纳米管材料的化学修饰及其导电性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计、合成具有各种特殊性质的材料一直是人们所关注的研究领域。纳米管材料(包括碳纳米管、硼氮纳米管、碳化硅纳米管等),以其独特的结构和特殊的电学、力学和热学性能引起了人们极大的研究兴趣,已经成为材料科学、物理学、化学、生物学研究的热点。纳米管材料具有很多的潜在应用价值,例如可以作为化学传感器、纳米反应器、储氢放氢材料以及未来纳米机械的组成部件等,在未来的纳米科技中将扮演重要的角色。化学修饰对纳米管材料的提纯、分离非常重要。除此之外,通过化学修饰还可以设计得到各种性质不同的新型纳米管材料。本文以分子轨道理论,过渡态理论和量子化学理论为基础,利用密度泛函理论(DFT),能带理论,对所研究的体系选择适合的基组,通过计算找出修饰过程中各物种(包括过渡态)的优化构型,进而得到修饰后的结构、能量、轨道以及电学性质等方面的有关信息,利用这些数据综合分析化学修饰对纳米管材料的影响,为设计和合成新型功能化的纳米管材料提供理论依据。
     全文共分七章。
     第一章综述了纳米管类材料化学修饰的研究进展及本文主要工作。
     第二章概述了本文主要研究工作的理论背景和计算方法。前两章主要概括了本文工作的理论背景和理论依据,为我们的研究提供了可靠的量子化学知识。
     第三章研究了茂金属(MCp2, M = Fe, Co, Ni)填充在碳纳米管内的结构、能量和电学性质。茂金属是一类有机金属,包含有大π电子。我们的研究表明茂金属的填充实际上是一个非共价的相互作用的过程,其能量和电荷转移与绝对电离势成一定的关系。对于Ip构型最佳的距离是4.70 ?,相应的管的直径为9.10 ?;对于Iv结构最佳的距离为5.10 ?,相应的管的直径为10.20 ?。能带结构和态密度计算显示,FeCp2的填充保护了碳纳米管的导电性,而CoCp2和NiCp2的填充使碳纳米管变成n-半导体。
     第四章研究了CH2N2和N2O在碳纳米管上的1, 3偶极环加成反应过程,并且着重考察了硼掺杂对碳纳米管反应活性的提升。硼掺杂后,CH2N2经过两种不同的反应路径,反应活性都能得到提升,反应路径Path-CBNC,1,3偶极加成反应的决速步活化能降低了0.58 eV,放热增加了大约0.80eV;反应路径Path-NBCC,1,3偶极加成反应的决速步活化能降低了0.35 eV,放热增加了大约1.30 eV。硼掺杂后,N2O与碳纳米管的反应活性也得到提升,反应路径Path-OBNC,1,3偶极加成反应的决速步活化能降低了0.61 eV,放热增加了1.56eV。我们还用前线轨道理论(FMO)解释了它们反应活性的差异。
     第五章研究了硼氮纳米管与氨气等离子气体的反应活性。与NH3及胺化全物修饰硼氮纳米管不同,我们发现NH2*自由基(包含在氨气等离子气体中)修饰硼氮纳米管的时候,能够形成很强的B-N键。随后H*自由基(同样也包含在氨气等离子气体中)键合到NH2-修饰的B原子附近的N原子上。我们发现其反应规律可以通过前线轨道理论进行合理的解释。能带结构和态密度(DOS)计算表明这一修饰可以很好的提高硼氮纳米管的导电性。由于N2+(同样也包含在氨气等离子气体中)的碰击,硼氮纳米管的表面将会生成一些缺陷,我们对NH2*在硼氮纳米管缺陷位置的修饰也进行了详细的研究。我们研究还发现,硼氮纳米管的手径或直径对该修饰的反应性没有太大的影响。
     第六章利用密度泛函理论系统地研究了一系列卡宾CR2(R= H、F、Cl、CH3、CN、NO2)在不同位置修饰硼氮纳米管的结构、能量和导电性质。当R = H、F、Cl时,修饰产物中开口产物(硼氮纳米管侧壁上的B-N键断裂)是稳定的产物,而当R= CH3、CN时,开口产物和闭合产物(合成一个类似环丙烷结构的B-N-C三元环)是一个竞争的过程。令人奇怪的是,当R = NO2时,我们发现了存在一个具有双五元环结构的产物,并且有很高的稳定性。而这种结构在碳纳米管的修饰中没有被发现过。另外,研究表明,卡宾CR2(R= H、F、Cl、CH3、CN)的修饰很难改变硼氮纳米管的导电性,而CR2(R = NO2)的修饰,由于产生了奇特的双五元环结构,这将对硼氮纳米管的导电性产生很大的影响。
     第七章利用密度泛函理论系统的研究了氧分子在碳化硅纳米管表面上的吸附和分解过程。研究表明,三态和单态的氧分子吸附到碳化硅纳米管表面时,都能得到各种不同的修饰产物,包括化学吸附产物和[2+2]环加成产物。与碳纳米管的情况不一样,三态氧分子的化学吸附是一个放热过程,并且有很大的电荷从管转移到了氧分子上。单态氧分子在碳化硅纳米管表面的修饰可以得到环加成的产物,这是一个强烈的放热过程,还伴随着很高的电荷转移。反应机理的研究表明,对于三态氧分子,化学吸附产物是稳定的,而对于单态氧分子,环加成产物却更加稳定。随后我们还研究了单态氧分子在碳化硅纳米管表面上的分解机理,研究表明这是一个两步的反应过程,最终两个氧原子扩散到不同的Si-C键上形成两个Si-C-O三元环结构。反应的决速步是第一步,活化能为0.40 eV。最后通过能带结构和态密度可以证明,两种自旋态的氧分子的修饰都能影响碳化硅纳米管的导电性。
Design and synthesis of new-type materials with various physical or chemical properties is very important in experimental research and industrial applications, recently. Nanotube materials (included carbon nanotubes, boron nitride nanotubes and silicon carbide nanotubes et.al), which exhibit unique structures and excellent electronic, mechanical and thermodynamic properties, have evoked a lot of research intersests and become a research topic in materials science, physics, chemistry and biology. The potential applications of nanotubes materials are numerous and will play a key role in future nanoscience and nanotechnology. Some widely unvestigated examples include the applicability to nanoscale devices, chemical sensors, nano reactor and hydrogen storage materials. However, the poor solubility and difficulties of purifying and processing of nanotubes materials have hampered the future application of nanotube materials. Chemical modification (i.e., functionalization) was not only extensively promoted as one way to overcome these problems, but also can provide an approach to design and synthesis new nanotube materials with more excellent properties. In this paper, we chose several chemical modifications of nanotubes materials with typical reagents which have been carefully studied using quantum methods, obtained some interesting results. On the basis of the molecular orbital theory, the traditional transition state theory as well as quantum chemistry theory, the systems chose have been investigated using Density Functional (DFT) Theory and energy band theory. The structures of the reagents, the reaction products and he transition states along the reaction paths have been obtained, then we got the sturctures, the reaction energies, electronic properites as well as the information of orbitals. The reaction mechanism has been discussed deeply using these data.
     The whole paper consists of seven chapters. Chapter 1 mainly reviews the evolution of chemical modification of nanotubes materials. The second chapter summarizes the theory of quantum chemistry and calculation methods of this paper. The contents of two chapters were the basis and background of our studies and offer us with useful and reliable quantum methods.
     Chapter 3 In this paper, Metallocenes (MCp2, M = Fe, Co, Ni), a well known organometallic molecule withπ-electron system, have been considered as encapsulation inside carbon nanotubes using DFT theoretical investigation, and the structural, energetic and electronic properties of MCp2@SWCNT have been obtained. We verified that such an encapsulation is actually a noncovalent functionalization, and examined binding energies and charge transfer of the MCp2@(16, 0) SWCNT system as a function of the adiabatic ionization potential of metallocene molecule. For Ip (Iv) configuration the optimal distance between the central of FeCp2 molecule and the near tube’s wall is 4.70 (5.10) ?, as well as the minimum diameter of SWCNT is about 9.40 (10.20) ? to exothermically encapsulate a FeCp2 molecule. In addition, the electronic properties of MCp2@(16, 0) SWCNT systems were examined in detail, clarifying the doping effects the bandgap and revealing a sizable charge by encapsulation of CoCp2 and NiCp2, along with the advantages in not distorting the wall of the tubes.
