Ga辅助生长一维纳米结构的光、电、热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ga辅助生长的一维纳米结构材料具有特别的物理和机械特性,在微纳技术领域有许多重要而潜在的应用。其中,镓催化生长的硅纳米结构可以实现元器件之间的链接,与其他器件匹配较好,为组装高集成、智能化的器件提供了新途经;利用镓填充纳米管研制的纳米温度计和纳米开关也为微纳电机器件的设计描绘了新的应用前景。在此基础上,本文围绕Ga辅助生长一维纳米结构的光、电、热效应及其应用开展工作,现将原创性和创新性的主要结果总结如下:
     (1)设计了一种可控的大面积制备硅多级枝状结构的单步合成方法,可以研制出多种Si基多级枝状纳米结构。创新性的利用镓的催化作用,制备出大面积整齐的硅的多级枝状纳米结构阵列。进一步对多级枝状纳米结构的生长机理给予了合理的解释。
     (2)与单晶硅的一阶光学-声子谱相比,多级枝状纳米结构、较大的多级枝状纳米结构和多级枝状纳米线三种结构的拉曼峰均有一定的蓝移,且相应的半高宽有-定的展宽。光致发光测试显示,三种结构的发射峰均出现在550nm处,与已报道的硅纳米结构的光致发光性能相比,也有相应的蓝移。我们将此现象归结为纳米结构的量子尺寸效应或缺陷(如堆垛层错)引起的。
     (3)硅多级枝状结构阵列拥有优越的场发射和电输运性能。优越的场发射性能显示其具有较低的开启电场(3.16 V/μm)和较高的场增强因子(1252)。电输运测试结果显示硅的纳米枝状结构有较小的电阻。通过改变枝状结构与电极的接触,真空退火较大程度地减小了其电阻的50%。然而,热氧化直接导致硅的枝状结构的表面形成了一层氧化层,其电阻增加了近2倍。然而真空退火和热氧化使电流-电压特性变得更加线性对称,电输运的稳定性明显提高。
     (4)在原位透射电镜的电子束辐照下,利用制备的镓填充二氧化硅纳米管的异形异标度的异质结构,首次发现镓液体在二氧化硅纳米管异质结构中的快速膨胀现象。这是一一种山内部巨大压强引起的电液压膨胀效应。此内部巨大压强来至于电子束轰击镓液体产生带正电的镓离子,造成镓离子之间的库伦排斥力,驱使它们向表面移动而引起膨胀。基于镓液体膨胀和经典静电理论,计算出正电荷引起的内部压强Pin值。以上所述的电液压膨胀效应为微纳液压驱动系统提供了新的应用机制。
     (5)在改变实验方法制备出大面积镓填充碳纳米管的基础上,我们为镓填充碳纳米管在纳米领域的应用提供了新途径。利用STM-TEM测试设备,将该结构放在不同的电场中,电驱动力的作用使得镓在碳纳米管中做不同模式的运动。其一,在单电极的电场中,镓在电场力的驱动下做周期性的弹性运动,可以将其看做电场驱动下的“纳米弹簧”。用新的弹性运动模式对该机理进行了合理的解析。其二,在双电极高电流密度的电场中,高电流密度驱动镓的迁移速度由1.328fgs-1变化到10.345fgs-1,远大于已报道的实验结果。这里我们定义镓填充的碳纳米管为双电极作用下的“高速质量传输机”。
     (6)首次发现,在高电流密度的驱动下,镓与碳纳米管发生分离,在电场驱动力的作用下镓快速移动,质量输运速度逐渐变快,然而,碳纳米管两端的电输运性能变化较小。在低电流密度下,镓沿着碳纳米管移动缓慢,导致碳纳米管两端的电输运性能变化较大,这种镓填充的碳纳米管可以作为电驱动的“纳米滑动变阻器”或者“纳米开关”应用。
     .在已有纳米温度计工作的基础上,我们研制出灵敏度高、测温范围广、性能稳定的新一代纳米温度计,它们各自具有特殊的性能:(a)镓填充氧化镁纳米管温度计具有四方开口的结构,测温范围广,灵敏度高达6.13nm/℃,是目前报道的灵敏度最高的纳米温度计之一。(b)首次研制的镓填充二氧化硅纳米管温度计不仅测温范围广、灵敏度高,而且稳定性好、抗氧化性能强,具有优化的几何结构,易于实现大面积制备。(c)通过改进实验方法,制备出产率大、灵敏度高的镓填充碳纳米管的温度计。以上三种纳米温度计的研制即从源头上解决了纳米温度计的高产率生长问题,又提高了纳米温度计的关键性能,如灵敏度、测温范围、稳定性和抗氧化性等诸多问题,为纳米温度计的实用化提供了坚实的基础。
Ga-assisted growth one-dimensional nanostructures, with many excellent physical and mechanical characteristics, have many potential application in the micro-nano technology. Ga-catalytic silicon nanostructures can be connect and match with other devices under the good performance, which opens a new field for the high-integrated intelligent devices. Meanwhile, nanothermometer and nanoswitch of Ga-filled nanotubes provide a new technology for the development of mechanical and electrical devices. Based on the above, we have studied the optical, electrical, thermal properties and new applications for the gallium-assisted growth one-dimensional nanostructures, and performed a series of innovative results, which as follows.
