纳米管异质结电子输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米管异质结在纳米电子器件中具有较好的应用前景,而纳米管异质结的电子输运特性是其应用的基础,对其进行研究,不仅具有重要的理论意义,而且具有重要的实用价值,也是当前国内外重视的研究领域。论文采用结合密度泛函理论的非平衡格林函数法,分别对碳/掺氮碳纳米管异质结、碳/碳化硅纳米管异质结和碳/氮化硼纳米管异质结的电子输运特性进行了研究,主要的结论如下:
     1.碳/掺氮碳纳米管异质结电子输运特性研究
     碳/掺氮碳纳米管异质结的结构和电子输运特性是该异质结的相关研究的理论基础。本文研究中,首先,建立了(8, 0)碳/掺氮碳纳米管异质结的模型,对该模型进行结构优化的结果显示,在掺氮碳纳米管侧,掺杂氮原子所在碳环的直径有所增大,这与已制备的掺氮碳纳米管呈现“竹节状”是一致的。然后,计算分析了异质结的电子输运特性,结果表明,孤立纳米管异质结的伏安特性有较高的对称性,正负偏压下的开启电压均为1.0 V;耦合于金电极异质结的伏安特性与孤立的不同,在负偏压下伏安特性曲线呈现了较明显的线性关系,正偏压下的伏安特性曲线可分成0.0 V到+0.6 V、+0.6 V到+1.2 V和+1.2 V到+2.0 V三部分,在这三个偏压区间内伏安特性都接近为线性,但是第二个偏压区间内电流的增长速度要小于其它两部分。
     2.碳/碳化硅纳米管异质结电子输运特性研究
     碳纳米管和碳化硅纳米管是研究较深入的两种纳米管材料,而碳/碳化硅纳米管异质结的结构和电子输运特性是值得研究的领域。本文在这种异质结的研究中,建立了(8, 0)碳/碳化硅纳米管异质结的模型,并对其进行了结构优化,结果可见,异质结的重构主要分布在异质结的界面,碳/碳化硅纳米管界面两侧的第四层原子之外的结构变化可以忽略。孤立和耦合于金电极的碳/碳化硅纳米管异质结的电子输运特性研究表明:孤立异质结导带底和价带顶位于异质结的碳纳米管侧,异质结在正负偏压下的开启电压分别为+1.8 V和-2.2 V;耦合于金电极异质结的伏安特性出现了微分负阻效应,微分负阻效应是偏压引起轨道局域性变化的结果。
     3.碳/氮化硼纳米管异质结电子输运特性研究
     碳/氮化硼纳米管异质结是有望制备成功的纳米管异质结,在对其进行的研究中,本文建立了(8, 0)碳/氮化硼纳米管异质结的模型,采用第一性原理计算对该异质结进行了结构优化,优化的结果显示,异质结结构的变化较小,这是由于这两种纳米管的结构具有较高相似性的结果。在结构优化的基础上,对该异质结的电子输运特性进行了研究。研究结果表明,孤立异质结的导带底和价带顶位于碳纳米管侧,异质结具有整流特性;当异质结耦合于金电极后,其电子输运特性发生了显著变化,在正负偏压下都出现了微分负阻效应,该效应是偏压导致异质结分子轨道局域性变化的结果。
     本文对纳米管异质结结构的研究对于其制备工作的开展具有一定的意义,而对纳米管异质结电子输运特性的研究对其相关电子器件的建模与设计工作具有较高的参考价值。
Nanotube heterojunctions have good application prospects in nano-electronic devices, whose electronic transport properties are foundation of relevant investigations. Studies on electronic transport properties of nanotube heterojunctions are not only of high theoretical value, but also of great practical significance. The electronic transport properties of the carbon/nitrogen-doped carbon nanotube heterojunction, the carbon/silicon carbide nanotube heterojunction and the carbon/boron nitride nanotube heterojunction are studied with the method combined density functional theory (DFT) with nonequilibrium Green’s function (NEGF) and the main conclusions are as follows:
     1. Electronic transport properties of carbon/nitrogen-doped carbon nanotube heterojunction
     The structure and electronic transport properties of the heterojunction may improve related studies. First, the model of the carbon/nitrogen-doped carbon nanotube heterojunction is established and optimized. From the optimized structure, it is can be seen that the diameter of the nitrogen atoms located is enlarged, which is consistent with the structure of the synthesized nitrogen-doped CNT. Then, the electronic transport properties of the heterojunction are studied with the method combined DFT with NEGF. The symmetry of current voltage characteristic for the isolate heterojunction is high. The threshold voltages under positive and negative are±1.0 V respectively. The current voltage curve of the heterojunction coupled to Au electrodes can be divided into two parts: under negative bias and positive bias. Under negative bias, the relationship between the current and the bias voltage is nearly linear. Under positive bias, the current voltage curve consists of three ranges: from 0.0 V to +0.6 V, from +0.6 V to +1.2V and from +1.2 V to +2.0V. In these three ranges, the current voltage curve is nearly linear. While the current in the second bias range increase slower than in the other two bias ranges.
