碳纳米管、碳化硅纳米管的电子结构及其输运特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对碳纳米管和碳化硅纳米管的研究进展进行了较全面的论述,包括其制备、纯化以及应用等,其中较深入的论述碳纳米管的布里渊区及其电学性质相关的应用。接下来对在纳米材料电子结构以及纳米器件输运特性研究中取得较满意结果的密度泛函理论和非平衡格林函数法进行了详细的描述。采用该方法对碳纳米管和碳化硅纳米管的电子结构和输运特性进行了较深入的研究。
     采用基于密度泛函理论的第一性原理计算方法,对本征和掺杂(8, 0)碳纳米管的结构和电子结构进行了计算。本征(8, 0)碳纳米管的计算结果表明它是典型的直接带隙半导体,其能带间隙为0.46 eV。掺杂碳纳米管拥有与本征纳米管不同的性质,也有更广泛的应用前景,为此分别计算了掺氮和掺硼碳纳米管的电子结构。掺杂的氮原子与其相邻的碳原子形成的氮碳键的键长与本征纳米管对应的碳碳键相比有所增加,这种趋势会随着掺杂浓度的增大而变的更加明显,这与实验制备的掺氮碳纳米管呈现竹节状是一致的。掺杂的氮原子与碳原子相比多出了一个电子,从分子的最高占据轨道可以看出,多出的电子主要分布在氮原子及其相邻的碳原子上。这增加了电子在不同原子间转移的可能性,使得碳纳米管能带间隙有所减小。掺硼碳纳米管结构的变化与掺氮呈现了相同的趋势,掺杂原子所在的碳环的半径有所增大。掺杂的硼原子少出了一个电子,在掺杂原子附近形成了明显的空穴,碳纳米管的能带间隙也有所增大。
     采用结合密度泛函理论的非平衡格林函数法,对孤立(8, 0)碳纳米管和耦合于金电极的(8, 0)碳纳米管的输运特性进行了计算。从孤立碳纳米管的平衡态(未施加偏压)透射谱可以看出它是半导体型的,这与前面的计算是一致的。其透射谱呈现了明显的台阶状;其伏安特性可以看出当偏压小于1.2 V时几乎没有电流流过纳米管,而大于该偏压时是接近指数关系的。在碳纳米管应用中,通常要与金属电极相连接,为此计算了耦合于金电极的(8, 0)碳纳米管的输运特性,在计算的过程中考虑了长度对输运特性的影响。其结果表明随着长度的增加碳纳米管由金属型转化为半导体型。在金电极与碳纳米管形成接触时,由于功函数的不同,电子会在碳纳米管和电极之间转移,其结果是形成了较明显的带隙态。在长度较短时,带隙态在输运特性中起了重要的作用,但是其影响会随着长度的增长而削弱。这解释了为什么当前实验未观测到带隙态的原因。
     采用与研究碳纳米管电子结构相同的方法,计算了本征和掺杂(8, 0)碳化硅纳米管的电子结构。本征碳化硅纳米管的结构优化的结果显示碳环的半径要略大于硅环的半径,其电子结构显示,(8, 0)碳化硅纳米管的能带间隙为0.94 eV要大于(8, 0)碳纳米管的,这是由于碳化硅纳米管中碳硅键为含有离子键成分共价键的结果。氮原子与硼原子是碳化硅体材料的常用掺杂原子,在计算掺杂碳化硅纳米管电子结构的过程中仍然选择它们为杂质。在替位掺杂的过程中,参考体碳化硅材料掺杂的结果,氮原子取代碳原子所在的晶格。掺氮碳化硅纳米管结构优化的结果显示一氮掺杂碳化硅纳米管中氮原子与相邻的硅原子形成氮硅键的键长有较明显的减小,而二氮掺杂结构优化的结果表明氮原子倾向占据相邻碳环中位置最接近的碳晶格所在的位置并且在纳米管的表面形成明显的突起。氮原子与碳原子相比多出的电子主要分布在相邻的硅原子上。掺氮碳化硅纳米管的能带间隙会减小。掺硼碳化硅纳米管的几何结构优化的结果显示其所在硅环的半径会减小,从掺硼碳化硅纳米管的最高占据轨道可以看出,在硼原子附近电子出现的概率明显降低,形成明显的空穴态,限制了电子在不同原子间的转移,导致了能带间隙的增大。
     本文还计算了孤立和耦合于金电极的(7, 0)碳化硅纳米管的输运特性。孤立(7, 0)碳化硅纳米管的透射谱显示碳化硅纳米管为半导体型的,从其伏安特性可以看出电流发生明显变化的偏压为2.2V,要大于碳纳米管的。对耦合于金电极(7, 0)碳化硅纳米管的研究发现,电荷转移导致了带隙态的形成,它们使得透射谱在费米能级附近不为0,其伏安特性在较小偏压下为线性;当偏压在+1.4 V到+1.6V之间,电流随偏压的增大呈现了下降的趋势,这就是微分负阻效应。从不同偏压下系统的透射谱可以看出,偏压导致的传输特性的变化是微分负阻效应产生的原因。
The research progresses on the carbon nanotubes (CNTs) and silicon carbide nanotubes (SiCNTs) are reviewed entirely at first, such as preparation, purification and application, in which the Brillouin zone of the CNTs and the applications related to their electronic structures are described. The density functional theoty and nonequilibrium Green’s function are discussed in detail. With this method, achievements have been obtained in the study of the electronic structures and transport properties of the nano-materials and nano-electronics. Using the above method, the electronic structures and transport properties of the CNTs and SiCNTs are calculated in this paper.