     (1) A simple one-step, controllable and large-area fabrication technique of silicon based multi-level branched nanostructures have been rationally designed. Using the gallium catalytic activity innovatively, ordered arrays of silicon multi-branch nanostructures were synthesized. We gave more analysis about the growth mechanism of multi-level branched nanostructures.
     (2) In comparing with the first-order optical phonon peak of crystalline silicon, the room-temperature Raman frequency of branched nanostructures, big branched nanostructures and branched nanowires are blue-shifted and its full width at half maximum broadens. The typical room-temperature PL spectra showed, for the three samples, a moderately strong photoluminescence emission was at 550 nm. Compared with the previous studies, three emission bands have blue-shifted, which may be the effect of quantum confinement and/or the defects, such as stacking faults.
     (3) The ordered arrays of crystallized silicon multi-branch nanostructure on the field electron emission and electric transport properties is excellent. A decent field electron emission with relatively low turn-on field of 3.16 V/μm and high field-enhancement factor of 1252 was received for the silicon nanobranches. In addition, electrical transport measurements revealed a small electrical resistance. In contrast, by improving silicon nanobranches - electrode contact, vacuum annealing dramatically reduced electrical resistance approachly 2-fold, while thermal oxidation resulted in much high resistance due to amorphous oxide coating of silicon nanobranches, both of current versus voltage curves become more linear and symmetrical, the transport stability is obviously improved.
     (4) Heteroshape-heteroscale structure made of silica-shelled Ga microball-nanotube is rationally fabricated. Undergoing in situ electron-beam irradiation, an abnormal Ga liquid expansion in the nanotube was firstly observed. The expansion was due to an electric-hydraulic expansion effect via a huge inner pressure, which was induced by the repelling Coulomb force of positively charged Ga ions on the surface of Ga liquid. Under the theories of Ga expansion and classical electrostatics, the Ga-ions induced huge pressure is calculated. The electric-hydraulic expansion (EHE) effect can provide new insight for application in the family of micro-nano-electric-hydraulic devices.
     (5) Based on the large-area fabrication of Ga-filled carbon nanotubes, we provide new ideas of the application fields for Ga-filled carbon nanotubes. By using a "Nanofactory Instruments" scanning tunneling microscope (STM)-TEM joint instrument, under the different electric field, The Gallium performed the different patterns of movement, which was elaborated innovatively. In a single-electrode electric filed, we first find out gallium in the nanotube performs periodic elastic movement, which can be called "electric field - driven nanospring". The relevant theoretical explanation has been addressed by the elastic movement model. Moreover, in a double-electrode electric filed, the high current density makes the gallium migrate at the changing transport froml.328 fg s-1 to 10.345 fg s-1, where Ga-filled carbon nanotube can be considered as "electric field-driven high-speed mass conveyor".
     (6) In the driving of the high current density, the separation between the gallium and the nanotube was caused, and resulting in Ga fastly moving to the anode, but the slight variation of the nanotube resistance. In contrast, gallium mass transport in the low current density influences significantly the electrical transport property of the nanotube. Our results are potential to Ga-filled carbon nanotube as "electric field - driven rheostats or nanoswitches".
     (7) Basis on the research of nanothermometer, the new nanothermometer with the high sensitivity, wide measuring-temperature range and steady performance has been designed, each have special performances. (a) Ga-filled MgO nanotubes is the cubic-opening nanotubes with wide measuring-temperature range and high sensitivity up to 6.13nm/℃, which is one of the highest sensitivity in the reported nanothermometer. (b) Ga-filled SiO2 nanotubes not only have the wide measuring-temperature range and high sensitivity, but also good antioxidant and structural geometrical optimization, can be fabricated with large area. (c) By changing the experimental methods, we prepared the nanothermometer of Ga-filled carbon nanotubes with the high output and sensitivity. The development of these three nanothermometers resolved two main matter, one is the high-output fabrication, the other is the modified key performance, such as the problem of sensitivity, measuring-temperature range and steady performance, it provides the most striking evidences for the practice of nanothermometers.
引文
[1]朱静.纳米材料和器件.北京:清华大学出版社,2003.
    [2]白春礼.纳米科技及其发展前景.科学通报,2001,46(2):89-92.
    [3]Weiss P. S. Nanoscience and Nanotechnology:Present and Future. Acs Nano,2010, 4,1771-1772.