    
     2. Electronic transport properties of carbon/silicon carbide nanotube heterojunction
     CNT and silicon caride nanotube (SiCNT) are two types of nanotube materials deeply studied. The structure and electronic transport properties of the carbon/SiCNT heterojunction is worth of being studied. Researches on this nanotube heterojunction are focused on two aspects: First, the model of nanotube heterojunction formed by a finite (8, 0) CNT and SiCNT is built and optimized with first principle calculations based on DFT. Results show that the rearrangement of the heterojunction mainly concentrates on its interface and the variation in structure decreses rapidly with the distance increase from the interface. The changes of diameters for the fourth layer in CNT section and SiCNT section can be ignored. Second, the transport properties of the isolate heterojunction and the heterojunction coupled to Au electrodes are studied. From the molecular orbitals of the isolate heterojunction, it can be seen that the conduction band bottom and the valence band top of the heterojunction lie in the CNT. The threshold voltages under negative bias and positive bias are -2.2 V and +1.8 V. In the transport properties of the heterojunction coupled to Au electrodes, negative differential resistance (NDR) effect is discovered. It originates from the variations of the locality for the molecular orbitals caused by the applied bias voltage.
     3. Electronic transport properties of carbon/boron nitride nanotube heterojunction
     The CNT/boron nitride nanotube (BNNT) heterojunction is the possible fabricated one. The model for an (8, 0) CNT/BNNT heterojunction is established. The geometry optimization of the heterojunction is implemented with the first principle calculations to obtaion the structure of the heterojunction, which is most similar to the fabricated. Results show that the structure variation of the heterojunction is weak in its formation, which is due to the high similarity in structure for two nanotubes. The electronic transport properties of the isolate heterojunction and of the heterojunction coupled to Au electrodes are studed. From the transport properties of the isolate heterojunction, it is can be found that both the conduction band bottom and the valence band top locate on the carbon nanotube section and rectifying property is found in its current voltage characteristic. While the heterojunction is coupled to Au electrodes, its transport properties are influenced by the coupling effect. The most important property is the existence of the NDR under positive bias and negative bias. It derives from the viariation of the locality for molecualr orbitals of the heterojunction caused by the applied bias voltage.
     The studies on the structure of the heterojunctions are meaningful to their synthesis. Investigations on the transport properties are helpful to modeling and developing novel devices.
引文
[1] Moore G E. Cramming More Components onto Integrated Circuits. Electronics. 1965, 4, 38(8). 114-117
    [2] Cohen S L, Liehr M, Kasi S. Selectivity in copper chemical vapor deposition. Appl. Phys. Lett. 1992, 3, 60(13). 1585
    [3] http://www.itrs.net
    [4] Hinode K, Hanaoka Y, Takeda K, et al. Resistivity increase in ultrafine-line copper conductor for ULSIs. Jpn. J. Appl. Phys. 2001, 40. L1097-L1099
    [5] Iijima S. Helical microtubules of graphitic carbon. Nature.1991, 11, 354. 56-58
    [6] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993, 363(6430). 603-605
    [7]Bethune D S, Kiang C H, de Vries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993, 6, 363. 605-607
    [8] Phokharatkul D, Ohno Y, Nakano H, et al. High-density horizontally aligned growth of carbon nanotubes with Co nanoparticles deposited by arc-discharge plasma method. Appl. Phys. Lett. 2008, 93(5). 053112
    [9] Ha B, Yeom T H, Lee S H. Ferromagnetic properties of single-walled carbon nanotubes synthesized by Fe catalyst arc discharge. Phys. B: Condens. Matter. 2009, 5, 404(8-11). 1617-1620
    [10] Song X L, Liu Y N, Zhu J W. Multi-walled carbon nanotubes produced by hydrogen DC arc discharge at elevated environment temperature. Mater. Lett. 2007, 1, 61(2). 389-391
    [11] Bhuiyan M M H, Mitsugi F, Ueda T, et al. Nox sensing characteristics of single wall carbon nanotube gas sensor prepared by pulsed laser ablation. Int. J. Nanomanufacturing. 2009, 4(1-4). 186-196
    [12] Radhakrishnan G, Adams P M, Bernstein L S. Plasma characterization and room temperature growth of carbon nanotubes and nano-onions by excimer laser ablation. Appl. Surf. Sci. 2007, 7, 253(19). 7651-7655
    [13] Muńoz E, Maser W K, Benito A M, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon. 2000, 38(10). 1445-1451
    [14] Y Bystrzejewski M, Rümmeli M H, Lange H, et al. Single-walled carbonnanotubes synthesis: A direct comparison of laser ablation and carbon arc routes. J. Nanosci. Nanotechnol. 2008, 11, 8(11). 6178-6186
    [15] Hawkins S C, Poole J M, Huynh C P. Catalyst distribution and carbon nanotube morphology in multilayer forests by mixed CVD processes. J. Phys. Chem. C. 2009, 7, 113(30). 12976-12982
    [16] Jayatissa A H, Guo K. ynthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics. Vacuum. 2009, 1, 83(5). 853-856