     The structures and electronic properties of the intrinsic and doped (8, 0) CNT are calculated by first-principles calculation based on the density functional theory (DFT). The intrinsic (8, 0) CNT is a direct band-gap semiconductor with a value of 0.46 eV. The electronic properties of the doped CNTs are quite different from the intrinsic CNTs’, which broadens the range of their application. From the optimized structure, we can see that the lengths of C-N bonds are longer than that of the C-C bonds. This tendency becomes more obvious with the increase of the doping concentration. It is consistent with the structure of the synthesized nitrogen-doped CNTs, which is bamboo-shaped. As the nitrogen atoms supply excess electrons, these electrons centralize on the doped nitrogen atoms and adjacent carbon atoms. This leads to the increase of the possibility of the charge transfer between different atoms in the CNT. The band-gap of the nitrogen-doped CNT is narrowed. The influence of the boron atoms on the structure of the CNT is similar to the nitrogen and the radius of the boron atom located is increased. Holes are formed by the doped boron atoms, in which the boron atoms localize and the band-gap of the boron-doped CNT is broadened.
     The transport properties of the isolated (8, 0) CNT and coupled to Au electrodes are investigated with the method combined non-equilibrium Green’s function (NEGF) with DFT. The step–shaped equilibrium transmission spectrum of the isolated (8, 0) CNT shows that the CNT is a semiconductor, which is coincident with the result achieved by first-principles calculations. The current voltage curve of the isolated (8, 0) CNT can be divided into two parts, when the bias voltage smaller than 1.2V, the current is near zero, while the voltage greater than 1.2V, the relationship between the current and the voltage is nearly exponential. In practical applications, CNTs are usually connected to metal electrodes. We calculated the transport properties of the (8, 0) CNT coupled to Au electrodes, in which the influence of length on the transport properties of CNT is considered. With the increase of the CNT’s length, the two probe system transforms from metallic to semiconductoring. In the formation of the contact between Au electrodes and the CNT, charge transfer between electrodes and the SiCNT will occur due to the difference in their work functions, which results in the metal-induced gap states (MIGS). In short CNTs, the MIGS plays an important role in its transport properties. Its influence weakens with the increase of the CNT’s length. This is the reason why no MIGS are observed in experiments.
     Using the method in the study of CNT’s electronic structures, the electronic structures of the intrinsic and doped (8, 0) SiCNT are obtained. The radius of the carbon rings are greater than that of the silicon rings in the optimized intrinsic (8, 0) SiCNT. The intrinsic (8, 0) SiCNT is a direct band-gap semiconductor with a value of 0.94 eV, which is broader than the CNT’s. This is owing to the ionicity of the Si-C bonds in SiCNTs. As boron and nitrogen are the common doping material in bulk SiC, they are selected as impurities in the study of the doped SiCNT. In substitution doping of the SiCNT, carbon atoms are replaced by nitrogen atoms, which is the same in bulk SiC doping. When one nitrogen atom is doped into the (8, 0) SiCNT, the lengths of Si-N bonds are shorten. In two nitrogen atoms doped SiCNT, the nitrogen atoms are like to occupy the nearest crystal lattice in the adjacent carbon rings and a salient is formed on the SiCNT’s surface. The excess electrons provided by nitrogen atoms locate mainly on the silicon atoms adjacent to the impurity atoms. The band-gap of nitrogen-doped SiCNT is narrowed. The radiuses of the boron atoms located silicon rings are decreased. The appearance probability of the electrons near the doped boron atoms is low and holes are formed, which results in the broadening of the band-gap.
     The transport properties of isolated (7, 0) SiCNT and coupled to Au electrodes are studied with the same method in the investigation of CNTs’transport properties. The transmission spectrum of the isolated SiCNT shows that is a semiconductor and its turning on voltage is about 2.2 V. In the (7, 0) SiCNT coupled to Au electrodes, the MIGS are found, which leads to the transmission coefficient near the Fermi energy is no zero and under small bias, the relationship between the current and bias voltage is linear. In the bias voltage range from +1.4 V to +1.6 V, the current decreases with the increase of the bias voltage. This means the appearance of the negative differnetial resistance (NDR). The origin of the NDR is the variation of the transmission spectrum caused by the applied voltage.