    [4]Zach M., Hagglund C., Chakarov D., et al. Nanoscience and nanotechnology for advanced energy systems. Current Opinion in Solid State & Materials Science, 2006,10,132-143.
    [5]Tolles W.M. Nanoscience and nanotechnology:A perspective with chemistry examples. Nanotechnology,1996,622,1-18.
    [6]Xia Y. N., Yang, P. D. et al. One-dimension nanostructures:synthesis, characterization, and applications. Adv. Mater,2003,15(5):353-389.
    [7]Peckerar M. A new thrust for science in the 21st century, Nanostructure Science, Metrology and Technology,2002,1:278.
    [8]Venema L. Nanoscience-Small talk. Nature,2006,442:994-995.
    [9]Milburn G. J., Woolley M. J. Quantum nanoscience. Contemporary Physics,2008, 49:413-433.
    [10]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [11]Huang, M. H., Mao S., Feick H., Yan H.Q., Wu Y, Kind H., Weber E., Russo R., Yang P. D. Room-Temperature Ultraviolet Nanowire Nanolasers. Science,2001, 292:1897-1899.
    [12]Xiang J., Lu W., Hu Y. J., Wu Y, Yan H., Lieber C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature,2006, 441(7092):489-493.
    [13]Halperin W. P. Quantum size effects in metal particles. Rev Mod Phys,1986,58(3): 532.
    [14]Ball P, L. Garwin. Science at the atomic scale. Nature,1986,355(6363):761.
    [15]Javey A. The 2008 Kavli Prize in Nanoscience:Carbon nanotubes. Acs Nano,2008, 2:1329-1335.
    [16]Hochbaum A. I., Yang P. D. Semiconductor Nanowires for Energy Conversion. Chemical Reviews,2010,110:527-546.
    [17]卢嘉,Tinkham M单电子晶体管.物理,1998,3:137-140
    [18]Geeligs L. J., Averin D.V., Mooij J. E. Observation of macroscopic quantum tunneling through the Coulomb energy barrier. Phys. Rev. Lett,1990,65 (24):3037-3040.
    [19]Lu W., Lieber C. M. Semiconductor nanowires. Journal of Physics D-Applied Physics,2006,39:387-406.
    [20]Yang P. D. The chemistry and physics of semiconductor nanowires. Mrs Bulletin, 2005,30:85-91.
    [21]Wang N., Cai Y., Zhang R. Q. Growth of nanowires. Materials Science & Engineering R-Reports,2008,60:1-51.
    [22]Hochbaum A. I., Yang P. D. Semiconductor Nanowires for Energy Conversion. Chemical Reviews,2010,110:527-546.
    [23]Yang P. D., Yan, R. X. Fardy M. Semiconductor Nanowire:What's Next? Nano Letters,2010,10:1529-1536.
    [24]Wang N., Tang Y. H., Zhang Y. F., Lee C. S., Bello I., Lee S. T. Si nanowires grown from silicon oxide, Chem. Phys. Lett,1999,299(2):237-242.
    [25]Shi W. S., Peng H. Y., Zheng Y. F., Wang N., Shang N. G.., Pan Z. W., Lee C. S., Lee S. T. Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires, Adv. Mater,2000,12,1343-1345.
    [26]沈学础,半导体光谱和光学性质,科学出版社,2001,1-770.
    [27]Sugimoto S., Kondo S., Okayama k., Nakamura H., Book D., Kagotani T., Homma M., Ota H., Kimura M., Sam R.. M-type ferrite composite as a microwave absorber with wide band width in the GHz range. IEEET ransactions on Magnetics,1999, 35(5):3154-3156.
    [28]Wang H. L., Wang D., Chen G. D.,et al. Preparation of indium phosphide nanocrystallite and investigation of its optical properties. Journal of Applied Optics, 2007(2),28:187-190.
    [29]钟敏,ZnS/有机物纳米复合材料的制备与光学性能的研究:[博士学位论文].浙江大学,2005.
    [30]Zou B. S., Little R. B., Wang J. P., et. al. Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles, Int. J. Quan, Chem,1999,72(4):439-450.
    [31]Jain R. K., Lind R. C. Degenerate Four-wave mixing in Semiconductor-doped Gla ss, J. Opt. Soc. Am.,1983,73,647.
    [32]Ijayalakshmi S. V., Shen F., Grebel H. Artificial Dielectrics:Nonlinear Optical Properties of Silicon Nanoclusters at λ=532nm, Appl. Phys. Lett,1997,71,3332.
    [33]Tabagi H, Ogawa H, Yamazaki Y. Quantum size effects on photoluminescence in ultra fine Si particle. Appl. Phys. lett,1990,56 (24),2379-2380.
    [34]于灵敏、张克良、马雪红,et al. ZnO纳米线的光致发光性能及拉曼散射性能.机械工程材料,2007,31:64.