     Chapter 4 A theoretical exploration of the 1,3-dipolar cycloadditions CH2N2 and N2O onto pristine and B-doped single-walled carbon nanotubes (SWCNTs) have been carried out. We can found the reaction activities have been enhanced by B-doped. For Path-CBNC, compared with the reaction of CH2N2 on pristine SWCNTs, the barrier energies and reaction energies of 1,3-dipolar cycloadditions are decreased by 0.58 eV and 0.80 eV, respectively. Likewise, for Path-NBCC, the barrier energies and reaction energies of 1,3-dipolar cycloadditions are decreased by 0.35 eV and 1.30 eV, respectively. On the other hand, for Path-OBNC, compared with the reaction of N2O on pristine SWCNTs, the barrier energies and reaction energies of 1,3-dipolar cycloadditions are decreased by 0.60 and 1.56 eV, respectively. The predicted reacitivity of our considered reaction can be understood in terms of the frontier molecular orbital (FMO) theory.
     Chapter 5 The reaction behavior of chemical modification of boron nitride nanotube (BNNT) with the ammonia plasmas have been investigated by density functional theory calculations. Unlike previously studied of the functionalization with NH3 and amino functional groups, we found that NH2* radical involved in the ammonia plasmas can be covalently incorporated to BNNT through a strong single B-N bond. Subsequently, the H* radical, which is also involved in the ammonia plasmas, would prefer to combine with the N atom neighboring the NH2-functionalized B atom. Our study reveal that this reaction behavior can be elucidated using the frontier orbital theory. The calculated band structures and density of states (DOS) indicate this modification is an effective method to modulate the electronic properties of BNNTs. We have discussed various defects on the surface of BNNTs generated by collision of N2+ ion. For most defects considered the reactivity of the functionalization of BNNTs with NH2* are enhanced. Our conclusions are independent of the chirality and the diameter dependence of the reaction energies is presented.
     Chapter 6 We systematically studied the structural, energetic and electronic properties of zigzag boron nitride nanotubes (BNNTs) functionalized by a class of substitutional carbene (CR2) where R = H, F, Cl, CH3, CN and NO2 on different absorption sites using density functional theory. For R = H, F and Cl, the open structure is preferred with a BNNT sidewall bond cleavage. While for R = CH3 and CN, the competition between the open and closed cyclopropane-like three-membered ring (3MR) structures occurs. Interestingly, for R = NO2 we find a novel double five-member-rings (5MR) structure with high reaction stability. This new structure cannot be found in BNNTs’alternative carbon nanotubes (CNTs). In addition, the electronic properties of BNNTs functionalized with carbenes are hardly changed for R = H, F, Cl, CH3 and CN, but significantly affected for R = NO2 due to the heterocyclic double 5MR structure.
     Chapter 7 The adsorption/dissociation of O2 molecule on the surface of silicon carbide nanotubes (SiCNTs) was investigated by density functional theory. We found several adsorption configurations, including chemisorption and cycloaddition configurations, for triplet and singlet O2. Unlike the case of carbon nanotubes, the chemisorption of triplet O2 on SiCNTs is exothermic with remarkable charge transfer from nanotubes to O2 molecule. Singlet O2 adsorption on the surface of SiCNTs can yield cycloaddition structures with large binding energies and sizeable charge transfer. The reaction mechanism studies show that for triplet O2 chemisorption configuration is favorable, but cycloaddition configuration is preferred for singlet O2. For singlet O2, we also studied the dissociation of O2 molecule, and a two-step mechanism was presented. The dissociation of molecular O2 results in formation of two three-membered rings with large binding energies. The key to the dissociation process of singlet O2 on the SiCNTs surface is the first step with the barrier energy of 0.40 eV. Finally the electronic properties of SiCNTs adsorbed with triplet and singlet O2 are shown to be dramatically influenced.
引文
[1]徐国财.纳米科技导论.北京:高等教育出版社, 2005.
    [2]徐国财,张立特.纳米复合材料.北京:化学工业出版社, 2002.
    [3]刘吉平郝向阳.纳米科学与技术.北京:科学出版社, 2002.
    [4]数据来源于美国纳米行动计划(NNI)网站. http://www.nano.gov/
    [5]王中林.科学时报,2001, 8, 9
    [6] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56.
    [7] Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. C60Buckminsterfullerene. Nature. 1985, 318, 162.
    [8] Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1nm Diameter. Nature. 1993, 363, 603.
    [9] Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G. Nature. 1993, 363, 605.
    [10]成会明.纳米碳管——制备、结构、物性及应用.北京:化学工业出版社,2002.
    [11]朱道本.化学进展丛书——功能材料化学进展.北京:化学工业出版社,2005.
    [12] Dresselhaus, M. S.; Dresselhaus, G.; Ehlund, P. C. Science of Fullerenes & Carbon Nanotubes. San Diego: Academic Press, 1996.
    [13] Charlier, J.–C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063.
    [14] Ebbesen, T. W. Ed. Carbon Nanotubes: Preparation and Properties. Boca Raton, FL: CRC Press, 1997.
    [15] Journrt, C.; Master, W. K.; Bernier, P.; et al. Naure. 1997, 388, 756.
    [16] Liu, C.; Cong, H. T.; Li, F. et al. Carbon. 1999, 37, 1865.
    [17] Ando, Y.; Zhao, X. L.; Hirahara, K. et al. Chem. Phys. Lett. 2000, 323, 580.
    [18] Guo, T.; Nikolaev, P.; Rinzler, A. G.; et al. J. Phys. Chem. 1995, 99, 10694.
    [19] Thess, A.; Lee, R.; Nikolaev, P.; et al. Science. 1996, 273, 483.
    [20] Yudasaka, M.; Komatsu, T.; Ichihashi, T.; et al. Chem. Phys. Lett. 1997, 278, 102.
    [21] Guo, T.; Nikolaev, P.; Thess, A.; et al. Chem. Phys. Lett. 1995, 243, 49.
    [22] Kong, J.; Cassell, A. M; Dai, H. J. Chem. Phys. Lett. 1998, 292, 567.
    [23] Cheng, H. M.; Li, F.; Su, G.; et al. Appl. Phys. Lett. 1998, 72, 3282.
    [24] Cheng, H. M.; Li, F.; Sun, X.; et al. Chem. Phys. Lett. 1998, 289, 602.
    [25] Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smalley, R. E. et al. J. Vac. Sci. Technol. A 2001, 19, 1800
    [26] Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Kim, J. M.; et al. Appl. Phys. Lett. 2000, 76,2367.
    [27] Kind, H.; Bonard, J. M.; Emmenegger, C.; Kern, K.; et al. Adv. Mater. 1999, 11, 1285.
    [28] Journet, C.; Alvarez, L.; Micholet, V.; Guillard, T.; Chapelle, de la M. L.; et al. Synth. Met. 1999, 103, 2488.
    [29] Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; et al. Nature. 1996, 382, 54.
    [30] Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Mater. Sci. Eng. B-Solid State Mater. Adv. Tech. 1993, 19, 183.
    [31] Rao, A. M.; Eklund, P. C.; Bandow, S.; et al. Nature, 1997, 388, 257.
    [32] Lee, R. S.; Kim, H. J.; Fischer, J. E.; et al. Nature. 1997, 388, 255.
    [33] Service, R. F. Science. 1998, 281, 940.
    [34] Salvetat, J. P.; Bonard, J. M.; Kulik, A. J.; Forro, L.; et al. Appl. Phys. A-Mater. Sci. & Pro. 1999, 69, 255.
    [35] Che, J. W.; Cagin, T.; Goddard III W. A.; Nanotechnology. 2000, 11, 65.
    [36] Sun, X.; Yu, R. Q.; Xu, G. Q.; Ji, W.; et al. Appl. Phys. Lett. 1998, 73, 3632.
    [37] Vivien, L.; Anglaret, E.; Riehl, D.; Bacou, F.; et al. Chem. Phys. Lett. 1999, 307, 317.
    [38] Chen, P.; Wu, X.; Sun, X.; Tan, K. L.; et al. Phys. Rev. Lett. 1999, 82, 2548.
    [39] Ball, P.; Nature. 2001, 414, 142.