    [17] Mondal K C, Strydom A M, Erasmus R M, et al. Physical properties of CVD boron-doped multiwalled carbon nanotubes. Mater. Chem. Phys. 2008, 10, 111(2-3). 386-390
    [18] Kim S, Xuan Y, Ye P D, et al. Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis. Solid-State Electron. 2008, 8, 52(8). 1260-1263
    [19] Bandow S, Asaka S, Saito Y, et al. Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 1998, 80 (17). 3779-3782
    [20] Herrera J E, Resasco D E. Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. J. Phys. Chem.B. 2003, 107(16). 3738-3746
    [21] An, Y L, Yuan X, Cheng S N, et al. Carbon nanotube prepared from carbon monoxide by CVD method and its application as electrode materials. Rare Metals. 2006, 12, 25(6). 73-76
    [22] Li Y L, Zhang L H, Zhong X H, et al. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology. 2007, 6, 18(22). 225604
    [23] Izák T, Dani? T, Vesely M, et al. Influence of co-catalyst on growth of carbon nanotubes using alcohol catalytic CVD method. Vacuum. 2007, 10, 82(2). 134-137
    [24] Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35(12). 1035-1044
    [25] Sun X H, Li Ch P, Wong W K, et al. Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J. Am. Chem. Soc. 2002, 124(48). 14464-14471
    [26] Li C P, Fitz Gerald J, Zou J, et al. Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires.New Journal of Physics. 2007, 9. 137
    [27] Taguchi T, Igawa N, Yamamoto H, et al. Synthesis of silicon carbide nanotubes. Journal of the American Ceramic Society. 2005, 88(2). 459-461
    [28] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes. Science. 1995, 8, 269. 966-967
    [29] Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76(25). 4737- 4740
    [30] Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater. 2000, 12(7). 1808-1810
    [31] Xu W H, Ye Z Z, Lu H M, et al. Preparation and characterization of ZnO nanotubes. 2004 13th International Conference on Semiconducting and Insulating Materials. SIMC-XIII-2004
    [32] Wand R M, Xing Y J, Xu J, et al. Fabrication and microstructure analysis on zinc oxide nanotubes. New J. Phys. 2003, 9, 5(115). 67020
    [33] Ren X, Jiang C H, Li D D, et al. Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method. Meter. Lett. 2008, 6, 62(17-18). 3114-3116
    [34] Hung S C, Su Y K, Chang S J, et al. Vertically aligned GaN nanotubes– Fabrication and current image analysis. Microelectronic Engineering. 2006, 11, 83(11-12). 2441-2445
    [35] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998, 5, 393. 49-52
    [36] Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 10, 73(17). 2447-2449
    [37] Natori K, Kimura Y, Shimizu T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor. J. Appl. Phys. 2005, 97(3). 034306
    [38] Javey A, Kim H, Brink M, et al. High-k dielectrics for advanced carbon- nanotube transistors and logic gates. Nature Materials. 2002, 1. 241-246
    [39] Lee D S, Park S J, Park S D, et al. Quantum dot manipulation in a single-walled carbon nanotube using a carbon nanotube gate. Appl. Phys. Lett. 2006, 12, 89(23). 233107
    [40] Park J Y. Carbon nanotube field-effect transistor with a carbon nanotube gate electrode. Nanotechnology. 2007, 1, 18. 095202
    [41] Kong J, Franklin N R, Zhou C, et a1. Nanotube molecular wires as chemicalsensors. Science. 2000, 1, 287(5453). 622-625
    [42] Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000, 3, 287(5459). 1801-1804
    [43] Wanna Y, Srisukhumbowornchai N, Tuantranont A, et al. The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. J. Nanosci. Nanotechnol. 2006, 12, 6(12). 3893-3896
    [44] Ding W D, Hayashi Ryota, Suehiro Junya, et al. Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF6. IEEE Transactions on Dielectrics and Electrical Insulation. 2006, 13(2). 353-360
    [45] Hu J T, Ouyang M, Yang P D, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature. 1999, 5, 399. 48-51
    [46] Zhang Y, Ichihashi T, Landree E, et al. Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods. Science. 1999, 9, 285(5434). 1719-1722
    [47] Chandra B, Bhattacharjee J, Purewal M, et al. Molecular-Scale Quantum Dots from Carbon Nanotube Heterojunctions. Nano Lett. 2009, 9(4). 1544-1548
    [48] Cassell A M, Li J, Stevens R M D, et al. Vertically aligned carbon nanotube heterojunctions. Appl. Phys. Lett. 2004, 9, 85(12). 2364-2366
    [49] Zhang W J, Zhang Q F, Chai Y, et al. Gate voltage dependent characteristics of p-n diodes and bipolar transistors based on multiwall CNx/carbon nanotube intramolecular junctions. Nanotechnology. 2007, 18. 395205
    [50] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207-6215
    [51] Emberly E G, Kirczenow G. Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts. Phys. Rev. B. 1988, 10, 58(16). 10911- 10920
    [52] Hirose K, Tsukada M. First-principles theory of atom extraction by scanning tunneling microscopy. Phys. Rev. Lett. 1994, 7, 73(1). 150-153
    [53] Hirose K, Tsukada M. First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. Phys. Rev. B. 1995, 51(8). 5278-5290
    [54] Khomyakov P A, Brocks G. Real-space finite-difference method for conductance calculations. Phys. Rev. B. 2004, 11, 70(19). 195402
    [55] Lang N D. Resistance of atomic wires. Phys. Rev. B. 1995, 52(7). 5335-5342
    [56] Mozos J L, Wan C C, Taraschi G, et al. Quantized conductance of Si atomic wires. Phys. Rev. B. 1997, 8, 56(8). 4351-4354