引文
[1.1] Kyoto H W, Heath J R, O'Brien S C, et al. C60: Buckminster fullerence. Nature. 1985, 11, 318. 162-163
    [1.2] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 11, 354. 56-58
    [1.3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993, 6, 363. 603-605
    [1.4] Bethune D S, Klang C H, de Vries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993, 6, 363. 605-607
    [1.5] Zhao M W, Xia Y Y, Li F, et al. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys. Rev. B. 2005, 2, 71. 085312
    [1.6] Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes. Phys. Rev. B. 2004, 3, 69. 115322
    [1.7] Sun X H , Li C P, Wong W K, et al. Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J. Am. Chem. Soc.. 2002, 124(48). 14464-14471
    [1.8] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature. 1996, 7, 382. 54-56
    [1.9] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: graphitic microtubles. Phys. Rev. Lett.. 1992, 68(10). 1579-1581
    [1.10] Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B. 2006, 6, 73. 245415
    [1.11] Odom T W, Huang J L, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998, 1, 391. 62-64
    [1.12] Dai H. Carbon nanotubes: opportunities and challenges. Surface Science. 2002, 500. 218-241
    [1.13] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature. 1992, 7, 358. 220-222
    [1.14] Ebbesen T W. Carbon nanotubes. Annu. Rev. Mater. Sci.. 1994, 24. 235-264
    [1.15] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997, 8, 388. 756-758
    [1.16] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chem.Phys. Lett.. 1995, 243(1-2). 49-54
    [1.17] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. J. Phys. Chem.. 1995, 99(27). 10694-10697
    [1.18] Muńoz E, Maser W K, Benito A M, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon. 2000, 38(10). 1445-1451
    [1.19] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett.. 1997, 10, 278(1-3). 102-106
    [1.20] Dai H, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem.Phys.Lett.. 1996, 9, 260(3-4). 471-475
    [1.21] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem.Phys.Lett.. 1998, 8, 292(4-6). 567-574
    [1.22] Kong J, Soh H T, Cassell A M, et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature. 1998, 10, 395. 878-881
    [1.23] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett.. 1998, 6, 289(5-6). 602-610
    [1.24] Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem.Phys.Lett.. 2000, 5, 322(5). 321-326
    [1.25] Bandow S, Asaka S, Saito Y, et al. Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Phys. Rev. Lett.. 1998, 80 (17). 3779-3782
    [1.26] Herrera J E, Resasco D E. Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. J.Phys. Chem.B. 2003, 107(16). 3738-3746
    [1.27] Herrera J E, Balzano L, Pompeo F, et al. Raman characterization of single-walled carbon nanotubes of various diameters obtained by catalytic disproportionation of CO. J. Nanosci. Nanotech.. 2003, 3(1-2). 133-138
    [1.28] Maruyama S, Miyauchi Y, Murakami Y, et al. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys.. 2003, 10, 5(149). 1-12
    [1.29] Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthsis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett.. 2002,360(3-4). 229-234
    [1.30] Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc.Chem.Res.. 2002, 35(12). 1035-1044
    [1.31] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett.. 1998, 1, 282(5-6). 429-434
    [1.32] Huang H, Kajiura H, Yamada A, et al. Purification and alignment of arc-synthesis single-walled carbon nanotube bundles. Chem. Phys. Lett.. 2002, 4, 356(5-6). 567-572
    [1.33] Yu A, Bekyarova E, Itkis M E, et al. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc.. 2006, 128(30). 9902-9908
    [1.34] Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubes. Synthetic Metals. 1999, 6, 103(1-3). 2484-2485
    [1.35] Jeong T, Kim W Y, Hahn Y B. A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas. Chem. Phys. Lett.. 2001, 8, 344(1-2). 18-22
    [1.36] Sen R, Rickard S M, Itkis M E, et al. Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chem. Mater.. 2003, 15(22). 4273-4279
    [1.37] Huria H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv.Mater.. 1995, 7(3). 275-276
    [1.38] Dujardin E. Ebbesen T W. Krishnan A. et al. Purification of single-shell nanotubes. Adv. Mater.. 1998, 10(8). 611-613
    [1.39] Fang H T, Liu C G, Liu C, et al. Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem. Mater.. 2004, 16(26). 5744-5750
    [1.40] Borowiak-Palen E, Ruemmeli M H, Gemming T, et al. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J. Appl. Phys.. 2005, 2, 97(5). 056102
    [1.41] Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl. Phys. Lett.. 2004, 85(14). 2932-2934
    [1.42] Cheng Q M, Interrante L V, Lienhard M, et al. Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. Journal of the European Ceramic Society. 2005, 25(2-3). 233–241
    [1.43] Pei L Z, Tang Y H, Chen Y W, et al. Preparation of silicon carbide nanotubes by hydrothermal method. J. Appl. Phys.. 2006, 6, 99(11). 114306
    [1.44] Frank S, Poncharal P, Wang Z L, et al. Carbon nanotube quantum resistors. Science. 1998, 6, 280(5370). 1744-1746
    [1.45] McEuen P L, Bockrath M, Cobden D H, et al. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett.. 1999, 83(24). 5098-5101
    [1.46] Bachtold A, Fuhrer M S, Plyaunov S, et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. lett.. 2000, 84(26). 6082-6085
    [1.47] White C T, Todorov T N. Carbon nanotubes as long ballistic conductors. Nature. 1998, 5, 393. 240-242
    [1.48] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998, 5, 393. 49-52