    [40] Hirsch, Angew. Chem. Int. Ed. 2002, 41, 1853.
    [41] Niyogi, S.; hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105.
    [42] Banerjee, B. S.; Benny, T. H.; Wong, S. S. Adv. Mater. 2005, 17, 17.
    [43] Balasubramanian, K.; Burghard, M. Small, 2005, 2, 180.
    [44] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    [45]王建国,屈泽华.化学法修饰碳纳米管.化学进展,2006,18,1305.
    [46] Liu, J.; Rinzler, A. G.; Smalley, R. E.; et al. Fullerene pipes. Science, 1998, 280, 1253.
    [47] Chen, J.; Hamon, M. A.; Haddon, R. C.; et al. Science. 1998, 282, 95.
    [48] Hamon, M. A.; Chen, J.; Haddon, R. C.; et al. Adv. Mater. 1999, 11, 834.
    [49] Chen, J.; Rao, A. M.; haddon, R. C.; et al. J. Phys. Chem. B 2001, 105, 2525.
    [50] Riggs, J. E.; Guo, Z. X.; Sun, Y. P.; et al. 2001, 40, 4002.
    [51] Sun, Y. P.; Huang, W.; Lin, Y.; Fu, K.; et al. Chem. Mater. 2001, 13, 2864.
    [52] Fu, K.; Huang, W.; Lin, Y; Sun, Y. P.; et al. Nano. Lett. 2001, 1, 439.
    [53] Chiu, P. W.; Duesberg, G. S.; Dettlaff-Weglikowska, U.; Roth, S. Appl. Phys. Lett. 2002, 80, 1811.
    [54] Mickelson, E. T.; Huffman, C. B.; Margrave, J. L.; et, al. Chem. Phys. Lett. 1998, 296, 188.
    [55] Mickelson, E. T.; Chiagn, I. W.; Margrave, J. L.; et al. J. Phys. Chem. B 1999, 103, 4318.
    [56] Aihara, J.; lack of superaromaticity in carbon nanotubes. J. Phys. Chem. 1994, 98, 9773.
    [57] Bettiger, H. F.; Kudin, K. N.; Scuseria, G. E.; et al. J. Am. Chem. Soc. 2001, 123, 12849.
    [58] Boul, P. J.; Liu, J.; Smalley, R. E.; et al. Chem. Phys. Lett. 1999, 310, 367.
    [59] Saini, R. K.; Chiang, I. W.; Peng, H. Q.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L.; et al. J. Am. Chem. Soc. 2003, 125, 3617.
    [60] Chen, Y. Haddon, R. C.; Smalley, R. E.; et al. J. Mater. Res. 1998, 13, 2423.
    [61] Pekker, S.; Salvetat, J. P.; Jakab, E.; Bonard, J. M.; Forro, L. J. Phys. Chem. B 2001, 105, 7938.
    [62] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
    [63] Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R. C. J. Am. Chem. Soc. 2003, 125, 14893.
    [64] Kamaras K, I. M. E., Hu H, Zhao B, Haddon R C. Science 2003, 301, 1501.
    [65] Bettinger, H. F. Chemistry - A European Journal 2006, 12, 4372.
    [66] Li, R.; Shang, Z.; Wang, G.; Pan, Y.; Cai, Z.; Zhao, X. J. Mol. Struct: THEOCHEM 2002, 583, 241.
    [67] Lu, J.; Nagase, S.; Zhang, X.; Maeda, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya,T.; Akasaka, T.; Yu, D.; Gao, Z.; Han, R.; Ye, H. J. Mol. Struct: THEOCHEM 2005, 725, 255.
    [68] Chen, Z.; Nagase, S.; Hirsch, A.; Haddon, R. C.; W. Thiel and P. vonRague′Schleyer, Angew. Chem., Int. Ed. 2004, 43, 1552.
    [69] Yumura, T.; Kertesz, M. Chem. Mater. 2007, 19, 1028.
    [70] Lee, Y.-S.; Marzari, N. Phys. Rev. Lett. 2006, 97, 116801.
    [71] Lee, Y. -S.; Marzari, N. J. Phys. Chem. C, 2008, 112, 4480
    [72] Hirsch, A. Angew. Chem., Int. Ed. 2002, 41, 1853.
    [73] Hirsch, A.; Vostrowsky, O. Top. Curr. Chem. 2005, 245, 193.
    [74] Holzinger, M.; Vostrovsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem. Int. Ed. 2001, 40, 4002.
    [75] Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566.
    [76] Holzinger, M.; Steinmetz, J.; Samaille, D.; Glerup, M.; Paillet, M.; Bernier, P.; Ley, L.; Graupner, R. Carbon 2004, 42, 941.
    [77] Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall M. J. Nano Lett. 2004, 4, 89.
    [78] Min Lee, K.; Li, L.; Dai, L. J. Am. Chem. Soc. 2005, 127, 4122.
    [79] Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760.
    [80] Tagmatarchis, N.; Prato, M. J. Mater. Chem. 2004, 14, 437.
    [81] Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J. L.; Garcia, H.; Langa, F. J. Phys. Chem. B 2004, 108, 12691.
    [82] Wang, Y.; Iqbal, Z.; Mitra, S. Carbon 2005, 43, 1015.
    [83] Lu, X.; Tian, F.; Xu, X.; Wang, N. Zhang, Q. J. Am. Chem. Soc. 2003, 125, 10459.
    [84] Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. J. Am. Chem. Soc. 2003, 125, 8722.
    [85] Worsley, K. A.; Moonoosawmy, K. R.; Kruse, P. Nano Lett. 2004, 4, 1541.
    [86] Delgado, J. L.; de la Cruz, P.; Langa, F.; Urbina, A.; Casado, J.; Lopez Navarrete,J. T. Chem. Commun. 2004, 1734.
    [87] Lu, X.; Tian, F.; Wang, N.; Zhang, Q. Org. Lett. 2002, 4, 4313.
    [88] Zhang, W.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 7714.
    [89] Zhang, W.; Sprafke, J. K.; Ma, M.; Tsui, E. Y.; Sydlik, S. A.; Rutledge, G. C.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 8446.
    [90] Tagmatarchis, N.; Georagakilas, V.; Prato, M.; Shinohara, H. Chem. Comm. 2002, 2010.
    [91] Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536.
    [92] Dyke, C. A.; Stewart, M. P.; Maya, F.; Tour, J. M. Synlett 2004, 1, 155.
    [93] Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519.
    [94] Dyke, C. A.; Tour, J. M. Nano Lett. 2003, 3, 1215.
    [95] Bahr, J. L.; Tour, J. M. Chem. Mater. 2001, 13, 3823.
    [96] Hudson, J. L.; Casavant, M. J.; Tour, J. M. J. Am. Chem. Soc. 2004, 126, 11158.
    [97] Dyke, C. A.; Tour, J. M. J. Am. Chem. Soc. 2003, 125, 1156.
    [98] Marcoux P. R.; Hapiot, P.; Batail, P.; Pinson, J. New J. Chem. 2004, 28, 302.
    [99] Strano, M. S. J. Am. Chem. Soc. 2003, 125, 16148.
    [100] Leventis, H. C.; Wildgoose, G. G.; Davies, I. G.; Jiang, L.; Jones, T. G. J.; Compton, R. G. ChemPhysChem 2005, 6, 590.
    [101] Fantini, C.; Usreg, M. L.; Strano, M. S. J. Phys. Chem. C 2007, 111, 17941.
    [102] Ellison, M. D.; Gasda, P. J.; J. Phys. Chem. C 2008, 112, 738.
    [103] Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. Nano Lett. 2004, 4, 827.
    [104] Peng, H.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. J. Am. Chem. Soc. 2003, 125, 15174.
    [105] Lu, X.; Tian, F.; Feng, Y.; Xu, X.; Wang, N.; Zhang, Q. Nano Lett. 2002, 2, 1325.
    [106] Cui, J.; Burghard, M.; Kern, K. Nano Lett. 2003, 3, 613.
    [107] Hwang, K. C. Chem. Commun. 1995, 173.
    [108] Banerjee, S.; Wong, S. S. J. Am. Chem. Soc. 2004, 126, 2073.
    [109] An, K. H.; Park, J. S.; Yang, C.-M.; Jeong, S. Y.; Lim, S. C.; Kang, C.; Son, J.-H.; Jeong, M. S.; Lee, Y. H. J. Am. Chem. Soc. 2005, 127, 5196.