    [57] Wan C C, Mozos J, Taraschi G, et al. Quantum transport through atomic wires. Appl. Phys. Lett. 1997, 71(3). 419
    [58] Heurich J, Cuevas J C, Wenzel W, et al. Electrical transport through single-molecule junctions: From molecular orbitals to conduction channels. Phys. Rev. Lett. 2002, 88(1). 256803
    [59] Xue Y Q, Ratner M A. Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B. 2003, 68(11). 115406
    [60] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [61] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 2001, 63(24). 245407
    [62] Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B. 2002, 66(3). 035332
    [63] Bai P, Li E, Lam K T, et al. Carbon nanotube Schottky diode: an atomic perspective. Nanotechnology. 2008, 19. 115203
    [64] Li X F, Chen K Q, Wang L L, et al. Effect of intertube interaction on the transport properties of a carbon double-nanotube device. J. Appl. Phys. 2007, 3, 101(6). 064514
    [65] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl. Phys. Lett. 2007, 91(13). 133511
    [1] Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature. 1996, 7, 382. 54-56
    [2] Hamada N, Sawada S, and Oshiyama A. New one-dimensional conductors: graphitic microtubles. Phys. Rev. Lett. 1992, 3, 68(10). 1579-1581
    [3] Zhao M W, Xia Y Y, Li F, et al. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys. Rev. B. 2005, 2, 71(8). 085312
    [4] Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes. Phys. Rev. B. 2004, 3, 69. 115322
    [5] Wei B Q, Spolenak R, Kohler-Redlich P, et al. Electrical transport in pure and boron-doped carbon nanotubes. Appl. Phys. Lett. 1999, 5, 74(21). 3149-3151
    [6] Akinobu K, Youiti O, Kazuhito T, et al. Electron transport in metal/multiwall carbon nanotube/metal structures (metal=Ti or Pt/Au). Appl. Phys. Lett. 2001, 8, 79(9). 1354-1356
    [7] Li Q H, Wang T H. Improved Electric Transport Properties of a Multi-wall carbon Nanotube. Chin. Phys. Lett. 2003, 20(8). 1333-1335
    [8] Panchakarla L S, Govindaraj A, and Rao C N R. Nitrogen- and Boron-Doped Double-Walled Carbon Nanotubes. ACS Nano. 2007, 1(5). 494-500
    [9] Charlier A, McRae E, Heyd R, et al Classification for double-walled carbon nanotubes. Carbon. 1999, 37(11). 1779-1783
    [10] Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon. 2001, 4, 39(5). 761-770
    [11] Qin L C, Zhao X L, Hirahara K, et al. Materials science: The smallest carbon nanotube. Nature. 2000, 408(6808). 50
    [12] Wang N, Tang Z K, Li G D, et al. Materials science: Single-walled 4 ? carbon nanotube arrays. Nature. 2000, 11, 408. 50-51
    [13] Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes. Phys. Rev. B. 2004, 69(11). 115322
    [14] Li C P, Fitz Gerald J, Zou J, et al Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. New Journal of Physics. 2007, 9. 137
    [15] Taguchi T, Igawa N, Yamamoto H, et al. Synthesis of silicon carbide nanotubes. Journal of the American Ceramic Society. 2005, 88(2). 459-461
    [16] Renzhi M, Yoshio B, Tadao S, et al. Growth, Morphology, and Structure of Boron Nitride Nanotubes. Chem. Mater. 2001, 13(9). 2965-2971
    [17] Wang J S, Kayastha V K, Yap Y K, et al. Low Temperature Growth of Boron Nitride Nanotubes on Substrates. Nano Lett.. 2005, 5(12). 2528-2532
    [18] Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater. 2000, 12(7). 1808-1810
    [19] Yu Q J, Fu W Y, Yu C L, et al. Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route. J. Phys. Chem. C. 2007, 111(47). 17521-17526
    [20] Wang R M, Xing Y J, Xu J, et al. Fabrication and microstructure analysis on zinc oxide nanotubes. New J. Phys. 2003, 9, 5(115). 67020
    [21] Ren X, Jiang C H, Li D D, et al. Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method. Materials Letters. 2008, 6, 62(17-18). 3114-3116
    [22] Zhang J, Loh K P, Yang S W, et al. Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. Appl. Phys. Lett. 2005, 87(24). 243105
    [23] Zhang X J, Zhao M W, He T, et al. Theoretical models of ZnS nanoclusters and nanotubes: First-principles calculations. 2008, 8, 147(5-6). 165-168
    [24] Thesing L A, Piquini P, Kar T. Theoretical investigation on the tability and properties of a (10, 0) BN–AlN nanotube junction. Nanotechnology, 2006, 17. 1637- 1641
    [25] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature. 1992, 7, 358. 220-222
    [26] Ebbesen T W. Carbon nanotubes. Annu. Rev. Mater. Sci. 1994, 24. 235-264
    [27] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997, 8, 388. 756-758
    [28] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995, 243(1-2). 49-54
    [29] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996, 7, 273(5274). 483-487
    [30] Muńoz E, Maser W K, Benito A M, et al. Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon. 2000, 38(10). 1445-1451
    [31] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 1997, 10, 278(1-3). 102-106
    [32] Dai H, Rinzler A G, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 9, 260(3-4). 471-475
    [33] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 8, 292(4-6). 567-574
    [34] Kong J, Soh H T, Cassell A M, et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature. 1998, 10, 395. 878-881
    [35] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 1998, 6, 289(5-6). 602-610