    [1.49] Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett.. 1998, 10, 73(17). 2447-2449
    [1.50] Shea H R, Martel R, Hertal T, et al. Manipulation of Carbon Nanotubes and Properties of Nanotube Field-Effect Transistors and Rings. Microelectronic Engineering. 1999, 46. 101-104
    [1.51] Roschier L, Penttil? J, Martin M, et al. Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Appl. Phys. Lett.. 1999, 75(5). 728
    [1.52] Franklin N R, Wang Q, Tombler T W, et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett.. 2002, 81(5). 913
    [1.53] Natori K, Kimura Y, Shimizu T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. J. Appl. Phys.. 2005, 97(3). 034306
    [1.54] Javey A, Kim H, Brink M, et al. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Materials. 2002, 1. 241-246
    [1.55] Lee D S, Park S J, Park S D, et al. Quantum dot manipulation in a single-walled carbon nanotube using a carbon nanotube gate. Appl. Phys. Lett.. 2006, 12, 89(23). 233107
    [1.56] Park J Y. Carbon nanotube field-effect transistor with a carbon nanotube gate electrode. Nanotechnology. 2007, 1, 18. 095202
    [1.57] Kong J, Franklin N R, Zhou C, et a1. Nanotube molecular wires as chemical sensors. Science, 2000, 1, 287(5453). 622-625
    [1.58] Collins P G, Bradley K, Ishigami M,et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000, 3, 287(5459). 1801-1804
    [1.59] Wanna Y, Srisukhumbowornchai N, Tuantranont A, et al. The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. J. Nanosci. Nanotechnol.. 2006, 12, 6(12). 3893-3896
    [1.60] Ding Weidong, Hayashi Ryota, Suehiro Junya, et al. Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF6. IEEE Transactions on Dielectrics and Electrical Insulation, 2006,13(2):353-360
    [1.61] He T, Zhao M W, Xia Y Y, et al. Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1,2) groups. J. Chem. Phys.. 2006, 11, 125(19). 194710
    [1.62] Li F, Xia Y Y, Zhao M W, et al. Density-functional theory calculations of XH3-decorated SiC nanotubes (X={C, Si}): Structures, energetics, and electronic structures. J. Appl. Phys.. 2005, 97. 104311
    [1.63] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes. Nature. 1996, 6, 381. 678-680
    [1.64] Salvetat J P, Briggs G A. D, Bonard J M, et al. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett.. 1999, 82(5). 944-947
    [1.65] Wagner H D, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett.. 1998, 1, 72(2). 188-190
    [1.66] Poncharal P, Wang Z L, Ugarte D, et al. Electrocstatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999, 3, 283(5407). 1513-1516
    [1.67] Rinzler A G , Hafner J H, Nikolaev P, et al. Unraveling Nanotubes: Field Emission From an Atomic Wire. Science. 1995, 9, 269(5230). 1550-1553
    [1.68] Bonard J M, St?ckli T, Maier F, et al. Field-emission-induced Luminescence from Carbon Nanotubes. Phys. Rev. Lett.. 1998, 8, 81(7). 1441-1444
    [1.69] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of Large Arrays of Well-aligned Carbon Nanotubes on Glass. Science. 1998, 11, 282(5391). 1105-1107
    [1.70] Dillon A C,Jones K M,Bekkedahl T A, et al. Storgae of Hydrogen in single-walled carbon nanoutbess. Nuatre. 1997, 3, 386. 377-379
    [1.71] Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotutbes. Appl. Phys. Lett.. 1999, 74(16). 2307-2309
    [1.72] Chen P, Wu X, Lin J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate tempertature. Science. 1999, 285. 91-93
    [1.73] Mpourmpakis G, Froudakis G E, Lithoxoos G P, et al. SiC Nanotubes: A NovelMaterial for Hydrogen Storage. Nano lett.. 2006, 6(8). 1581-1583
    [1.74] Saito S, Dresselhaus G, Dreesslhaus M S. Physical properties of carbon nanotubes. First published 1998. Lodon. Imperial College Press. 2003
    [1.75] Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes. Imperial College Press (Lodon) 1998.
    [1.76] Hamada N, Sawada S-I, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett.. 1992, 68(10). 1579-1581
    [1.77] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl. Phys. Lett.. 1992, 5, 60(18). 2204-2206
    [1.78] Marconcini P, Macucci M. A novel choice of the graphene unit vectors, useful in zone-folding computations. Carbon. 2007, 4, 45(5). 1018-1024
    [1.79] Kammerlander D, Prezzi D, Goldoni G, et al. Biexciton Stability in Carbon Nanotubes. Phys. Rev. Lett.. 2007, 9, 99. 126806
    [1.80] Witek Henryk A, Trzaskowski B, Malolepsza E, et al. Computational study of molecular properties of aggregates of C60 and (16, 0) zigzag nanotube. Chem. Phys. Lett.. 2007, 446(1-3). 87-91
    [1.81] Kozinsky B, Marzari N. Static dielectric properties of carbon nanotubes from first principles. Phys. Rev. Lett.. 2006, 4, 96. 166801
    [1.82] Cai J, Bie R F, Tan X M, et al. Application of the tight-binding method to the elastic modulus of C60 and carbon nanotube. Physica B: Condensed Matter. 2004, 2, 344(1-4). 99-102
    [1.83] Song W, Ni M, Lu J, et al. Electronic structures of semiconducting double-walled carbon nanotubes: Important effect of interlay interaction. Chem. Phys. Lett.. 2005, 10, 414(4-6). 429-433
    [1.84] Wu X J, Zeng X C. Adsorption of transition-metal atoms on boron nitride nanotube: A density-functional study. J. Chem. Phys.. 2006, 125. 044711
    [1.85] Jia G X, Li J Q, Zhang Y F. Electronic structures and hydrogenation of a chiral single-wall (6,4) carbon nanotube: A density functional theory study. Chem. Phys. Lett.. 2006, 1, 418(1-3). 40-45
    [1.86] Silva L B, Fagan S B, Mota R, et al. Silicon adsorption in defective carbon nanotubes: a first principles study. Nanotechnology. 2006, 7, 17(16). 4088-4091