    [110] Yoon, S.-M.; Kim, S. J.; Shin, H.-J.; Benayad, A.; Choi, S. J.; Kim, K. K.; Kim, S. M.; Park, Y. J.; Kim G.; Choi, J.-Y.; Lee, Y. H. J. Am. Chem. Soc. 2008, 130, 2610.
    [111] Konya, Z.; Vesselenyi, I.; Niesz, K.; Kukovecz, A.; et al. Chem. Phys. Lett. 2002, 360, 429.
    [112] Frehill, F.; Vos, J. G.; Benrezzak, S.; et al. J. Am. Chem. Soc. 2002, 124, 13694.
    [113] Pan, H.; Liu L.; Guo, Z. X.; et al. Nano Lett. 2003, 3, 29.
    [114] Chen, R. J.; Zhang, Y. G.; Dai, H, J.; et al. J. Am. Chem. Soc. 2001, 123, 3838.
    [115] Star, A.; Stoddart, J. F.; Steuerman, D.; Heath, J. R.; et al. Angew. Chem. Int. Ed. 2001, 40, 1721.
    [116] Steuerman, D. W.; Star A.; Narizzano, R.; Stoddart, J. F.; Heath, J. R.; et al. J. Phys. Chem. B 2002, 106, 3124.
    [117] Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003, 378, 481.
    [118] Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004, 126, 1014.
    [119] Basiuk, V. A. J. Phys. Chem. B 2004, 108, 19990.
    [120] Zhao, J.-X.; Ding, Y.-H. J. Phys. Chem. C 2008, 112, 11130.
    [121] Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Iwasa, Y. Nat. Mater. 2003, 2, 638.
    [122] Connell, M. J.; Eibergen, E. E.; Doorn, S. K. Nat. Mater. 2005, 4, 412.
    [123] Tournus, F.; Charlier, J.–C. Phys. Rev. B 2005, 71, 165421.
    [124] Shtogun, Y. V.; Woods, L. M.; Dovbeshko, G. I. J. Phys. Chem. C 2007, 111, 18174.
    [125] O’Connell, M. J.; Boul, P.; Ericson, L. M.; Smalley, R, E.; et al. Chem. Phy. Lett. 2001, 342, 265.
    [126] Jin, L.; Bower, C.; Zhou, O. Appl. Phys. Lett. 1998, 73, 1197.
    [127] de la Chapelle, M. L.; Stephan, C.; Nguyen, T. P.; Lefrant, S.; Journet, C.;Bernier, P.; Munoz, E.; Benito, A.; Maser, W. K.; Martinez, M. T.; de la Fuente, G. F.; Guillard, T.; Flamant, G.; Alvarez, L.; Laplaze, D. Synth. Met. 1999, 103, 2510.
    [128] Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett. 2000, 76, 2868.
    [129] Tang, B. Z.; Xu, H. Macromolecules 1999, 32, 2569.
    [130] Ding, W.; Eitan, A.; Fisher, F. T.; Chen, X. H.; Dirkin, D. A.; Andrews, R. Nano Lett. 2003, 3, 1593.
    [131] Rouse, J. H. Langmuir 2005, 21, 1055.
    [132] Guo, Z.; Sadler, P. J.; Tsang, S. C. AdV. Mater. 1998, 10, 701.
    [133] Barisci, J. N.; Tahhan, M.; Wallace, G. G.; Badaire, S.; Vaugien, T.; Maugey, M.; Poulin, P. AdV. Funct. Mater. 2004, 4,133.
    [134] Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338.
    [135] Nakashima, N.; Okuzono, S.; Murakami, H.; Nakai, T.; Yoshikawa, K. Chem. Lett. 2003, 32, 456.
    [136] Strano, M. S.; Zheng, M.; Jagota, A.; Onoa, G. B.; Heller, D. A.; Barone, P. W.; Usrey, M. L. Nano Lett. 2004, 4, 543.
    [137] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801.
    [138] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; peng, S.; Cho, K.; Dai, H. J. Science 2000, 287, 622.
    [139] Goldoni, A.; Larciprete, R.; Petaccia, L.; Lizzit, S. J. Am. Chem. Soc. 2003, 125, 11329.
    [140] Someya, T.; Small, J.; Kim P.; Nuckolls, C.; Yardley, J. T. Nano Lett. 2003, 3, 877.
    [141] Chakrapani, N.; Zhang, Y. M.; Nayak, S. K.; Moore, J. A.; Carroll, D. L.; Choi, Y. Y.; Ajayan, P. M. J. Phys. Chem. B 2003, 107, 9308.
    [142] Peng, S.; Cho, K. Nano Lett. 2003, 3, 513.
    [143] Zhang, Y.; Zhang, D.; Liu, C. J. Phys, Chem. B 2006, 110, 4671.
    [144] Wang, R.; Zhang, D.; Zhang, Y.; Liu, C. J. Phys, Chem. B 2006, 110, 18267.
    [145] Smith, B. W.; Monthioux, M.; Luzzi, D. E. Nature 1998, 296, 323.
    [146] Burteaux, B.; Claye, A.; Smith, B. W.; Monthioux, M.; Luzzi, D. E.; Fischer, J. E. Chem. Phys. Lett. 1999, 310, 21.
    [147] Smith, B. W.; Monthioux, M.; Luzzi, D. E. Chem. Phys. Lett. 1999, 315, 31.
    [148] Luzzi, D. E.; Smith, B. W. Carbon 2000, 38, 1751.
    [149] Bandow, S.; Takizawa, M.; Hirahara, K.; Yudasaka, M.; Iijima, S. Chem. Phys. Lett. 2001, 337, 48.
    [150] Hirahara, K.; Bandow, S.; Suenaga, K.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. Phys. ReV. B 2001, 64, 115420.
    [151] Kataura, H.; Maniwa, Y.; Abe, M.; Fujiwara, A.; Kodama, T.; Kikuchi, K. Appl. Phys. A 2002, 74, 349.
    [152] Smith, B. W.; Luzzi, D. E.; Achiba, Y. Chem. Phys. Lett. 2000, 331, 137.
    [153] Hirahara, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. Phys. ReV. Lett. 2000, 85, 5384.
    [154] Okazaki, T.; Suenaga, K.; Hirahara, K.; Bandow, S.; Iijima, S.; Shinohara, H. J. Am. Chem. Soc. 2001, 123, 9673.
    [155] Chiu, P. W.; Gu, G.; Kim, G. T.; Philipp, G.; Roth, S. Appl. Phys.Lett. 2001, 79, 3845.
    [156] Debarre, A.; Jaffiol, R.; Julien, C.; Richard, A.; Nutarelli, D.; Tchenio, P. Chem. Phys. Lett. 2003, 380, 6.
    [157] Suenaga, K.; Taniguchi, R.; Shimada, T.; Okazaki, T.; Shinohara, H.; Iijima, S. Nano Lett. 2003, 3, 1395.
    [158] Gloter, A.; Suenaga, K.; Kataura, H.; Fujii, R.; Kodama, T.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Suzuki, S.; Achiba, Y.; Iijima, S. Chem. Phys. Lett. 2004, 390, 462.
    [159] Khlobystov, A. N.; Porfyrakis, K.; Kanai, M.; Britz, D. A.; Ardavan, A.; Shinohara, H.; Dennis, T. J. S.; Briggs, G. A. D. Angew. Chem., Int. Ed. 2004, 43, 1386.
    [160] Lee, J.; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y. Nature 2002, 415, 1005.
    [161] Kiang, C. H.; Choi, J. S.; Tran, T. T.; Bacher, A. D. J. Phys. Chem. B 1999, 103, 7449.
    [162] Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Chem. Mater. 2000, 12, 202.
    [163] Liu, S.; Zhu, J.; Mastai, Y.; Felner, I.; Gedanken, A. Chem. Mater. 2000, 12, 2205.
    [164] Bao, J.; Wang, K.; Xu, Z.; Zhang, H.; Lu, Z. Chem. Commun. 2003, 208.
    [165] Sloan, J.; Hammer, J.; Zwiefka-Sibley, M.; Green, M. L. H. Chem. Commun. 1998, 347.