    [35]Xi Y. Y., Hsu Y.F., Djurisic A. B., et al. NiO/ZnO light emitting diodes by solution-based growth. Appl. Phys. Lett,2008,92:113505-3.
    [36]Wang J.Y., Lee C. Y., Chen Y. T., et al. Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions. Appl. Phys. Lett,2009,95:131117-3.
    [37]Ling B., Zhao J. L., Sun X.W., et al. Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions. Appl. Phys. Lett,2010,97: 013101-3.
    [38]Jeong M. C., Oh B. Y., Ham M. H., et al. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett,2006,88:202105-3.
    [39]Lai E., Kim W., Yang P. D. Vertical Nanowire Array-Based Light Emitting Diodes. Nano Research,2008,1:123-128.
    [40]Zhang X. M., Lu M.Y., Zhang Y., et al. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Adv. Mater,2009,21:2767-2770.
    [41]Lupan O., Pauporte T., Viana B., et al. Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication. Acs Applied Materials & Interfaces,2010,2:2083-2090.
    [42]Bie Y. Q., Liao Z. M., Wang P. W., et al. Single ZnO Nanowire/p-type GaN Heteroj unctions for Photovoltaic Devices and UV Light-Emitting Diodes. Adv. Mater,2010,22:4284-4287.
    [43]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett,1987,58,2059-2062.
    [44]Wang Z. L. Piezoelectric nanostructures:From growth phenomena to electric nanogenerators. Mrs Bulletin,2007,32:109-116.
    [45]Wang Z. L., Song J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312:242-246.
    [46]Wang X. D., Song J. H., Liu J., et al. Direct-current nanogenerator driven by ultrasonic waves. Science,2007,316:102-105.
    [47]Qin Y., Wang X. D., Wang Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature,2008,451:805-809.
    [48]Yang R. S., Qin Y., Dai L. M., et al. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology,2009,4:34-39.
    [49]Xu S., Qin Y., Xu C., et al. Self-powered nanowire devices. Nature Nanotechnology, 2010,5:366-373.
    [50]Wang Z. L. Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics. Advanced Functional Materials,2008,18:3553-3567.
    [51]Misewich J. A., Martel R., Avouris P., et al. Electrically induced optical emission from a carbon nanotube FET. Science,2003,300:783-786.
    [52]Fei P., Yeh P. H., Zhou J., et al. Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Lett,2009,9:3435-3439.
    [53]Baughman R. H., Zakhidov A. A., De Heer W. A. Carbon Nanotubes--the Route Toward Applications. Science,2002,297 (5582):787-792.
    [54]Jonge N. D, Lamy Y., Schoots K., Oosterkam T. H. High brightness electron beam from a multi-walled carbon nanotube. Nature,2002,420 (28):393-395.
    [55]Xie S. S., Li W. Z., Pan Z. W., et al. Mechanical and physical properties on carbon nanotube. Jurnal of Physics and Chemistw of Solids,2000,61(7):1153-1158.
    [56]Gao Y. H., Bando Y. Carbon nanothermometer containing gallium. Nature,2002, 415,599.
    [57]Lide, D. R. CRC Handbook of Chemistry and Physics 71st edn (CRC, Ohio, 1990-91).
    [58]Gray, D. E. et al. American Institute of Physics Handbook 3rd edn (McGraw-Hill, New York,1972).
    [59]Satyanarayana B. S., Hart A., Milne W. I., et al. Field emission from tetrahedral amorphous carbon. Appl. Phys. Lett,1997,71,1430.
    [60]Bai X. D., Guo J. D., Yu J., Wang, E. G.., Yuan, J., Zhou, W.Z., Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers. Appl. Phys. Lett,2000,76(18),2624-2626.
    [61]Bottani C. E., Mantini C., Milani P., et al Ramsn, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots [J]. Appl Phys Lett,1996,69 (16),2409-2411.
    [62]Mimura A., Fujii M., Hayashi S., et al. Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals [J]. Phys Rev B,2000,62 (19),12625-12627.
    [63]Mimura A., Fujii M., Hayashi S., et al. Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals [J]. Phys Rev B,2000, 62(19),12625-12627.
    [64]Chen L. L., Ye Z. Z., Lua J. G., el al. Co-doping effects and electrical transport in In-N doped zinc oxide[J]. Chemical Physics Letters,2006, (432):352-355.
    [65]Ahn B. D., Oh S. H., Hong D. U., et al. Transparent Ga-doped ZinC oxide-based window heaters fabricated by pulsed laser deposition[J]. Journal of Crystal Growth,2008(310):3303-3307.
    [66]Herng T. S., Lau S. P., Yu S. F., el al. Zn interstitial enhanced ferromagnetism in Cu-doped ZnO films[J]. Journal of Magnetism and Magnetic Materials,2007, (315):107-110.