    [36] Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 2000, 5, 322(5). 321-326
    [37] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 11, 354. 56-58
    [38] Ebbesen T W. Carbon nanotubes. Annu. Rev. Mater. Sci. 1994, 24. 235-264
    [39]Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997, 388(6644). 756-758
    [40] Liu C,Cong H T,Li F,et al. Semi-continuous Synthesis of Single-walled Carbon Nanotubes by a Hydrogen Arc Discharge Method. Carbon. 1999, 37(11). 1865-1868
    [41] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. J. Phys. Chem. 1995, 99(27). 10694-10697
    [42] Bandow S, Asaka S, Saito Y, et al. Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 1998, 80 (17). 3779-3782
    [43] Herrera J E, Resasco D E. Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. J. Phys. Chem. B. 2003, 107(16). 3738-3746
    [44] Herrera J E, Balzano L, Pompeo F, et al. Raman characterization of single-walled carbon nanotubes of various diameters obtained by catalytic disproportionation of CO. J. Nanosci. Nanotech. 2003, 3(1-2). 133-138
    [45] Maruyama S, Miyauchi Y, Murakami Y, et al. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys. 2003, 10, 5(149). 1-12
    [46] Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthsis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360(3-4). 229-234
    [47] Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35(12). 1035-1044
    [48]韦建卫.异质掺杂对碳纳米管电子特性和输运性能的影响(博士学位论文).湖南大学. 2008
    [49]陈刚.双壁纳米碳管的电弧法制备、表征及应用(博士学位论文).大连理工大学. 2007
    [50]欧阳玉.碳纳米管结构研究(博士学位论文).湖南大学. 2008
    [51] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 1998, 1, 282(5-6). 429-434
    [52] Huang H, Kajiura H, Yamada A, et al. Purification and alignment of arc-synthesis single-walled carbon nanotube bundles. Chem. Phys. Lett. 2002, 4, 356(5-6). 567-572
    [53] Yu A, Bekyarova E, Itkis M E, et al. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128(30). 9902-9908
    [54] Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubes. Synthetic Metals. 1999, 6, 103(1-3). 2484-2485
    [55] Jeong T, Kim W Y, Hahn Y B. A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas. Chem. Phys. Lett. 2001, 8, 344(1-2). 18-22
    [56] Sen R, Rickard S M, Itkis M E, et al. Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chem. Mater. 2003, 15(22). 4273-4279
    [57] Huria H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7(3). 275-276
    [58] Dujardin E, Ebbesen T W, Krishnan A, et al. Purification of single-shell nanotubes. Adv. Mater. 1998, 10(8). 611-613
    [59] Fang H T, Liu C G, Liu C, et al. Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem. Mater. 2004, 16(26). 5744-5750
    [60] Dujardin E, Ebbesen T W, Hiura H, et al. Capillarity and wetting of carbon nanotubes. Science. 1994, 9, 265(5180). 1850-1852
    [61]Bandow S, Rao A M, Williams K A, et al. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B. 1997, 101(44). 8839-8842
    [62]王新庆,王淼,李振华等.单壁纳米碳管的纯化及表征.物理化学学报. 2003, 5, 19(5). 428-431
    [63] Mpourmpakis G, Froudakis G E, Lithoxoos G P, et al. SiC nanotubes: A novel material for hydrogen storage. Nano Letters. 2006, 8, 6(8). 1581-1583
    [64] He R A, Chu Z Y, Li X D, et al. Synthesis and hydrogen storage capacity of SiC nanotube. Key Engineering Materials. 2008, 368-372. 647-649
    [65] Li F, Xia Y Y, Zhao M W, et al. Density-functional theory calculations of XH3-decorated SiC nanotubes (X= {C, Si}): Structures, energetics, and electronic structures. J. Appl. Phys. 2005, 97(10). 104311
    [66] Wu R Q, Yang M, Lu Y H, et al. Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J. Phys. Chem. C. 2008, 112(41). 15985-15988
    [67] Zhao J X, Ding Y H. Silicon carbide nanotubes functionalized by transition metal atoms: A density-functional study. J. Phys. Chem. C. 2008, 112(7). 2558-2564
    [68] Sun X H , Li C P, Wong W K, et al. Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) withCarbon Nanotubes. J. Am. Chem. Soc. 2002, 124(48). 14464-14471
    [69] Borowiak-Palen E, Ruemmeli M H, Gemming T, et al. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J. Appl. Phys. 2005, 2, 97(5). 056102
    [70] Hu J Q, Bando Y, Zhan J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl. Phys. Lett. 2004, 85(14). 2932-2934
    [71] Cheng Q M, Interrante L V, Lienhard M, et al. Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. Journal of the European Ceramic Society. 2005, 25(2-3). 233–241
    [72] Pei L Z, Tang Y H, Chen Y W, et al. Preparation of silicon carbide nanotubes by hydrothermal method. J. Appl. Phys. 2006, 6, 99(11). 114306
    [73] Wirtz L, Marini A, and Rubio A. Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 2006, 3, 96(12). 126104
    [74] Arenal R, Stéphan O, Kociak M, et al. Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes. Phys. Rev. Lett. 2005, 9, 95(12). 127601
    [75] Wu X, An W, and Zeng X C. Chemical Functionalization of Boron-Nitride Nanotubes with NH3 and Amino Functional Groups. J. Am. Chem. Soc. 2006, 9, 128 (36). 12001-12006
    [76] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes. Science. 1995, 8, 269 (5226). 966-967
    [77] Chen Y, Chadderton L T, Williams J S, et al. Solid-state formation of carbon and boron nitride nanotubes. Materials Science Forum. 2000, 343-346. 63-67