    [1.87] Barone V, Heyd J, Scuseria G E. Interaction of atomic hydrogen with single-walled carbon nanotubes: A density functional theory study. J. Chem. Phys.. 2004, 120(15). 7169
    [1.88] Han S S, Lee H M. Adsorption properties of hydrogen on (10,0) single-walledcarbon nanotube through density functional theory. Carbon. 2004, 42(11). 2169-2177
    [1.89] Lu J, Nagase S, Maeda Y, et al. Adsorption configuration of NH3 on single-wall carbon nanotubes. Chem. Phys. Lett.. 2005, 3, 405(1-3). 90-92
    [1.90] Zhu J, Wang Y, Li W J, et al. A density functional study of nitrogen adsorption in single-wall carbon nanotubes. Nanotechnology. 2007, 1, 18. 095707
    [1.91] Li F, Xia Y Y, Zhao M W, Density-functional theory calculations of XH3 -decorated SiC nanotubes (X= {C, Si}): Structures, energetics, and electronic structures. J. Appl. Phys.. 2005, 5, 97(10). 104311
    [1.92]宋久旭,杨银堂,柴长春等.掺氮锯齿型单壁碳纳米管的电子结构.半导体学报. 2007, 3, 28(10). 1584-1588
    [1.93]宋久旭,杨银堂,刘红霞,石立春.掺硼锯齿型单壁碳纳米管的电子结构,电子器件. 2008, 10, 31(5). 1529-1532
    [1.94] Chen L J. Stability and electronic structure of InN nanotubes from first-principles study. Chinese Phys.. 2006, 15(4). 798-801
    [1.95] Xiao L, Wang L C. Density functional theory study of single-wall platinum nanotubes. Chem. Phys. Lett.. 2006, 10, 430(4-6). 319-322
    [1.96] Xu H, Zhang R Q, Zhang X H, et al. Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology. 2007, 11, 18(48). 485713
    [1.97] Seifert G, K?hler T, Hajnal Z, et al. Tubular structures of germanium. Solid State Communications. 2001, 9, 119(12). 653-657
    [1.98] Zhao M W, Xia Y Y, Liu X D, et al. First-principles calculations of AlN nanowires and nanotubes: Atomic structures, energetics, and surface states. J. Phys. Chem. B. 2006, 110(17). 8764-8768
    [1.99] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207-6215
    [1.100] Emberly E G, Kirczenow G. Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts. Phys. Rev. B. 1988, 10, 58(16). 10911-10920
    [1.101] Hirose K, Tsukada M. First-principles theory of atom extraction by scanning tunneling microscopy. Phys. Rev. Lett.. 1994, 7, 73(1). 150-153
    [1.102] Hirose K, Tsukada M. First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. Phys. Rev. B. 1995, 51(8). 5278-5290
    [1.103] Khomyakov P A, Brocks G. Real-space finite-difference method forconductance calculations. Phys. Rev. B. 2004, 11, 70(19). 195402
    [1.104] Lang N D. Resistance of atomic wires. Phys. Rev. B. 1995, 52(7). 5335-5342
    [1.105] Mozos J L, Wan C C, Taraschi G, et al. Quantized conductance of Si atomic wires. Phys. Rev. B. 1997, 8, 56(8). 4351-4354
    [1.106] Wan C C, Mozos J, Taraschi G, et al. Quantum transport through atomic wires. Appl. Phys. Lett.. 1997, 71(3). 419
    [1.107] Heurich J, Cuevas J C, Wenzel W, et al. Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett.. 2002, 88(1). 256803
    [1.108] Xue Y Q, Ratner M A. Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B. 2003, 68(11). 115406
    [1.109] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [1.110] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 2001, 63(24). 245407
    [1.111] Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B. 2002, 66(3). 035332 第二章参考文献
    [2.1] Novakovi? N, Radisavljevi? I, Colognesi D, et al. First principle calculations of alkali hydride electronic structures. J. Phys.: Condens. Matter. 2007, 9, 19(40). 406211
    [2.2] Deng X Y, Li L T, Wang X H, et al. First principle study on electronic structure of nanocrystalline BaTiO3 ceramics. Key Engineering Materials. 2007, 336-338: 2510-2512
    [2.3] Klaveness A, Vajeeston P, Ravindran P, et al. Structure and bonding in BAlH5(B = Be, Ca, Sr) from first-principle calculations. Journal of Alloys and Compounds. 2007, 5, 443(1-2). 225-232
    [2.4] Ghaderi N, Hashemifar S J, Akbarzadeh H, et al. First principle study of Co2MnSi/GaAs(001) heterostructures. J. Appl. Phys.. 2007, 10, 102(7), 074306
    [2.5] Ma S H, Zu X T. First-principle study of sulfur adsorption on Ir(100) surface. Materials Science Forum. 2007, 561-565: 2435-2438
    [2.6] Velkov Z, Velkov Y, Balabanova E, et al. First principle study of the structure of conjugated amides and thioamides. International Journal of Quantum Chemistry. 2007, 107(8). 1765-1771
    [2.7] Bai Y, Chen Q. First principle study of the cation vacancy in anatase TiO2. Physica Status Solidi(RRL) - Rapid Research Letetrs. 2008, 1, 2(1). 25-27
    [2.8] Ouyang Y F, Wang J C, Hou Y H, et al. First principle study of AlX (X=3d,4d,5d elements and Lu) dimmer. J. Chem. Phys.. 2008, 2, 128(7). 074305
    [2.9] Laref S, Me?abih S, Abbar B, et al. First-principle calculations of electronic and positronic properties of AlGaAs2. Physica B: Condensed Matter. 2007, 6, 396(1-2). 169-176
    [2.10] Du A J, Smith Sean C, Lu G Q. First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon. Chem. Phys. Lett.. 2007, 447(4-6). 181-186
    [2.11] Yang M M, Bao X H, Li W X. First principle study of ethanol adsorption and formation of hydrogen bond on Rh(111) surface. J. Phys. Chem. C. 2007, 111(20). 7403-7410
    [2.12] Yu S S, Zheng W T, Wen Q B, et al. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon. 2008, 46(3). 537-543
    [2.13]陈琨,范广涵,章勇等. In-N共掺杂ZnO第一性原理计算.物理学报. 2008, 5,57(5). 3138-3147
    [2.14]唐鑫,吕海峰,马春雨等. Cd掺杂纤锌矿ZnO电子结构的第一性原理研究.物理学报. 2008, 2,57(2). 1066-1072
    [2.15] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys.Rev.. 1964, 136(3B). B864-B871
    [2.16] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev.. 1965, 140(4A). A1133-A1138
    [2.17]李爱玉.从金属原子链到金属纳米线:结构和电子性质(博士学位论文).厦门大学. 2006
    [2.18]乔靓.碳纳米管场发射性质的第一原理研究(博士学位论文).吉林大学. 2007
    [2.19] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys.. 1992, 10, 64(4). 1045-1097.