    [67]Xu C., Kim M., Chun J., Kim D. Growth of Ga-doped ZnO nanowires by two-step vapor phase method. Appl Phys Lett,86,2005,133107-133110.
    [68]Yuan G. D., Zhang W. J., Jie J. S., Fan X., Tang J. X., Shafiq I., Ye Z. Z., Lee C. S., Lee S. T. Tunable n-Type Conductivity and Transport Properties of Ga-doped ZnO Nanowire Arrays. Adv. Mater.2008,20,168-173.
    [69]Gao Y. H., Bando Y. Nano-Thermodynamic Analysis of Surface Effect on Expansion Characteristics of Ga in Carbon Nanotubes. Appl. Phys. Lett.2002,81, 3966-3968.
    [70]Gao, Y. H., Bando Y., Golberg D. Melting and Expansion Behavior of Indium in Carbon Nanotubes. Appl. Phys. Lett.2002,81,4133-4135.
    [71]Gao Y. H., Bando Y., Liu Z., Golberg D., Nakanishi H. Temperature Measurement Using A Galium-Filled Carbon Nanotube Thermometer. Appl. Phys. Lett.2003,83, 2913-2915.
    [72]Li Y. B., Bando Y, Golberg D., Liu Z. W. Ga-filled single-crystalline MgO nanotube:Wide-temperature range Nanothermometer. Appl. Phys. Lett.2003,83, 999-1001.
    [73]Pan Z. W., Dai S., Beach D. B., Evans N. D., Lowndes D. H. Gallium-mediated growth of multiwall carbon nanotubes. Appl. Phys. Lett.2003,82,1947-1949.
    [74]Liu Z. W., Bando Y., Mitome M., Zhan J. H. Unusual Freezing and Melting of Gallium Encapsulated in Carbon Nanotubes. Phys. Rev. Lett.2004,93, 095504-1-4.
    [75]Dorozhkin P., Tovstong S., Golberg D., Zhan J. H., Ishikawa Y., Shiozawa M., Nakanishi H., Nakata K., Bando Y. A liquid Ga-filled carbon nanotube: miniaturized temperature sensor and electrical-switch. Small 2005,1,1088-1093.
    [76]Xia Y. N., Yang P. D., Sun Y. G., W Y. Y., Mayers B., Gates B., Yin Y. D., Kim F., Yan H. Q. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater,2003,15,353-389.
    [77]Sun Y. G., Mayers B., Xia Y N. Metal Nanostructures with Hollow Interiors. Adv. Mater,2003,15,641-646.
    [78]Ozin G. A. Nanochemistry:synthesis in diminishing dimensions. Adv. Mater,1992, 4,612-649.
    [79]Wei J., Buriak J. M., Siuzdak G. Desorption-ionization mass spectrometry on porous silicon. Nature,1999,399,243-246.
    [80]Shi W. S., Peng H. Y., Zheng Y. F., Wang N., Shang N. G., Pan, Z. W., Lee, C. S., Lee S. T. Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires. Adv. Mater,2000,12,1343-1345.
    [81]Huang Z. F., Harris K. D., Brett M. J. Morphology Control of Nanotube Arrays. Adv. Mater,2009,21,2983-2987.
    [82]Oehler F., Gentile P., Baron T., Hertog M. D., Rouviere J., Ferret P. The morphology of silicon nanowires grown in the presence of trimethylaluminium. Nanotechnology,2009,20,245602.
    [83]Tian B. Z., Zheng X. L., Kempa T. J., Fang Y., Yu N. F., Yu G. H., Huang J. L., Lieber C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449,885-889.
    [84]Tsakalakos L., Balch J., Fronheiser J., Korevaar B. A. Silicon nanowire solar cells. Appl. Phys. Lett,2007,91,233117-233119.
    [85]Cui Y., Wei Q., Park H., Lieber C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science,2001,293, 1289-1292.
    [86]Li M., Bhiladvala R. B., Morrow T. J., Sioss J. A., Lew K. K., Redwing J. M., Keating C.D., Mayer T. S. Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol,2008,3,88-92.
    [87]Husain A., Hone J., Postma W. C., Huang X. M. H., Drake T., Barbic M., Scherer A., Roukes M. L. Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett,2003,83,1240.
    [88]Chan C. K., Peng H., Liu G., Mcllwrath K., Zhang X. F., Huggins R. A., Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology,2008,3,31-35.
    [89]Wang D. L., Qian F., Yang C., Zhong Z. H., Charles M. L. Rational growth of branched and hyperbranched nanowire structures. Nano lett,2004,4,871-874.
    [90]Gentile P., David T., Dhalluin F., Buttard D., Pauc N., Hertog M. D., Ferret P., Baron T. The growth of small diameter silicon nanowires to nanotrees. Nanotechnology,2008,19,125608.
