995) 223-225
    [11](a) S. Ernst, J. Heitbaum, C. H. Hamann, The electrooxidation of glucose in phosphate buffer solutions Part I. Reactivity and kinetics below 350 mV/RHE [J]. J. Electroanal. Chem.100 (1979) 173-176 (b) S. Ernst, J. Heitbaum, C. H. Hamann, B. Bunsenges. The electrooxidation of glucose in phosphate buffer solutions:kinetics and reaction mechanism [J]. Phys. Chem.84(1980)50-55
    [12](a) M.F.L. De Medel, H.A Videla, A. Arvia, Comparative study of the electrochemical behavior of glucose and other compounds of biological interest [J]. J. Bioelectrochem. Bioenerg.9 (1982) 469-471 (b) M.F.L. De Medel, H.A. Videla, A. Arvia, The electrooxidation of glucose on platinum electrodes in buffered media[J]. J. Bioelectrochem. Bioenerg.10 (1983) 239-243
    [13]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part I. Adsorption and oxidation on platinum [J]. J. Electroanal.Chem.196 (1985) 105-125
    [14]L.H. Essis Yei, B. Beden, C.Lamy, Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature [J]. J. Electroanal. Chem. 246(1988)349-362
    [15]L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media [J]. J. Electroanal. Chem. 262(1989)167-182
    [16]X. Zhang, K. Chan, A.C.C. Tseung, Electrochemical Oxidation of Glucose by Pt/WO3 Electrode [J]. J.Electroanal.Chem.386 (1995) 241-243
    [17]U. Gebhardt, G. Luft, G.J. Richter, F. Sturm, Development of an implantable electrocatalytic glucose sensor [J]. Bioelectrochem. Bioenerg.5 (1978) 607-624
    [18]Y.B. Vassilyev, O.A. Khazova and N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts:Part I. Adsorption and oxidation on platinum [J]. Phy.Chem.77 (1973) 782-793
    [19]D.W. Shoesmith, M.G. Bailey and B. Ikeda, Electrochemical formation of mackinawite in alkaline sulphide solutions [J]. Electrochem.Acta 23 (1978) 1329-1339
    [20]H.W Lei, B.L. Wu, C.S. Cha, K. Hideaki, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives [J]. J.Electroanal.Chem.382 (1995) 103-114
    [21]I. Becerik, F. Kadirgan, Electrocatalytic properties ofplatinum particles incorporated with polypyrrole films in D-glucose oxidation in phosphate media [J]. J. Electroanal. Chem.436 (1997) 189-193
    [22]L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery [J]. Ann. N.Y. Acad. Sci.102 (1962) 29-45
    [23]H.T. Zhao, H.X. Ju, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase [J]. Anal. Biochem.350 (2006) 138-144
    [24]R. Wilson, A.P.F. Turner, Glucose oxidase:an ideal enzyme [J]. Biosens. Bioelectron.7 (1992) 165-185
    [25]S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum [J]. Anal. Chem.75 (2003) 3046-3049
    [26]K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes [J]. Anal. Chim. Acta 516 (2004) 35-41
    [27]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors [J]. Anal. Chim. Acta 556 (2006) 46-57
    [28]J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Nonenzymatic glucose detection using multi-walled carbon nanotubes electrodes [J]. Electrochem. Commun.6 (2004) 66-70
    [29]F.G. Chevallier, R.G. Compton, Regular arrays of microdisk electrodes: Numerical simulation as an optimizing tool to maximize the current response and minimize the electrode area used [J]. Electroanalysis 18 (2006) 2369-2374
    [30]Q.R. Zhao, Z.G. Zhang, T. Dong, Y. Xie, Facile synthesis and catalytic property of porous tin dioxide nanostructures [J]. J. Phys. Chem. B 110 (2006) 15152-15156
    [31]C.W. Xu, L.Q. Cheng, P.K. Shen, Y.L. Liu, Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochem. Commun.9 (2007) 997-1001
    [32]G. Wittstock, A. Strubing, R. Szargan, G. Werner, Glucose oxidation at bismuth-modified platinum electrodes [J]. J. Electroanal. Chem.444 (1998) 61-73
    [33]X. Zhang, K.Y. Chan, J.K. You, Z.G. Lin, A.C.C. Tseung, Partial Oxidation of Glucose by Pt/WO3 Electrode [J]. J. Electroanal. Chem.430 (1997) 147-153
    [34]J. Wang, D.F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networksAnal [J]. Chem.80 (2008) 997-1004
    [35]L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media [J]. J Electroanal Chem. 262(1989)167-182
    [36]R.R. Adzic, M.W. Hsiao, E.B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces [J]. J Electroanal Chem.260 (1989) 475-485
    [37]A.M. Castro Luna, M.F.L. de Mele, A.J. Arvia, The electro-oxidation of glucose on microcolumnar gold electrodes in different neutral solutions [J]. J Electroanal Chem.323 (1992) 149-162
    [38]M.W. Hsiao, R.R. Adzic, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer [J]. J Electrochem Soc.143 (1996) 759-767
    [39]Y.B. Vassilyev, O.A. Khazova and N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts:Part Ⅱ. Effect of the nature of the electrode and the electrooxidation mechanism [J]. J. Electroanal. Chem.196 (1985) 127-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700