    [78] Chen Y, Gerald J F, Chadderton L T, et al. Investigation of nanoporous cearbon powders produeed by high energy ball milling and formation of carbon nanotubes during subsequent annealing. Materials Science Forum.1999, 312-314. 375-380
    [79] Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76(25). 4737- 4740
    [80] Saito Y, Maida M. Square,pentagon,and heptagon rings at BN nanotube tips. J. Phys. Chem. A. 1999. 103(10). 1291-1293
    [81] Saito Y, Maida M, Matsumoto T. Structures of boron nitride nanotubes with single-layer and multilayers produced by arc discharge. Japanese Journal of Applied Physics. 1999, 38(1A). 159-163
    [82] Hirano T, Oku T, Kawaguchi M, et al. Formation and properties of boron nitride nanocapsules with metals and semiconductor nanopartieles. Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals. 2000, 340. 787-792
    [83] Hirano T, Oku T, Suganuma K. Fabrication and magnetic properties of boron nitride nanocapsules encaging iron oxide nanopartieles. Diamond and Related Materials. 2000, 9(3-6). 476-479
    [84] Yu D P, Sun X S, Lee C S, et al. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 1998, 72(16). 1966
    [85] Han W Q, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 1998, 11, 73(21). 3085-3087
    [86] Han W Q, Bando Y, Kurashima K, et al. Boron-doped carbon nanotubes prepared through a substitution reaction. Chem. Phys. Lett. 1999, 1, 299(5). 368-373
    [87] Oku T, Hirano T, Kuno M, et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Materials Science and Engineering B. 2000, 5, 74(1-3). 206-217
    [88] Umek Polona1, Gloter Alexandre, Prege Matej, et al. Synthesis of 3D hierarchical self-assembled microstructures formed fromα-MnO2 nanotubes and their conducting and magnetic properties. Journal of Physical Chemistry C. 2009, 8,113(33). 14798-14803
    [89] Lu C L, Lu J G, Xu L, et al. Crystalline nanotubes ofγ-AlOOH andγ-Al2O3: Hydrothermal synthesis, formation mechanism and catalytic performance. Nanotechnology. 2009, 20(21). 215604
    [90] Wang D, Liu Y, Yu B, et al. TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance. Chem. Mater. 2009, 4, 21(7). 1198-1206
    [91] Du N, Zhang H, Chen B, et al. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Mater. Res. Bull. 2009, 1, 44(1). 211-215
    [92] Sun S B, Zou Z D, Min G H. Synthesis of tungsten disulfide nanotubes from different precursor. Mater. Chem. Phys. 2009, 4, 114(2-3). 884-888
    [93] Wang X Y, Fang Z, Lin X. Copper sulfide nanotubes: Facile, large-scale synthesis, and application in photodegradation. J. Nanopart. Res. 2009, 4, 11(3). 731-736
    [1] Wang Z C, Kadohira T, Tada T, et al. Nonequilibrium Quantum Transport Properties of a Silver Atomic Switch. Nano Lett. 2007, 7(9). 2688-2692
    [2] Ishida H. Embedded Green-function calculation of the conductance of oxygen-incorporated Au and Ag monatomic wires. Phys. Rev. B. 2007, 75(20). 205419
    [3] Hou S M, Zhang J X, Li R, et al. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology. 2005, 1, 16. 239-244
    [4] Shi X, Zheng X, Dai Z, et al. Changes of Coupling between the Electrodes and the Molecule under External Bias Bring Negative Differential Resistance. J. Phys. Chem. B. 2005, 5, 109(8). 3334-3339
    [5]齐元华,关大任,刘成卜.分子线电导问题的密度泛函研究:分子-电极耦合形貌以及分子间相互作用对传输特性的影响.中国科学B辑. 2006, 36(2). 113-118
    [6] Odbadrakh K, Pomorski P, and Roland C. Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device. Phys. Rev. B. 2006, 6, 73(23). 233402
    [7] Nobuhiko K, Taisuke O, and Kenji H. Length dependence of effect of electrode contact on transport properties of semiconducting carbon nanotubes. Surface Science. 2007, 9, 60(18). 4131-4133
    [8] Zeng H, Hu H F, Wei J W, et al. Curvature effects on electronic properties of small radius nanotube. Appl. Phys. Lett. 2007, 91(3). 033102
    [9] Yang YinTang, Song JiuXu, Liu HongXia, Chai ChangChun. The negative differential resistance in single-wall SiC nanotube. Chin. Sci. Bull. 2008, 53(23). 3770-3772
    [10] Hartree D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Mathematical Proceedings of the Cambridhe philosophical Society. 1928, 1, 24(1). 111-132
    [11] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964, 136(3B). B864-B871
    [12] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140(4A). A1133-A1138
    [13]李爱玉.从金属原子链到金属纳米线:结构和电子性质(博士学位论文).厦门大学. 2006
    [14]乔靓.碳纳米管场发射性质的第一原理研究(博士学位论文).吉林大学. 2007
    [15]张芳英. ZnO系列和过渡金属掺杂GaN体系几何结构与电子性质的第一性原理研究(博士学位论文).复旦大学. 2007
    [16] Perdew J P, Zunger A. Self-interaction correction to density functional approximations for many-electron systems. Phys. Rev. B. 1981, 23(10). 5048-5079
    [17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 10, 77(18). 3865-3868
    [18]谢希德,陆栋.固体能带理论.上海.复旦大学出版社, 1998.
    [19]曾雉.第一原理电子结构计算研究Rni2B2C新型超导体(博士学位论文).中国科学院固体物理研究所. 1997
    [20]郑小宏.分子尺度导体输运性质的第一性原理研究(博士学位论文).中国科学院固体物理研究所. 2005
    [21]许英.关联电子体系的基态性质(博士学位论文).中国科学院固体物理研究所. 2005
    [22]袁定旺.金属团簇与小分子相互作用的第一性原理研究(博士学位论文).中国科学院固体物理研究所. 2005
    [23]李顺方.团簇和表面氧化过程的第一性原理研究(博士学位论文).中国科学院固体物理研究所. 2004
    [24]王江龙.新型超导体材料的电子结构研究(博士学位论文).中国科学院固体物理研究所. 2003
    [25]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分法在化学和材料物理中的应用.北京.科学出版社, 1998
    [26]卫崇德,章立源等.固体物理中的格林函数方法. 1992年版.北京.高等教育出版社,1992. 80-127
    [27] Haug H,Jauho A. Quanium Kinetics in Transport and optics of Semieonduetors. Heidelberg. Springer Press, 35-91.