    [91]Sun M., Gao Y. H., Su J., Han X. Y., Zhang X. H., Zhang Q., Shen G. Z., Zhang A. Q., Jin L., Wang J. B. Versatile route to the controlled synthesis of multilevel branched silicon submicrometer/nanostructures. Journal of Physical Chemistry C, 2010,114:134-138.
    [92]Sun M., Gao Y. H., Zhi C. Y, Bando Y, Golberg D. Silicon multi-branch nanostructures for decent field emission and excellent electrical transport. Nanotechnology,2011,22:145705
    [93]Shen G. Z., Bando Y., Gao Y H., Golberg D. Synthesis and Interface Structures of Zinc Sulfide Sheathed Zinc-Cadmium Nanowire Heterojunctions. J. Phys. Chem. B. 2006,110,14123-14127.
    [94]Dick K. A., Deppert K., Larsson M. W., Martensson T., Seifert W., Wallenberg L. R., Samuelson L. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nat. Mater,2004,3,380-384.
    [95]Wang N.. Zhang Y. F.. Tang Y. H., Lee C. S., Lee. S. T. SiO2-enhanced synthesis of Si nanowires by laser ablation. Appl. Phys. Lett,1998,73,3902-3904.
    [96]Sorokin P B., Kvashnin A G., Kvashnin D G., Filicheva J A., Avramov P V., Fedorov A S., Chernozatonskii L. A. ASC Nano,2010,4,2784.
    [97]He K., Xu C. Y., Zhen L., Shao W. Z. Fractal growth of single-crystal α-Fe2O3: From dendritic micro-pines to hexagonal micro-snowflakes. Materials Lett,2008, 62,739-742.
    [98]Cao M. H., Liu T. F., Gao S., Sun G. B., Wu X. L., Hu C. W., Wang Z. L. Single-Crystal Dendritic Micro-Pines of Magnetic a-Fe2O3:Large-Scale Synthesis, Formation Mechanism, and Properties. Angew. Chem. Int. Ed,2005,44, 4197-4201.
    [99]Nittmann J., Stanley H.E. Non-deterministic approach to anisotropic growth patterns with continuously tunable morphology:the fractal properties of some real snowflakes. J. Phys. A:Math. Gen,1987,20,1185-1191.
    [100]Wang N., Tang Y. H., Zhang Y. F., Lee C. S., Bello I., Lee S. T. Si nanowires grown from silicon oxide. Chem.Phys.Lett,1999,299,237-242.
    [101]Li B. B., Yu D. P., Zhang S. L. Raman spectral study of silicon nanowires. Phys. Rev.B,1999,59,1645-1648.
    [102]Sun X. H., Wong, N. B., Sham, T. K., Li C. P., Lee, S. T. Chainlike silicon nanowires:Morphology, electronic structure and luminescence studies. J. Appl. Phys,2004,96,3447-3451.
    [103]Y. Saito, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y. Nishina, Field emission from multi-walled carbon nanotubes and its application to electron tubes, Appl. Phys. A,1998,67:95-100.
    [104]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Fully-sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett.,1999,75:3129-3131.
    [105]陈军,新型低维结构冷阴极材料的研制及其电子发射机理研究,中山大学博士论文,2004。
    [106]Chen J., Deng S. Z., Xu N. S., Zhang W. X., Wen X. G., Yang S. H. Temperature dependence of field emission from cupric oxide nanobelt films, Appl. Phys. Lett., 2003,83:746-748.
    [107]Chen J., Huang N. Y., Deng S. Z., She J. C., Xu N. S., Zhang W. X., Wen X. G., Yang S. H. Effects of light illumination on field emission from CuO nanobelts arrays, Appl. Phys. Lett.,2005,86:151107.
    [108]刘元震,王仲春,董亚强,电子发射与光电阴极,北京理工大学出版社,1995。
    [109]Xu N. S., Chapter 4, High Voltage Vacuum Insulator:Basic Concepts and TechnologicalPractice, Academic Press, London,1995.
    (?)Bayliss K. H., Latham R. V. An analysis of field-induced hot-electron emission from metal-insulator microstructures on broad-area high-voltage electrodes. Proc. Roy. Soc. A,1986,403:285-311.
    Ζhai T. Y., Fang X. S., Bando Y., Dierre B., Liu B., Zeng H. B., Xu X. J., Huang Y, Yuan X. L., Sekiguchi T., Golberg D. Characterization, Cathodoluminescence, and Field-Emission Properties of Morphology-Tunable CdS Micro/Nanostructures. Adv. Funct. Mater,2009,19 2423-2430.
    [112]Kulkarni N. N., Bae J., Shih C. K., Stanley S. K., Coffee S. S., Ekerdt J. G., Low-threshold field emission from cesiated silicon nanowires. Appl. Phys. Lett, 2005,87,213115(3).
    [113]Fang X. S., Bando Y., Gautam U. K., Ye C. H., Golberg D. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem. 2008,18509-522.