    [2.20] Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [2.21] Perdew J P, Zunger A. Self-interaction correction to densityfunctional approximations for many -electron systems. Phys. Rev. B. 1981, 23(10). 5048-5079.
    [2.22] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett.. 1996, 10, 77(18). 3865-3868
    [2.23] Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys. Rev. Lett.. 1979 43(20). 1494-1497
    [2.24] Bachelet G B, Hamann D R, Schlüter M. Pseudopotentials that work: From H to Pu. Phys. Rev. B. 1982, 26(8). 4199-4228
    [2.25] Hamann D R. Generalized norm-conserving pseudopotentials. Phys. Rev. B. 1989, 40(5). 2980-2987
    [2.26] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991, 43(3). 1993-2006
    [2.27] Troullier N. A straightforward method for generating soft transferable pseudopotentials. Solid State Commun.. 1990, 5, 74(7). 613-616
    [2.28] Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter.. 1994, 6(40). 8245-8257
    [2.29]卫崇德,章立源等.固体物理中的格林函数方法. 1992年版.北京.高等教育出版社,1992. 80-127
    [2.30] Haug H,Jauho A. Quanium Kinetics in Transport and optics of Semieonduetors,Heidelberg,Springer Press. P35-91.
    [2.31] Lundstrom M, Guo J. Nanoseale Transistors: Device Physies,Modeling and Simulation. Heidelberg,SpringerPress,2005. P1-37.
    [2.32] Mahan G D. Many particle physics. SeondEdition. NewYork and London. Plenum Press. 1990.
    [2.33]杨展如.量子统计物理. 2007年第一版.北京.高等教育出版社. 2007. 337-399.
    [2.34] S.Doniach,E.H.Sondheimer,Green’s Funetions for Solid State Physieist,WA.BenjaminInc.,1974.
    [2.35]杨先敏.固体物理学中格林函数方法简介. 1989年第一版.北京.兵器工业出版社. 1989.
    [2.36] Riekayzen. Green’s functions and condensed matter. Version 1980. London. Academic Pr.. 1980.
    [2.37]郑继明.单分子电子输运性质的第一性原理研究(博士学位论文).西北大学. 2008
    [2.38]戴振翔.团簇输运性质的第一性原理研究(博士学位论文).中国科学院固体物理研究所. 2006
    [2.39] S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge, Cambridgeuniversity press, 1995.
    [2.40] Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry. 2000, 3, 77(5). 895-910
    [2.41] TranSIESTA-C或ATK, http://www.atomistix.com/
    [3.1] Nevidomskyy A H, Csányi C, Payne M C. Chemically Active Substitutional Nitrogen Impurity in Carbon Nanotubes. Phys.Rev.Lett.2003,9,91:105502
    [3.2] Droppa R, Ribeiro C T M, Zanatta A R, etal. Comprehensive spectroscopic study of nitrogenated carbon nanotubes. Phys. Rev. B. 2004,1,69. 045405
    [3.3] Jang J W, Lee C E,.Lyu S C, etal. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl.Phys.Lett. 2004, 4,84.2877
    [3.4] Che R C, Peng LM, Wang M S. Electron side-emission from corrugated CNx nanotubes. Appl.Phys.Lett. 2004,11,85.4753
    [3.5] Zhao M W, Xia Y Y, Lewis J P, etal. First-principles calculations for nitrogen-containing single-walled carbon nanotubes. J.App.Phys.2003,8,94. 2398
    [3.6] Lammert P E, Crespi V H, Rubio A. Stochastic Heterostructures and Diodium in B/N-Doped Carbon Nanotubes. Phys.Rev.Lett.2001,9,87.136402
    [3.7] Czerw R, Terrones M, Charlier J C X, etal. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001,1. 457
    [3.8] Terrones M, Ajayan P M, Banhart F, etal. N-doping and coalescence of carbon nanotubes:synthesis and electronic properties. Appl.Phys.A. 2002,3,74(3).355-361
    [3.9] Yi J Y, Bernholc J. Atomic structure and doping of microtubules. Physical Review B. 1993, 47.1708
    [3.10] Tanaka K, Yamabe T, Fukui K. The Science and Technology of Carbon Nanotubes. Elsevier Science:New York,1999.