    [166]Grigoran, L.; Williams, K. A.; Fang, S.; Sumanasekera, G. U.; Loper, A. L.; Dickey, E. C.; Pennycook, S. J.; Eklund, P. C. Phys. Rev. Lett. 1998, 80, 5560.
    [167] Lu, J.; Nagase, S.; Zhang, S.; Peng, L. Phys. Rve. B 2004, 69, 205303.
    [168] Guan, L.; Suenaga, K.; Shi, Z.; Gu, Z.; Iijima, S. Nano Lett. 2007, 7, 1532.
    [169] Kim, S. H.; Choi, W. I.; Kim, G.; Song, Y. J.; Jeong, G.-H. Hatakeyama, R.; Ihm, J.; Kuk, Y. Phys. Rev. Lett. 2007, 99, 256407.
    [170] Marti, J.; Gordillo, M. C. Phys. ReV. B 2001, 63, 165430.
    [171] Marti, J.; Gordillo, M. C. Phys. ReV. E 2001, 64, 021504.
    [172] Byl, O.; Liu, J.-C.; Wang, Y.; Yim, W.-L.; Johnson, J. K.; Yates, Jr, J. T. J. Am. Chem. Soc. 2006, 128, 12090.
    [173] Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188.
    [174] Berezhkovskii, A.; Hummer, G. Phys. ReV. Lett. 2002, 89, 064503.
    [175] Ito, T.; Sun, L.; Crooks, R. M. Chem. Commun. 2003, 1482.
    [176] Yeh, I.-C.; Hummer, G. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12177.
    [177] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
    [178] Xiao, Y.; Yan, X. H.; Xiang, J.; Mao, Y. L.; Zhang, Y.; Cao, J. X.; Ding, J. W. Appl. Phys. Lett. 2004, 84, 4626.
    [179] Tang, C.; Bando, Y.; Huang, Y.; Yue, S.; Gu, C.; Xu, F.; Golberg, D., 2005; Vol. 127, 6552.
    [180] Tang, C.; Bando, Y.; Huang, Y.; Yue, S.; Gu, C.; Xu, F.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 6552.
    [181] Ma, R.; Bando, Y.; Zhu, H.; Sato, T.; Xu, C.; Wu, D. J. Am. Chem. Soc. 2002, 124, 7672.
    [182] Tang, C.; Bando, Y.; Ding, X.; Qi, S.; Golberg, D. J. Am. Chem. Soc. 2002, 124, 14550.
    [183] Chen, X.; Gao, X. P.; Zhang, H.; Zhou, Z.; Hu, W. K.; Pan, G. L.; Zhu, H. Y.; Yan, T. Y.; Song, D. Y. J. Phys. Chem. B 2005, 109, 11525.
    [184] Xiang, H. J.; Yang, J. L.; Hou, J, G.; Zhu, Q. S. Appl. Phys. Lett. 2005, 87, 243113.
    [185] Han, S. S.; Lee, S. H.; Kang, J. K.; Lee, H. M. Phys. Rev. B 2005, 72, 113402
    [186] Xie, S.-Y.; Wang, W.; Shiral Fernando, K. A.; Wang, X.; Lin, Y.; Sun, Y.-P. Chem. Commun. 2005, 3670.
    [187] Zhi, C.; Bando, Y.; Tang, C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Angew. Chem. Int. Ed. 2005, 44, 7932.
    [188] Ikuno, T.; Sainsbury, T.; Okawa, D.; Frechet, J. M. J.; Zettl, A. Solid State Commun. 2007, 142, 643.
    [189] Wu, X.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001.
    [190] Zhao, C.; Wang, D.; Phillips, D. L. J. Am. Chem. Soc. 2003, 125, 15200.
    [191] Sun, X.-H.; Li, C.-P.; Wong, W.-K.; Wong, N.-B.; Lee, C.-S.; Lee, S.-T.; Teo, B.-K. J. Am. Chem. Soc. 2002, 124, 14464.
    [192] Mopurmpakis, G.; Froudakis, E.; Lithoxoos, G. P.; Samios, J. Nano Lett. 2006, 6, 1581.
    [193] Wu, R. Q.; Yang, M. Lu. H. Y.; Feng. Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985.
    [194] Gao, G.-H.; Kang, H. S. J. Chem. Theory. Comput. 2008, 4, 1690.
    [195] Zhang, R. Q.; Lee, S. T.; Law, C. K.; et al. Chem. Phys. Lett. 2002, 364, 251.
    [196] Zhang, M. Kan, Y. H.; Zang, Q. J.; et al. Chem. Phys. Lett. 2003, 379, 81.
    [197] Sha, J.; Niu, J. J.; Ma, X. Y.; et al. Adv. Mater. 2002, 14, 1219.
    [198] Hu, J. J.; Bando, Y. S.; Liu, Z. W.; et al. Angew. Chem. Int. Ed. 2004, 43, 63.
    [199] Singh, A. K.; Briere, T. M.; Kumar, V.; et al. Phys. Rev. Lett. 2003, 91, 146.
    [200] Tang, H.; Beigi, S. I. Phys. Rev. Lett. 2007, 99, 115501.
    [201] Yang, X.; Ding, Y.; Ni, Jun. Phys. Rev. B 2008, 77, 041402(R).
    [202] Fan, Z.; Wang, D.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. Appl. Phys. Lett. 2004, 85, 5923.
    [203] Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O. K.; Vayssieres, L. Nanotechnology 2006, 17, 4995.
    [204] An, W.; Wu, X.; Zeng, X. C. J. Phys. Chem. C 2008, 112, 5747.
    [205] Jung, J. H.; Shinkai, S.; Shimizu, T. Nano Lett. 2002, 2, 17.
    [206] Zhao, M.; Zhu, Z. H.; Gale, J. D.; Xia, Y.; Lu, G. Q. J. Phys. Chem. C 2007, 111, 9652.
    [207] Delclos, T.; Aim, C.; Pouget, E.; Brizard, A.; Huc, I.; Delville, M. H.; Oda, R. Nano Lett. 2008, 8, 1929.
    [208] Bettinger, H, F.; Kudin, K. N.; Scuseria, G. E. J. Am. Chem. Soc. 2001, 123, 12849.
    [209] Froudakis, G. E. Nano Lett. 2001, 1, 179.
    [210] Bauschilicher, C. W.; So, Jr and C. R. Nano Lett. 2002, 2, 337.
    [211] Walsh, S. P. Chem. Phys. Lett. 2003, 374, 501.
    [212] Wang, L.; Zhao, J.; Li, F.; Fang, H.; Lu, J. P. J. Phys. Chem. C 2009, 113, 5368.
    [213] Zhang, J.; Loh, K. P. Appl. Phys. Lett. 2005, 87, 243105.
    [214] Lai, L.; Song, W.; Lu, J.; G, Z.; Nagase, S.; Ni, Ming.; Mei, W. N.; Liu, J.; Yu, D.; Ye, H. J. Phys. Chem. B 2006, 110, 14092.
    [215] Li, F.; Zhu, Z.; Yao, X.; Lu, G.; Zhao, M. Appl. Phys. Lett. 2008, 92, 102515.
    [216] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. J. Chem. Phys. 2004, 121, 8481.
    [217] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. Phys. Rev. B 2004, 69, 153411.
    [218] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. J. Chem. Phys. 2006, 124, 054706.
    [219] Baierle, R. J.; Piquini, P.; Schmidt, T. M.; Fazzio, A. J. Phys. Chem. B 2006, 110, 21184.
    [220] Wu, X.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006, 125, 044704.
    [221] Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.
    [222] Anantram M. P.; Govindan, T. R. Phys. Rev. B 1998, 58, 4882.
    [223] Nardelli, M. Phys, Rev. B 1999, 60, 7828.
    [224] Blasé, X.; et al. Phys. Rev. Lett. 1994, 72,1878.
    [225] Delaney, P.; et al. Nature 1998, 391, 466.
    [226] Chang, H.; Lee, J. D.; Lee, S. M.; Lee, Y. H. Appl. Phys. Lett. 2001, 79, 3863.
    [227] Jhi, S.-H.; Louie, S. G.; Cohen, M. L. Phys. Rev. Lett. 2000, 85, 1710.
    [228] Baierle, R. J.; Schmidt, T. M.; Fazzio, A. Solid State Commun. 2007, 142, 49.
    [1]唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社,1982.