    [28] Lundstrom M, Guo J. Nanoseale Transistors: Device Physies,Modeling and Simulation. Heidelberg. SpringerPress, 2005. 1-37.
    [29] Mahan G D. Many particle physics. SeondEdition. NewYork and London. Plenum Press, 1990.
    [30]杨展如.量子统计物理. 2007年第一版.北京.高等教育出版社. 2007. 337-399.
    [31] Doniach S, Sondheimer E H. Green’s Funetions for Solid State Physieist. WA BenjaminInc., 1974.
    [32]杨先敏.固体物理学中格林函数方法简介. 1989年第一版.北京.兵器工业出版社, 1989.
    [33] Riekayzen. Green’s functions and condensed matter. Version 1980. London.Academic Pr., 1980.
    [34]Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207–6215
    [35]郑继明.单分子电子输运性质的第一性原理研究(博士学位论文).西北大学. 2008
    [36]戴振翔.团簇输运性质的第一性原理研究(博士学位论文).中国科学院固体物理研究所. 2006
    [37] Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [38] ATK, http://www.quantumwise.com/
    [1] Wu Y Y, Fan R, and Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2002, 1, 2(2). 83-86
    [2] Gudiksen M S, Lauhon L J, Wang J F, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 2002, 2, 415. 617-620
    [3] Bj?rk M T, Ohlsson B J, Sass T, et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 1, 2(2). 87-89
    [4] Chandra B, Bhattacharjee J, Purewal M, et al. Molecular-Scale Quantum Dots from Carbon Nanotube Heterojunctions. Nano Lett. 2009, 9(4). 1544-1548
    [5] Chai Y, Zhou X L, Li P J, et al. Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction. Nanotechnology. 2005, 16. 2134–2137
    [6] Lammert P E, Crespi V H, Rubio A. Stochastic Heterostructures and Diodium in B/N-Doped Carbon Nanotubes. Phys. Rev. Lett. 2001, 9, 87. 136402
    [7] Yu S S, Wen Q B, Zheng W T, et al. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations. Nanotechnology. 2007, 3, 18. 165702
    [8]宋久旭,杨银堂,柴常春等.掺氮锯齿型单壁碳纳米管的电子结构.半导体学报. 2007, 10, 28(10). 1584-1588
    [9] Song C, Xia Y Y, Zhao M W, et al. Ab initio study of base-functionalized single walled carbon nanotubes. Chem. Phys. Lett. 2005, 10, 415(1-3). 183-187
    [10] Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B. 2006, 6, 73(24). 245415
    [11] Cohen R, Stokbro K, Martin J M L, et al. Charge transport in conjugated aromatic molecular junctions: Molecular conjugation and molecule-electrode coupling. J. Phys.Chem. C. 2007, 111(40). 14893-14902
    [12] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl. Phys. Lett. 2007, 91(13). 133511
    [13] Tzolov M, Chang B, Yin A, et al. Electronic Transport in a Controllably Grown Carbon Nanotube-Silicon Heterojunction Array. Phys. Rev. Lett. 2004, 2, 92(7). 075505
    [14] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. App. Phys. Lett. 2007, 91(13): 133511
    [15] Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B. 2002, 7, 66(3). 035332
    [16] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207-6215
    [17] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [18] Taylor J, Guo H, and Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 2001, 6, 63(24). 245407
    [19] Perdew J P and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 1981, 23(10). 5048-5079
    [20] Artacho E, Sánchez-Portal D, Ordejón P, et al. Linear-Scaling ab-initio Calculations for Large and Complex Systems. Physica Status Solidi B. 1999, 215(1). 809-817
    [21] Troullier N and Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991, 43(3). 1993-2006
    [1] Hu J T, Ouyang M, Yang P D, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature. 1999, 5, 399. 48-51
    [2] Zhang Y, Ichihashi T, Landree E, et al. Heterostructures of single-walled carbon nanotubes and carbide nanorodes. Science. 1999, 9, 285(5434). 1719-1722
    [3] Liao L, Liu K H, Wang W L, et al. Multiwall Boron Carbonitride/Carbon Nanotube Junction and Its Rectification Behavior. J. Am. Chem. Soc. 2007, 129(31). 9562–9563
    [4] Chai Y, Zhou X L, Li P J, et al. Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction. Nanotechnology. 2005, 16. 2134–2137
    [5] Thesing L A, Piquini P, and Kar T. Theoretical investigation on the stability and properties of a (10, 0) BN-AlN nanotube junction. Nanotechnology. 2006, 17. 1637-1641
    [6] Song C, Xia Y Y, Zhao M W, et al. Ab initio study of base-functionalized single walled carbon nanotubes. Chem. Phys. Lett. 2005, 10, 415(1-3). 183-187
    [7] Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B. 2006, 6, 73(24). 245415
    [8] Cohen R, Stokbro K, Martin J M L, et al. Charge transport in conjugated aromatic molecular junctions: Molecular conjugation and molecule-electrode coupling. J. Phys. Chem. C. 2007, 111(40). 14893-14902
    [9] Hoft R C, Ford M J, and Cortie M B. The effect of reciprocal-space sampling and basis set quality on the calculated conductance of a molecular junction. Molecular Simulation. 2007, 9, 33(11). 897-904
    [10] Kim W Y, Kwon S K, and Kim K S. Negative differential resistance of carbon nanotube electrodes with asymmetric coupling phenomena. Phys. Rev. B, 2007, 7, 76(3). 033415
    [11] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl. Phys. Lett. 2007, 91(13). 133511
    [12] Bai P, Li E, Lam K T, et al. Carbon nanotube Schottky diode: an atomic perspective. Nanotechnology. 2008, 19. 115203