    [3.11] Goldberg D, Bando Y, Han W, etal. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem.Phys.Lett.1999,7,308(3-4). 337
    [3.12] Goldberg D, Han W, Bando Y, etal.“Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction. Jounal of Applied Physics. 1999, 8, 86. 2364
    [3.13] Terrones M, Terrones H, Grobert N,etal. Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Applied Physics Letter. 1999,12, 75. 3932
    [3.14] Liu Y, Guo H. Current distribution in B-and N-doped carbon nanotubes. Physical Review B. 2004, 3, 69. 115401
    [3.15] Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press,1954:10-22
    [3.16] Cao L M, Zhang X Y, Gao C X, etal. High-concentration nitrogen-doped carbon nanotube arrays. Nanotechnology. 2003, 7, 14(8).931-934
    [3.17] Kotakoski J, Pomoell J A V, Krasheninnikov A V, etal. Irradiation-assisted substitution of carbon atoms with nitrogen and boron in single-walled carbon nanotubes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2005,1,228(1-4),31-36
    [3.18] Nevidomskyy A H, Csányi C, Payne MC. Chemically Active Substitutional Nitrogen Impurity in Carbon Nanotubes. Physical Review Letter. 2003, 9,91. 105502
    [3.19] S S Yu, Q B Wen, W T Zheng, et al. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations. Nanotechnology. 2007, 3, 18. 165702
    [3.20] Ewels C P, Glerup M. Nitrogen doping in carbon nanotubes. Journal of Nanoscience and Nanotechnolog. 2005, 9, 5, (9).1345-1363
    [3.21] Jang Jae Won, Lee Cheol Eui, Lyu Seung Chul etal. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Applied Physics Letters. 2004, 4, 84(15). 2877-2879
    [3.22]王志,巴德纯,曹培江,梁吉.硼掺杂对碳纳米管形貌和结构的影响.东北大学学报. 2005, 6, 26(6).582-584
    [3.23] Zhang Yuemei, Zhang Dongju, Liu Chengbu. Novel chemical sensor for cyanides: Boron-doped carbon nanotubes. Journal of Physical Chemistry B. 2006,2, 110(10). 4671 -4674
    [4.1] Roland C, Meunier V, Larade B, etal. Charge transport through small silicon clusters. Physical Review B. 2002, 7,66. 035332
    [4.2] Büttiker M, Imry Y, Landauer R, etal. Generalized many-channel conductance formula with application to small rings. Physical Review B.1985, 31. 6207
    [4.3] Brandyge M, S?rensen M R, Jacobsen KW, etal. Conductance eigenchannels in nanocontacts. Physical Review B. 1997, 56. 014956
    [4.4] Brandbyge M, Mozos J L, Ordejón P, etal. Density-functional method fornonequilibrium electron transport.Physical Review B.2002, 3, 65. 165401
    [4.5] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B.2001, 6, 63.245407
    [4.6] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B. 1981, 23.5048-5079
    [4.7] Artacho E, Sanchez-Portal D, Ordejón P, etal. Linear-Scaling ab-initio Calculations for Large and Complex Systems. Phys. Status Solidi B. 1999, 9, 215(1). 809-817
    [4.8] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations, Physical Review B. 1991, 43.1993
    [4.9] White C T, Todorov T N. Carbon nanotubes as long ballistic conductors. Nature. 1998. 393. 240-242
    [4.10] Bai P, Li E, Lam K T, etal. Carbon nanotube schottky diode: an atomic perspective. Nanotechnology. 2008, 2, 19. 115203
    [4.11]韦建卫,胡慧芳,曾晖,王志勇,王磊,张丽娟.氮掺杂对单壁碳纳米管的非平衡电子输运特性的影响.半导体学报. 2007,8,28(8).1216-1220
    [4.12] Li XiaoFei, Chen KeQiu, Wang Lingling etal. Effect of length and size of heterojunction on the transport properties of carbon nanotube devices. Applied Physics Letters. 2007,9 ,91. 133511
    [4.13] Varge K, Pantelides S T. Quantum Transport in Molecules and Nanotube Devices . Physical Review Letters. 2007, 2, 98. 076804
    [4.14] Odbadrakh K, Pomorski P, Roland C. Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device. Physical Review B. 2006, 6, 73:233402
    [4.15] Grigoriev A, Skorodumova N V, Simak S I, Wendin G, etal. Electron transport in stretched monoatomic gold wires. Physical Review Letters. 2006,12,97(23). 236807
    [4.16] Song JiuXu, Yang YinTang, Chai ChangChun, etal. Electronic transport properties of (7, 0) semiconducting carbon nanotube. Chinese Physics Letters. 2008,9, 25(9).3212-3214
    [4.17]李萍剑,张文静,张琦锋,吴锦雷.接触电极的功函数对基于碳纳米管构建的场效应管的影响.物理学报. 2006,10,55(10).5460-5465
    [5.1] Zhao M W, Xia Y Y, Li F, etal. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys Rev B. 2005,2, 71.085312
    [5.2] Menon M, Richter E, Andresa M, etal. Andriotis, Structure and stability of SiC nanotubes. Phys Rev B. 2004,3, 69.115322
    [5.3] Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B. 2006,6,73. 245415
    [5.4] Sun X H, Li Ch P, Wong W K, et al. Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J Am Chem Soc. 2002, 11,124(48). 14464-14471
    [5.5] Li Chi Pui, Fitz Gerald John D, Zou Jin, Chen Ying. Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. New Journal of Physics.2007,5, 9.137