    [2]赵成大.化学反应量子理论[M],东北师范大学出版社,1990.
    [3]廖沐真,吴国是,刘洪霖,量子化学从头计算方法[M],清华大学出版社,1984.
    [4]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算方法(中册)[M].北京,科学出版社,1985.
    [5]赵学庄.化学反应动力学原理[M].北京:高等教育出版社., 1984.
    [6]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社., 1987.
    [7] Hehre, W. J.; Radom, L.; Schleyer P. V. R. Ab initio molecular orbital theory [M]. John Wiley & Sons, Inc., 1986.
    [8] McQuarrie, D. A. Quantum chemistry university science books [M]: Mill Vally. CA. 1983.
    [9] Loewdin, P. O. Advan. Chem. Phys., 1959, 2, 207.
    [10] Foresman, J. B.; Gordon M. H.; Pople J. A., Frisch M. J. J. Chem. Phys., 1992, 96, 135.
    [11] Krishnan, R.; Schlegel, H. B., Pople J.A. J. Chem. Phys., 1980, 72, 4654.
    [12] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871.
    [13] Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
    [14] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
    [15] Ashcroft, N. W.; Mermin, N. D.; Solid State Phys. Holt Saunders, Philadelphia, 1976, 113.
    [16] Dirac, P. A. M. Proc. Cambridge Phil. Roy. Soc. 1930, 26, 376-385.
    [17] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
    [18] Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566-569.
    [19] Cramer, C. J. Essentials of Computational Chemistry; John Wiley & Sons, Ltd: Chichester, 2002.
    [20] Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
    [20] Wynne, J. Eyring H. J. Chem. Phys., 1935, 3, 492.
    [21] Eying, H. Chem. Revs., 1935, 17, 65
    [22] Frost. Pearson. Kinetics and mechanism. 1961.
    [23] Jones, H.; The Theory of Brillouin Zones and Electronic State in Crystals.North-Holland, 1960.
    [24] Callaway, J.; Quantum Theory of The Solid State. Acade. Press: New York, 1976.
    [25] Callaway, J.; Energy Band Theory. Academic Press: New York, 1964
    [26]谢希德,陆栋。固体能带理论。上海:复旦大学出版社,1998.
    [27]赵成大。固体量子化学——材料化学的理论基础。北京:高等教育出版社。2003.
    [28] Delley, B. J. Chem. Phys. 1990, 92, 508.
    [29] Delley, B. J. Chem. Phys. 1991, 94, 7245.
    [30] Delley, B. J. Chem. Phys. 2000, 113, 7756.
    [31] Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250.
    [32] Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
    [1] Dresselhaus, M. S.; Dressehaus, G..; Eklund, P. C. Science of Fullenrenes and Carbon nanotubes; Academic Press: New York, 1996.
    [2] Saito, R.; Dressehaus, G.; Dresselhaus, M. S. Physics Properties of Carbon nanotubes; World Scientific, New York, 1998.
    [3] Feldman, A. K; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. Acc. Chem. Res. 2008, 41, 1731.
    [4] Chiu, P.-W.; Kaempgen, M.; Roth, S. Phys. Rev. Lett. 2004, 92, 246802.
    [5] Guo X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, R. H.; Caldwell, R.; Huang, L.; O’Brien, S.; Yan, J.; Bresiow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.
    [6] Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Acc.Chem. Res. 2002, 35, 1087.
    [7] Lu, X.; Chen, Z. Chem. Rev. 2005, 105, 3643.
    [8] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    [9] Menard-Moyon, C.; Izard, N.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 6552.
    [10] Menard-Moyon, C.; Dumas, F.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 14764.
    [11] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801.
    [12] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; peng, S.; Cho, K.; Dai, H. J. Science 2000, 287, 622.
    [13] Chen, R. J.; Zhang, Y.; Wang, D.; and Dai, H. J. J. Am. Chem. Soc. 2001, 123, 3838.
    [14] Zhao, J.; Lu, J. P.; Han, J.; Yang, C-K. Appl. Phys. Lett. 2003, 82, 3746.
    [15] Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Nature Mater. 2003, 2, 683.
    [16] O’Connell, M. J.; Eibergen, E. E.; Doorn, S. K. Nature Mater. 2005, 4, 412.
    [17] Shiraishi, M.; Swaraj, S.; Takenobu, T.; Iwasa, Y.; Ata, M.; Unger, W. S. Phys. Rev. B 2005, 71, 125419.
    [18] Hataura, H.; Appl. Phys. A 2002, 74, 1.
    [19] Li, Y.; Kaneko, T.; Kong, J.; Hatakeyama, R. J. Am. Chem. Soc. 2009, 131, 3412.
    [20] Lu, J.; Nagase, S.; Yu, D.; Ye, H.; Han, R.; Gao, Z. Phys. Rev. Lett. 2004, 93, 116804.
    [21] Veiga, R. G. A.; Miwa, R. H. Phys. Rev. B 2006, 73, 245422.
    [22] Guan, L.; Suenaga, K.; Okazaki, T.; Shi, Z.; Gu, Z.; Iijima, S. J. Am. Chem. Soc. 2007, 129, 8954.
    [23] Guan, L.; Suenaga, K.; Shi, Z.; Gu, Z.; Iijima, S. Nano Lett. 2007, 7, 1532.
    [24] Jeong,G. -H.; Farajian, A. A.; Hatakeyama, R.; Hirata, T.; Yaguchi, T.; Tohji, K.; Mizuseki, H.; Kawazoe, Y. Phys. Rev. B 2003, 68, 075401.
    [25] Lu, J.; Nagase, S.; Zhang, S.; Peng, L. Phys. Rev. B 2004, 69, 205304.
    [26] Kim, S. H.; Choi, W. I.; Kim, G.; Song, Y. J.; Jeong, G.-H.; Hatakeyama, R.; Ihm, J.; Kuk, Y. Phys. Rev. Lett. 2007, 99, 256407.
    [27] Guan, L.; Suenaga, K.; Okubo, S.; Okazaki, T.; Iijima, S. J. Am. Chem. Soc. 2008, 130, 2162.
    [28] Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Nano. Lett. 2008, 8, 693.
    [29] Lv, R.; Kang, F.; Gu, J.; Gui, X.; Wei, J.; Wang, K.; Wu, D. Appl. Phys. Lett. 2008, 93, 223105.
    [30] Yuan, S.; Wang, X.; Li, P.; Li, F.; Yuan, S. J. Appl. Phys. 2008, 104, 054310.
    [31] Byl, O.; Jin-Chen Liu, J-C.; Wang, Y.; Yim, W-L.; Johnson, J. K..; Yates, J. T. J. Am. Chem. Soc. 2006, 128, 12090.
    [32] Li, H.; Zhang, X. Q.; Liew, K. M. J. Chem. Phys. 2008, 128, 034707.
    [33] Zambrano, H. A.; Walther, J. H.; Koumoutsakos, P.; Sbalzarini, F. Nano Lett. 2009, 9, 66.
    [34]Delley, B. J. Chem. Phys. 1990, 92, 508. Delley, B. J. Chem. Phys. 1991, 94, 7245. Delley, B. J. Chem. Phys. 2000, 113, 7756.
    [35] Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    [36]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    [37] Tournus, F.; Charlier, J.-C. Phys. Rev. B 2005, 71, 165421.
    [38] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    [1] Dresselhaus, M. S.; Dressehaus, G..; Eklund, P. C. Science of Fullenrenes and Carbon nanotubes; Academic Press: New York, 1996.
    [2] Saito, R.; Dressehaus, G.; Dresselhaus, M. S. Physics Properties of Carbon nanotubes; World Scientific, New York, 1998.
    [3] Feldman, A. K; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. Acc. Chem. Res. 2008, 41, 1731.
    [4] Chiu, P.-W.; Kaempgen, M.; Roth, S. Phys. Rev. Lett. 2004, 92, 246802.
    [5] Guo X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, R. H.; Caldwell, R.; Huang, L.; O’Brien, S.; Yan, J.; Bresiow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.
    [6] Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradldy, R. K.; Boul, P. J.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.
    [7] Chen, J.; Hamon, M. A.; Hui, H.; Chen, Y.; Rao, A. A.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
    [8] Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Acc.Chem. Res. 2002, 35, 1087.
    [9] Lu, X.; Chen, Z. Chem. Rev. 2005, 105, 3643.