    [13] Tzolov M, Chang B, Yin A, et al. Electronic Transport in a Controllably Grown Carbon Nanotube-Silicon Heterojunction Array. Phys. Rev. Lett. 2004, 2, 92(7). 075505
    [14] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. App. Phys. Lett. 2007, 91(13). 133511
    [15] Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B. 2002, 7, 66(3). 035332
    [16] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207-6215
    [17] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [18] Taylor J, Guo H, and Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 2001, 6, 63(24). 245407
    [19] Perdew J P and Zunger A. Self-interaction correction to density-functionalapproximations for many-electron systems. Phys. Rev. B. 1981, 23(10). 5048-5079
    [20] Artacho E, Sánchez-Portal D, Ordejón P, et al. Linear-Scaling ab-initio Calculations for Large and Complex Systems. Physica Status Solidi B. 1999, 215(1). 809-817
    [21] Troullier N and Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991, 43(3). 1993-2006
    [22] Odbadrakh K, Pomorski P, and Roland C. Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device. Phys. Rev. B. 2006, 6, 73(23). 233402
    [1] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes. Science. 1995, 8, 269. 966-967
    [2] Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 1996, 76(25). 4737- 4740
    [3] Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater. 2000, 12(7). 1808-1810
    [4] Yang J H, Zheng J H, Zhai HJ, et al. Solvothermal growth of highly oriented wurtzite-structured ZnO nanotube arrays on zinc foil. Cryst. Res. Technol. 2009, 6, 44(6). 619-623
    [5] Li C P, Fitz Gerald J, Zou J, et al. Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. New Journal of Physics, 2007, 9. 137
    [6] Taguchi T, Igawa N, Yamamoto H, et al. Synthesis of silicon carbide nanotubes. Journal of the American Ceramic Society. 2005, 88(2). 459-461
    [7] Zhukovskii Y F, PiskunovS, PugnoN, et al. Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches. J. Phys. Chem. Solids. 2009, 5, 70(5). 796-803
    [8] Cassell A M, Li J, Ramsey M D, et al. Vertically aligned carbon nanotube heterojunctions. Appl. Phys. Lett. 2004, 9, 85(12). 2364-2366
    [9] Chai Y, Zhou X L, Li P J, et al. Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction. Nanotechnology. 2005, 16. 2134–2137
    [10] Mao Y L, Zhong J X, Chen Y P. First principles study of the band structure and dielectric function of (6, 6) single-walled zinc oxide nanotube. Physica E. 2008, 1, 40(3).499–502
    [11] Chen C W, Lee M H. Dependence of workfunction on the geometries of single-walled carbon nanotubes. Nanotechnology. 2004, 2, 15. 480-484
    [12] Thesing L A, Piquini P, and Kar T. Theoretical investigation on the stability and properties of a (10, 0) BN-AlN nanotube junction. Nanotechnology. 2006, 17. 1637-1641
    [13] Song C, Xia Y Y, Zhao M W, et al. Ab initio study of base-functionalized single walled carbon nanotubes. Chem. Phys. Lett. 2005, 415(1-3). 183-187
    [14] Zhang J, Loh K P, Yang S W, et al. Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. Appl. Phys. Lett. 2005, 87. 243
    [15]李书平.平均键能物理内涵与肖特基势垒和异质结带阶的研究(博士学位论文).厦门大学. 2001
    [16] Su W S, Leung T C and Chan C T. Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys. Rev. B. 2007, 76(23). 235413
    [17] Zhang J, Loh K P, Deng M, et al. Work function of (8, 0) single-walled boron nitride nanotube at the open tube end. Appl. Phys. 2006, 99(10). 104309
    [18] Ishida H. Embedded Green-function calculation of the conductance of oxygen-incorporated Au and Ag monatomic wires. Phys. Rev. B. 2007, 75(20). 205419
    [19] Hou S M, Zhang J X, Li R, et al. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology. 2005, 1, 16. 239-244
    [20] Shi X, Zheng X, Dai Z, et al. Changes of Coupling between the Electrodes and the Molecule under External Bias Bring Negative Differential Resistance. J. Phys. Chem. B. 2005, 5, 109(8). 3334-3339
    [21] Zhang W X, Lu W G, and Wang E G. Length-dependent transport properties of (12, 0)/(n, m)/(12, 0) single-wall carbon nanotube heterostructures. Phys. Rev. B. 2005, 72(7). 075438
    [22] Amir A. F, Hiroshi M, Yoshiyuki K. Electronic transport properties of a metal–semiconductor carbon nanotube heterojunction. Physica E. 2004, 4, 22(1-3). 675–678
    [23] Fran?ois T, Philippe L, Stephan R. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology. 2005, 2, 16(2). 230–233
    [24] Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B. 2002, 7, 66(3). 035332
    [25] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B. 1985, 5, 31(10). 6207-6215
    [26] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 2002, 65(16). 165401
    [27] Taylor J, Guo H, and Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 2001, 6, 63(24). 245407
    [28] Perdew J P and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 1981, 23. 5048
    [29] Artacho E, Sanchez-Portal D, Ordejón P, et al. Linear-Scaling ab-initio Calculations for Large and Complex Systems. Phys. Status Solidi B. 1999, 215. 809
    [30] Troullier N and Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991, 43. 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700