    [114]Zhu W. Vacuum Microelectronics (Wiley, New York,2001).
    [115]Ashcroft N. W., Mermin N. D.1981, Solid State Physics (Saunders College, Philadelphia).
    [116]Lin J., Huang Y., Bando Y, Tang C. C., Li C., Golberg D. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. ASC Nano,2010,4,2452-2458.
    [117]Chen J., Deng S. Z., Xu N. S., Wang S. H., Wen X. G., Yang S. H., Yang C. L., Wang J. N., Ge W. K. Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties. Appl. Phys. Lett,2002,80,3620-3622.
    [118]Zhong D. Y, Zhang G. Y, Liu S., Sakurai T., Wang E. G Universal field-emission model for carbon nanotubes on a metal tip. Appl. Phys. Lett,2002,80,506-508.
    [119]Sze S. M.1981 Physics of Semicondutor DeVices; John Wiley & Sons:New York.
    [120]Gambino J. P., Colgan E. G. Silicides and ohmic contacts. Mater. Chem. Phys.1998, 52,99-146.
    [121]Cui Y., Zhong Z., Wang D., Wang W. U., Lieber C. M., High performance silicon nanowire field effect transistors. Nano Lett,2003,3,149-152.
    [122]Wolf S., Tauber R. N.1986 Silicon Processing for the VLSI Era; Lattice Press: Sunset Beach, CA,1 2.
    [123]Yang C., Zhong Z. H., Lieber C. M., Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science,2005,310,1304-1307.
    [124]Bjork M. T., Thelander C., Hansen A. E., Jensen L. E., Larsson M. W., Wallenberg L. R., Samuelson L. Few-electron quantum dots in nanowires. Nano Lett,2004,4, 1621-1625.
    [125]Klimov V. I., Ivanov S. A., Nanda J., Achermann M., Bezel I., McGuire J. A., Piryatinski A., Single-exciton optical gain in semiconductor nanocrystals. Nature, 2007,447,441-446.
    [126]Sargent E. H. Infrared photovoltaics made by solution processing. Nature Photonics,2009,3,325-331.
    [127]Wu Y., Xiang J., Yang C., Lu W., Lieber C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.. Nature,2004,430,61-65.
    [128]Ayers J. E., Heteroepitaxy of Semiconductors:Theory, Growth and Characterization (CRC Press, New York,2007).
    [129]Wen C. Y., Reuter M. C., Bruley J., Tersoff J., Kodambaka S., Stach E. A., F. M. Ross. Nature,2009,326,1247.
    [130]Zhang J. T., Tang Y., Lee K., Ouyang M. Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science,2010,327, 1634-1638.
    [131]Zheng H. M., Smith R. K., Jun Y W., Kisielowski C., Dahmen U., Alivisatos A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009,324,1309-1312.
    [132]Holmberg V. C., Panthani M. G., Korgel B. A. Phase Transitions, Melting Dynamics, and Solid-State Diffusion in aNano Test Tube. Science,2009,326, 405-409.
    [133]Liu L. C., Risbud S. H. Real-time hot-stage high-voltage transmission electron microscopy precipitation of CdS nanocrystals in glasses:Experiment and theoretical analysis. J. Appl. Phys,1994,76,4576-4580.
    [134]Yokota T., Murayama M., Howe J. M. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Phys. Rev. Lett,2003,91,265504-265508.
    [135]Krasheninnikov A. V., Banhart F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater,2007,6,723-733.
    [136]Kondo Y., Takayanagi, K. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett,1997,79,3455-3458.
    [137]Xu, S. Y., Tian, M. L., Wang, J. G., Xu J., Redwing J. M., Chan M. H. W. Nanometer-Scale Modification and Welding of Silicon and Metallic Nanowires with a High-Intensity Electron Beam. Small,2005,1,1221-1229.
    [138]Sepulveda G. S., Elizondo V. N., Ferrer D., Torres C. A., Gao X., Zhou J. P., M. Yacaman J. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology,2007,18, 335604.
    [139]Zheng K., Wang C. C., Cheng Y Q., Yue Y. H., Han X. D., Zhang Z., Shan Z. W., Mao S. X., Ye M. M., Yin Y. D., Ma E. Nat. Commun,2010,1,1.
    [140]Cazaux J. Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy,1995,60,411-425.
    [141]Baughman R. H., Cui C. X., Zakhidov A. A., Iqbal Z., Barisci J. N., Spinks G. M., Wallace G. G., Mazzoldi A., Rossi D. D., Rinzler A. G., Jaschinski O., Roth S., Kertesz M., Carbon nanotube actuators. Science,1999,284,1340-1344.
    [142]Ziegler K. J., Lyons D. M., Holmes J. D., Erts D., Polyakov B., Olin H., Svensson K., Olsson E., Bistable nanoelectromechanical devices. Appl. Phys. Lett,2004,84, 4074-4076.