    [10] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    [11] Gu, Z.; Peng, H.; Huge, R. H.; Smally, R. E.; Margrave, J. L. Nano Lett. 2002, 2, 1009.
    [12] Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566.
    [13] Peng, H. Q.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. J. Am. Chem. Soc. 2003, 125, 15174.
    [14] Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. L.; Shan, H. W.; Kittrell, C.; Haug, R. H.; Tour, J. M.; Smalley, R. E. Science 2003, 301, 1519.
    [15] Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, L. H. J. Am. Chem. Soc. 2003, 125, 8722.
    [16] Liu, H. P.; Zhou, B.; Lin, Y.; Gu, L. G.; Wang, W.; Fernando, S.; Kumar, S.; Allard, L. F.; Sun, Y-P. J. Am. Chem. Soc. 2004, 126, 1014.
    [17] Carrillo, A.; Swmtz, J. A.; Gamba, J. M.; Kane, R. S.; Chakiapani, N.; Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3, 1437.
    [18] Banerjee, J. A.; Yu, L. T.; Matsui, H. Nano Lett. 2003, 3, 283.
    [19] Pantarottc, D.; Partidos, C. B.; Graff, R.; Hoebeke, J.; Briand, J-P.; Prato, M.; Bianco, A. J. Am. Chem. Soc. 2003, 125, 6160.
    [20] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
    [21] Holger, F. B. Chem.-Euro. J. 2006, 12, 4372.
    [22] Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R. C. J. Am. Chem. Soc. 2003, 125, 14893.
    [23] Kamaras K, I. M. E., Hu H, Zhao B, Haddon R C. Science 2003, 301, 1501.
    [24] Lee, Y.-S.; Marzari, N. Phys. Rev. Lett. 2006, 97, 116801.
    [25] Georgakilas, D.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760.
    [26] Lu, X.; Tian, F.; Xu, X.; Wang, N.; Zhang, Q. J. Am. Chem. Soc. 2003, 2003, 125, 10459.
    [27] Lu, X.; Tian, F.; Wang, N.; Zhang, Q. Org. Lett. 2002, 4, 4313.
    [28] Govind, N.; Andzelm, J.; Maiti, A. IEEE Sens. J. 2008, 6, 837.
    [29] Andzelm, J.; Govind, N.; Maiti, A. Chem Phys Lett, 2006, 421, 58.
    [30] Zhang, Y.; Zhang, D.; Liu, C. J. Phys. Chem. B 2006, 110, 4671.
    [31] Wang, R.; Zhang, D.; Zhang, Y.; Liu, C. J. Phys. Chem. B 2006, 110, 18267.
    [32] Delley, B. J. Chem. Phys. 1990, 92, 508. Delley, B. J. Chem. Phys. 1991, 94, 7245. Delley, B. J. Chem. Phys. 2000, 113, 7756.
    [33] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    [34] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    [35] Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
    [36] Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. Olsen, R. A.; Kroes, G.. J.; Henkelman, G..; Amaldsson, A.; Jonsson, H. J. Chem. Phys. 2004, 121, 9776.
    [1] Xie, S.-Y.; Wang, W.; Shiral Fernando, K. A.; Wang, X.; Lin, Y.; Sun, Y.-P. Chem. Commun. 2005, 3670
    [2] Zhi, C.; Bando, Y.; Tang, C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Angew. Chem. Int. Ed. 2005, 44, 7932.
    [3] Wu, X.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001.
    [4] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
    [5] Xiao, Y.; Yan, X. H.; Xiang, J.; Mao, Y. L.; Zhang, Y.; Cao, J. X.; Ding, J. W. Appl. Phys. Lett. 2004, 84, 4626.
    [6] Tang, C.; Bando, Y.; Huang, Y.; Yue, S.; Gu, C.; Xu, F.; Golberg, D. Fluorination and Electrical Conductivity of BN Nanotubes, 2005, 127, 6552.
    [7] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
    [8] Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Acc.Chem. Res. 2002, 35, 1087.
    [9] Lu, X.; Chen, Z. Chem. Rev. 2005, 105, 3643.
    [10] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    [11] Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566.
    [12] Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536.
    [13]Menard-Moyon, C.; Izard, N.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 6552.
    [14] Menard-Moyon, C.; Dumas, F.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 14764.
    [15] Zhi, C.; Bando, Y.; Tang, C.; Xie, R.; Sekiguchi, T.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 15996.
    [16] Ikuno, T.; Sainsbury, T.; Okawa, D.; Frechet, J. M. J.; Zettl, A. Solid State Commun. 2007, 142, 643.
    [17] Kull, K. R.; Steen, M. L.; Fisher, E. R. J. Memb. Sci. 2005, 246, 203.
    [18] Delley, B. J. Chem. Phys. 1990, 92, 508.
    [19] Delley, B. J. Chem. Phys. 1991, 94, 7245.
    [20] Delley, B. J. Chem. Phys. 2000, 113, 7756.
    [21] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    [22] Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Adv. Mater. 2007, 19, 2413.
    [23] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    [24] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. J. Chem. Phys. 2004, 121, 8481.
    [25] Bettinger, H. F. Chem. Eur. J. 2006, 12, 4372.
    [26] Lee, Y.-S.; Marzari, N. Phys. Rev. Lett. 2006, 97, 116801.
    [27] Li, Y.; Zhou, Z.; Zhao, J. Nanotechnology 2008, 19, 015202.
    [28] Fukui, K. In Molecular Orbitals in Chemistry, Physics and Biology; L?wdin, P. O., Pullman, B., Eds.; Academic Press: New York, 1964; pp 513.
    [29] Fukui, K. Angew. Chem. Int. Ed. Engl. 1982, 21, 801.
    [30] Sung, K.; Tidwell, T. T, J. Org. Chem. 1998, 63, 9690.
    [31] Van de Walle, C. G.; Neugebauer, J. Nature 2003, 423, 626.
    [32] Andzelm, J.; Govind, N.; Maiti, A. Chem. Phys. Lett. 2006, 421, 58.
    [33] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. J. Chem. Phys. 2006, 124, 054706.
    [34] Li, Y.; Zhou, Z.; Golberg, D.; Bando, Y.; Schleyer, P. v. R.; Chen, Z. J. Phys. Chem. C 2008, 112, 1365.
    [35] Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Nature 2004, 430, 870.
    [36] Gomez-Navarro, C.; Pablo, P. J. D.; Gomez-Herrero, J.; Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Nat Mater 2005, 4, 534.
    [1] Mealli, C.; Ienco, A.; Zoellner, R. W.; Hoyt, J., Earle B. . Chem.-Euro. J. 1997, 3, 958.
    [2] Choi, C. H,; Kertesz, M. J. Phys. Chem. A 1998, 102, 3429.
    [3] Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Acc. Chem. Res. 2002, 35, 1087.
    [4] Lu, X.; Chen, Z. Chem. Rev. 2005, 105, 3643.
    [5] Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    [6] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
    [7] Holger, F. B. Chem.-Euro. J. 2006, 12, 4372.
    [8] Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R. C. J. Am. Chem. Soc. 2003, 125, 14893.
    [9] Kamaras K, I. M. E., Hu H, Zhao B, Haddon R C. Science 2003, 301, 1501.
    [10] Lee, Y.-S.; Marzari, N. Phys. Rev. Lett. 2006, 97, 116801.
    [11] Li, R.; Shang, Z.; Wang, G.; Pan, Y.; Cai, Z.; Zhao, X. J. Mol. Struct.: THEOCHEM. 2002, 583, 241.
    [12] Lu, J.; Nagase, S.; Zhang, X.; Maeda, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; Yu, D.; Gao, Z.; Han, R.; Ye, H. J. Mol. Struct.: THEOCHEM. 2005, 725, 255.
    [13] Lu, X.; Tian, F.; Zhang, Q. J. Phys. Chem. B 2003, 107, 8388.
    [14] Su, M. D. J. Phys. Chem. B 2005, 109, 21647.
    [15] Zhongfang Chen, S. N. A. H. R. C. H. W. T. P. v. R. S. Angew. Chem. Int. Ed. 2004, 43, 1552.
    [16] Yumura, T.; Kertesz, M. Chem. Mater. 2007, 19, 1028.
    [17] Yumura, T.; Kertesz, M.; Iijima, S. Chem. Phys. Lett. 2007, 444, 155.