    [5.6] Taguchi T, Igawa N, Yamamoto H, Jitsukawa S. Synthesis of silicon carbide nanotubes. Journal of the American Ceramic Society. 2005, 2, 88(2). 459-461
    [5.7] Wang Lu, Lu Jing, Luo Guangfu, etal. First-principles study: Size-dependent optical properties for semiconducting silicon carbide nanotubes. Optics Express. 2007,8,15(17).10947-10957
    [5.8] Wang Lu, Lu Jing, Luo Guangfu, etal. Optical absorption spectra and polarizabilities of silicon carbide nanotubes: A first principles study. Journal of Physical Chemistry C. 2007,12,111(51). 18864-18870
    [5.9] Zhao JingXiang, Ding YiHong. Silicon carbide nanotubes functionalized by transition metal atoms: A density -functional study. Journal of Physical Chemistry C. 2008,1 ,112(7).2558-2564
    [5.10] Meng Tiezhu, Wang Chong-Yu, Wang Shan-Ying. First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chemical Physics Letters. 2007, 4,437(4-6). 224-228
    [5.11] Zhao Mingwen, Xia Yueyuan, Zhang R Q, Lee S T. Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. Journal of Chemical Physics. 2005, 6, 122(21). 214707
    [5.12] Meng Tiezhu, Wang Chong-Yu, Wang Shan-Ying. First-principles study of contact between Ti surface and semiconducting carbon nanotube. Journal of Applied Physics. 2007, 7,102. 013709
    [5.13] Ganji M D. Behavior of a single nitrogen molecule on the pentagon at a carbon nanotube tip: A first-principles study. Nanotechnology. 2008,1,19(2). 025709
    [5.14] Ma Rongcai, Wang Hongming, Wang Meishan, Tang Mingsheng. First-principles study of the carbon-oxygen nanotubes. Journal of Computational and TheoreticalNanoscience.2008, 4, 5(4): 608-613
    [5.15] Li Yan, Sun Qiang, Jia Yu. First-principles calculations of carbon nanotubes adsorbed on diamond (100) surfaces. Journal of Physics Condensed Matter. 2008, 6, 20(22).225106
    [5.16] Iwami Kazuchika, Goto Hidekazu, Hirose Kikuji, Ono Tomoya. First-principles study of electronic structure of deformed carbon nanotubes. Science and Technology of Advanced Materials. 2007,4,8(3).200-203
    [5.17] Qiao L, Zheng W T, Wen Q B, JiangQ. First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology. 2007, 4, 18(15). 155707
    [5.18] Yu S S, Wen Q B, Zheng W T, Jiang Q. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations. Nanotechnology. 2007, 4, 18(16).165702
    [5.19]宋久旭,杨银堂,柴常春,等.掺氮3C-SiC电子结构的第一性原理研究.西安电子科技大学学报.2008,3, 35 (1).87-91
    [6.1] Zhao MingWen, Xia Yueyuan, Li Feng, etal. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys Rev B. 2005, 2, 71.085312
    [6.2] Menon M, Richter E, Andresa M, et al. Andriotis, Structure and stability of SiC nanotubes. Phys Rev B, 2004, 3, 69.115322
    [6.3] Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B. 2006, 6, 73. 245415
    [6.4] Sun X H, Li Ch P, Wong W K, etal. Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J Am Chem Soc. 2002,11,124(48). 14464-14471
    [6.5] Long M Q, Wang L L, Chen K Q, etal. Coupling effect on the electronic transport through dimolecular junctions. Physics Letters A. 2007, 6, 365(5-6).489-494
    [6.6] Cohen R, Stokbro K, Martin J, etal. Charge transport in conjugated aromatic molecular junctions: Molecular conjugation and molecule-electrode coupling. Journal of Physical Chemistry C. 2007,10, 111(40).14893-14902
    [6.7] Hoft R C, Ford M J, Cortie M B. The effect of reciprocal-space sampling and basis set quality on the calculated conductance of a molecular junction, Molecular Simulation. 2007, 9, 33(11).897-904
    [6.8] Kim W Y, Kwon S K, Kim K S. Negative differential resistance of carbon nanotube electrodes with asymmetric coupling phenomena. Physical Review B. 2007, 7,76. 033415
    [6.9] Roland C, Meunier V, Larade B. Charge transport through small silicon clusters. Physical Review B. 2002, 7, 66.035332
    [6.10] Büttiker M, Imry Y, Landauer R. Generalized many-channel conductance formula with application to small rings.Physical Review B. 1985, 31. 6207
    [6.11] Brandbyge M, Mozos J L, Ordejón P, etal. Density-functionalmethod for nonequilibrium electron transport. Physical Review B. 2002, 3, 65:165401
    [6.12] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B.2001, 6, 63.245407
    [6.13] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B. 1981, 23.5048-5079
    [6.14] Artacho E, Sanchez-Portal D, Ordejón P, etal. Linear-Scaling ab-initio Calculations for Large and Complex Systems. Phys. Status Solidi B. 1999, 9, 215(1). 809-817
    [6.15] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Physical Review B. 1991, 43:1993-2006
    [6.16] Yang YinTang, Song JiuXu, Chai ChangChun etal.The negative differential resistance in single-wall SiC nanotube.Chin SCI Bull,2008,12,53(23).3770-3772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700