    [143]Poncharal P., Wang Z. L., Ugarte D., Heer W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science,1999,283,1513-1516.
    [144]Regan B. C., Aloni S., Ritchie R. O., Dahmen U., Zettl A. Nature,2004,428,924. (?)Demoney N., Sttphan O., Brun N., Cokkuex C., Loisean A., Pascard H. Euro Phys J B,1998,4,147.
    [146]高义华,张洪意,王月姣,张清风,韩祥云,李玉宝,刘宗文,占金华,Golberg D, Dorozhkin P, Tovstong S,黄德修,板东义雄.纳米管温度计,电子显微学报[J],2008,27,152.
    [147]Williams D. B., Carter C. B. Transmission Electron Microscopy 2nd edn (Plenum Press, New York,1996) pp62,112.
    [148]Ihsan B., Fried S., Ernst S. R., Wang S. S. Thermochemical Data of Pure Substance (VCH Verlagsgesellschaft mbH, Weinheim,1989) pp586.
    [149]Lide D. R. CRC Handbook of Chemistry and Physics 71 edn (CRC Press, Ohio, 1990-91) pp4-130,4-140.
    [150]Koster V. H., Hensel F., Franck E. U., Ber. Bunsenges,1974,74,43
    [151]Sun L., Banhart F., Krasheninnikov A. V., Rodriguez-Manzo J. A., Terrones M., Ajayan P. M. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science,2006,312,1199-1203.
    [152]Zhang J. Y., Boyd I. W. Low dielectric constant porous silica films formed by photo-induced sol-gel processing. Mat. Sci. Semicon. Proc,2000,3,345-349.
    [153]Svensson K., Olin H., Olsson E., Nanopipettes for metal transport. Phys. Rev. Lett, 2004,93,145901-145906.
    [154]Regan B. C., Aloni S., Ritchie R. O., Dahmen U., Zettl A. Nature,2004,428,924.
    [155]Golberg D., Costa P. M. F. J., Mitome M., Hampel S., Haase D., Mueller C., Leonhardt A., Bando Y. Copper-Filled Carbon Nanotubes:Rheostatlike Behavior and Femtogram Copper Mass Transport. Adv. Mater,2007,19,1937-1942.
    [156]Costa P. M. F. J., Golberg D., Mitome M., Hampel S., Leonhardt A., Buchner B., Bando Y. Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. Nano Lett,2008,8,3120-3125.
    [157]Dong L., Tao X., Hamdi M., Zhang L., Zhang X., Ferreira A., Nelson B. J. Nanorobotic spot welding:Controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett,2007,7.58-63.
    [158]Begtrup G. E., Gannett W., Yuzvinsky T. D., Crespi V. H., Zettl A., Nanoscale reversible mass transport for archival memory. Nano Lett,2009,9,1835-1838.
    [159]Heinze S., Wang N. P., Tersoff. J. Electromigration forces on ions in carbon nanotubes. Phys. Rev. Lett,2005,95,186802-186806.
    [160]Barreiro A. Rurali R. Hernandez E. R. Moser J., Pichler T., Forro'L., Bachtold A. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science,2008,320,775-778.
    [161]M. Loffler, U. Weissker, T. Muhl, T. Gemming, J. Eckert, B. Buchner. Current-Induced Mass Transport in Filled Multiwalled Carbon Nanotubes. Adv. Mater,2011,23,541-544.
    [162]Zhao J., Huang J. Q., Wei F., Zhu J., Mass Transportation Mechanism in Electric-Biased Carbon Nanotubes. Nano Lett,2010,10,4309-4315.
    [163]Liu H., He J., Tang J. Y., Liu H., Pang P., Cao D., Krstic P., Joseph S., Lindsay S., Nuckolls C. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science,2010,327,64-67.
    [164]Wang Q. Atomic Transportation via Carbon Nanotubes. Nano Lett,2009,9,245.
    [165]Insepov, Z. Wolf, D. Hassanein, A. Nanopumping using carbon nanotubes. Nano Lett,2006,6,1893-1895.
    [166]Xu, Z. Golberg, D. Bando Y. In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. Nano Lett,2009,9,2251-2254.
    [167]Sorbello, R. S. Theory of Electromigration. Solid State Phys,1998,51,159-231.
    [168]Kandel D., Kaxiras E. Microscopic theory of electromigration on semiconductor surfaces. Phys. Rev. Lett,1996,76,1114-1117.
    [169]Rous P. J., Bly D. N. Wind force for adatom electromigration on heterogeneous surfaces. Phys. Rev. B,2000,62,8478-8486.
    [170]Gray D. E., Billings B. H., Bleil D. F., et al. Heat,4-122 & Thermal Expansion, 4-141; American Institute of Physics Handbook [M],3rd ed. McGraw. Hill:New York,1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700