    [18] Lee, Y. -S.; Marzari, N. J. Phys. Chem. C, 2008, 112, 4480
    [19] Bai, X.; Golberg, D.; Bando, Y.; Zhi, C.; Tang, C.; Mitome, M.; Kurashima, K. Nano Lett. 2007, 7, 632.
    [20] Tang, C.; Bando, Y.; Huang, Y.; Yue, S.; Gu, C.; Xu, F.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 6552.
    [21] Tang C C, B. Y. Appl. Phys. Lett. 2003 83 659.
    [22]Xiao Y, Y. X. H., Xiang J, Mao Y L, Zhang Y, Cao J X, Ding J W Appl. Phys. Lett. 2004 84 4626.
    [23] Yum, K.; Yu, M. F. Nano Lett. 2006, 6, 329.
    [24] Chopra N G, L. R. J., Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A Science 1995 269 966.
    [25] Mele, E. J.; Kral, P. Phys. Rev. Lett. 2002, 88, 056803.
    [26] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
    [27] Chunyi Zhi, Y. B. C. T. S. H. K. S. H. K. D. G. Angew. Chem. Int. Ed. 2005, 44, 7932.
    [28]Ma, R.; Bando, Y.; Zhu, H.; Sato, T.; Xu, C.; Wu, D. J. Am. Chem. Soc. 2002, 124, 7672.
    [29] Tang, C.; Bando, Y.; Ding, X.; Qi, S.; Golberg, D. J. Am. Chem. Soc. 2002, 124, 14550.
    [30] Wu, X.; An, W.; Zeng, X. C. J. Am. Chem. Soc. 2006, 128, 12001.
    [31] Wu, X.; Yang, J.; Hou, J. G.; Zhu, Q. J. Chem. Phys. 2004, 121, 8481.
    [32] Xie S Y, W. W., Shiral Fernando K A, Wang X, Lin Y, Sun Y P Chem Commun. 2005, 3670.
    [33] Zhi, C.; Bando, Y.; Tang, C.; Xie, R.; Sekiguchi, T.; Golberg, D. J. Am. Chem. Soc. 2005, 127, 15996.
    [34] Li, Y.; Zhou, Z.; Zhao, J. Nanotechnology, 2008, 19, 015202.
    [35] Zhao, C.; Wang, D.; Phillips, D. L. J. Am. Chem. Soc. 2002, 124, 12903.
    [36] Zhao, C.; Wang, D.; Phillips, D. L. J. Am. Chem. Soc. 2003, 125, 15200.
    [37] Delley, B. J.Phys.Chem. 1990, 92, 508.
    [38] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    [39] Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Chem. Mater. 2001, 13, 2965; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
    [40] Golberg, D.; Bando, Y. Appl. Phys. Lett. 2001, 79, 415.
    [41] Menon, M.; Srivastava, D. Chem. Phys. Lett. 1999, 307, 407.
    [42] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    [43]Niecke, E.; Becker, P.; Nieger, M.; Stalke, D.; Schoeller, W. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1849.
    [44] Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
    [45] Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C.; Jr.; Radom, L. J. Chem. Phys. 1995, 103, 6104.
    [46] Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016.
    [47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J. A Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.
    [1] Dresselhaus, M. S.; Dressehaus, G..; Eklund, P. C. Science of Fullenrenes and Carbon nanotubes; Academic Press: New York, 1996.
    [2] Saito, R.; Dressehaus, G.; Dresselhaus, M. S. Physics Properties of Carbon nanotubes; World Scientific, New York, 1998.
    [3] Feldman, A. K; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. Acc. Chem. Res. 2008, 41, 1731.
    [4] Tans. S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49.
    [5] Chiu, P.-W.; Kaempgen, M.; Roth, S. Phys. Rev. Lett. 2004, 92, 246802.
    [6] Guo X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, R. H.; Caldwell, R.; Huang, L.; O’Brien, S.; Yan, J.; Bresiow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.
    [7] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801.
    [8] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; peng, S.; Cho, K.; Dai, H. J. Science 2000, 287, 622.
    [9] Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384.
    [10] Li, J.; Lu, Y. J.; Ye, Q.; Cinke, Ml; Han, J.; Meyyappan, M. Nano Lett. 2003, 3, 929.
    [11] Goldoni, A.; Larciprete, R.; Petaccia, L.; Lizzit, S. J. Am. Chem. Soc. 2003, 125, 11329.
    [12] Peng, S.; Cho, K. Nano Lett. 2003, 3, 513.
    [13] Silva, L. B.; Fagan, S. B.; Mota, R. Nano Lett. 2004, 4, 65.
    [14] Feng. X.; Irle, S.; Witek, H.; Morokuma, K.; Vidic. R.; Borguet, E. J. Am. Chem. Soc. 2005, 127, 10533.
    [15] Robinson, J. A.; Snow, E. S.; Bǎdescu, S. C.; Reinecke, T. L.; Perkins, F. K. Nano Lett. 2006, 6, 1747.
    [16] Sorescu, D. C.; Jordan, K. D.; Avouris, P. J. Phys. Chem. B 2001, 105, 11227.
    [17] Dag, S.; Gülseren, O.; yildirim, T.; Ciraci, S. Phys. Rev. B 2003, 67, 165424.
    [18] Valentini, L.; Armentano, I.; Kenny, J. M.; Cantalini, C.; Lozzi, L.; Santucci, S. Appl. Phys. Lett. 2003, 82, 961.
    [19] Chang, H.; Lee, J. D.; Lee, S. M.; Lee, Y. H. Appl. Phys. Lett. 2001, 79, 3863.
    [20] Kleinhammes, A.; Mao, S.-H.; Yang, X.-J.; Tang, X.-P.; Shimoda, H.; Lu, J. P.; Zhou, O.; Wu, Y. Phys. Rev. B 2003, 68, 075418.
    [21] Jhi, S.-H.; Louie, S. G.; Cohen, M. L. Phys Rev. Lett. 2000, 85, 1710.
    [22] Zhang, Y.-F.; Liu, Z.-F. J. Phys. Chem. B 2004, 108, 11435.
    [23] Govind, N.; Andzelm, J.; Maiti, A. IEEE Sens. J. 2008, 8, 837.
    [24] Xu, X.; Kang, H. S. Chem. Mater. 2007, 19, 3767.
    [25] Zhang, j.; Loh, K. P.; Zheng, J.-W.; Sullivan, M. B.; Wu, P. Phys. Rev. B 2007, 75, 245301.
    [26] An, W.; Wu, X.-J.; Zeng, X. C. J. Phys. Chem. C 2008, 112, 5747.
    [27] Sun, X.-H.; Li, C.-P.; Wong, W.-K.; Wong, N.-B.; Lee, C.-S.; Lee, S.-T.; Teo, B.-K. J. Am. Chem. Soc. 2002, 124, 14464.
    [28] Moradian, R.; Behzad, S.; Chegel, R. Physica B 2008, 403, 3623
    [29] Alam, K. M.; Ray, A. K.; Phys. Rev. B 2008, 77, 035436.
    [30] Mopurmpakis, G.; Froudakis, E.; Lithoxoos, G. P.; Samios, J. Nano Lett. 2006, 6, 1581.
    [31] Wu, R. Q.; Yang, M. Lu. H. Y.; Feng. Y. P.; Huang, Z. G.; Wu, Q. Y. J. Phys. Chem. C 2008, 112, 15985.
    [32] Gao, G.-H.; Kang, H. S. J. Chem. Theory. Comput. 2008, 4, 1690.
    [33] Delley, B. J. Chem. Phys. 1990, 92, 508. Delley, B. J. Chem. Phys. 1991, 94, 7245. Delley, B. J. Chem. Phys. 2000, 113, 7756.
    [34] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    [35] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    [36] Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
    [37] Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. Olsen, R. A.; Kroes, G.. J.; Henkelman, G..; Amaldsson, A.; Jonsson, H. J. Chem. Phys. 2004, 121, 9776.
    [38]用高斯03程序,在HF/6-31g*水平下进行Natural bond orbtal (NBO)分析,显示纯碳化硅纳米管的硅原子有效价电子结构(自然电子结构)是3s(0.60)3p(1.24)3d(0.04)4p(0.01),显示硅的杂化形式是sp3。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700