ZnO基Ⅱ型纳米异质结构的合成与光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维半导体纳米材料由于其具有独特的理化特性近来得到了人们的广泛关注。半导体纳米线已经成为纳米科学领域内的研究热点问题。基于半导体纳米线的纳米器件已经应用到光电子器件、能量转换、生物医药、光学器件等各个领域。其中,ZnO作为近些年来新兴的一种半导体材料,具有在光电子领域良好的应用前景。我们以ZnO纳米结构为基础,研究了基于ZnO纳米线的Ⅱ型复合纳米结构。Ⅱ型复合结构由于其特有的能带结构,近年来得到了长足的发展。我们在本文中研究一些ZnO基Ⅱ型复合结构的合成、形成机制以及光学性质的例子。
     本文的主要工作就围绕着以ZnO纳米结构为基础的Ⅱ型复合纳米结构展开。
     (1)利用化学气相沉积法和溶液法分别合成了ZnO纳米结构,并研究了其光学性质。通过使用MOCVD法生长ZnO仔晶层和溅射的方法生长Au薄膜引导ZnO纳米阵列的生长。通过化学气相沉积法合成了ZnO纳米阵列。在水相和有机相中也分别合成了ZnO纳米结构。在水相中,通过调节还原剂的浓度可以改变纳米线的形貌。在有机相中,通过改变表面活性剂的电性可以调节ZnO纳米结构的形貌。
     (2)通过荧光发射光谱、激发光谱、瞬态光谱以及变温荧光光谱的手段研究了ZnO:Se纳米棒中的橙光发射。从而说明Se杂质在ZnO橙光发射中的作用,通过一个模型描述了橙光发射的过程。
     (3)气相法制备了ZnO:Se纳米棒。通过气相沉积的方法合成了ZnO-ZnSe纳米环。通过微观结构分析说明了这个纳米环的形成机制。同时测试了其光学性能,同样发现了很强的橙光发射。我们通过对ZnO-ZnSe之间的能带结构的分析,说明了橙光发射的过程。
     (4)利用金属辅助刻蚀法合成了硅纳米线阵列。我们研究了硅纳米线的形成过程,金属纳米粒子在刻蚀中的作用以及金属纳米颗粒在刻蚀过程中运动过程。通过对比将硅片浸没在不同浓度的金属离子中和不同的浸泡时间,探讨了由于Ag纳米颗粒的形貌不同导致的最后得到的硅纳米阵列的形貌差异。
     (5)通过调节刻蚀液中氧化剂的浓度使得硅纳米线表面出线了多孔结构。我们在这种多孔硅纳米线中发现了硅在可见光范围内的荧光发射。我们对比了不同的氧化剂浓度和不同电阻率的硅片中的荧光发射,尝试对这些硅纳米线中的荧光发射现象给予总结。
     (6)使用金属有机化学气相沉积的方法将ZnO纳米结构包覆到硅纳米线阵列中,研究了不同生长条件得到的两种ZnO纳米结构。对这两种ZnO-Si复合结构进行了结构表征和光学性质的表征。将ZnO包覆到多孔硅纳米线上,使多孔硅和ZnO在可见光区的荧光发射同时出现,得到一个几乎能够覆盖全部可见光区的一条荧光发射谱线。通过对Si-ZnO这种Ⅱ型异质结构能带的分析,说明了ZnO和Si在可见光区内由于能带结构导致的同时发光的原因。
Low-dimensional nanomaterials have been attracted due to their unique physical and chemical properties and applications in optoelectronics, energy transfer, biology and medicine and optics. ZnO is an emerging semiconductor with a promising perspective in optoelectronic devices. On the basis of ZnO nanostructures, we studied the type-II heterogeneous nanostructures of ZnO-ZnSe and ZnO-Si, particularly suitable for light emitters due to the type-Ⅱbandgap alignment. In this work, we studied the synthesis, growth mechanism and optical properties of some type-Ⅱheterogeneous nanostructures.
     (1) ZnO nanowires and nanowire arrays have been synthsized via chemical vapor deposition with the help of ZnO seed layers fabricated by metal organic chemical vapor deposition and Au films deposited by sputtering. ZnO nanostructures are also synthesized by solution methods. In aqueous solution, the size of ZnO nanorods is dependent on the Sodium Citrate concentration. In organic solvent, the morphology of ZnO nanostructures is changed with different surfactants.
     (2) The high efficient orange emission in ZnO:Se nanorods is discussed with steady emission photoluminescence, excitation photoluminescence, time-resolved photo luminescence and temperature-dependent photoluminescence. Se impurities in ZnO play a critical role in the orange emission. A model is provided to explain the recombination process in ZnO:Se nanorods.
     (3) The microstructures of ZnO-ZnSe nanorings are studied to explain the growth mechanism. The highly bright orange emission is also observed in the ZnO-ZnSe nanorings.
     (4) Silicon nanowire arrays are fabricated via metal nanoparticles assisted electroless etching method. The shape of silver nanostructures determines the morphology of as-fabricated silicon nanowire arrays. The evolution of silver nanoparticles depends on the silver ion concentration and immersion periods in silver nitrate aqueous solution.
     (5) Porous silicon nanowire arrays are fabricated in higher hydrogen peroxide concentration and exhibit an emission band in the range of visible light. Hydrogen peroxide concentration is a key to the orange emission from silicon nanowires. The different resistance of silicon nanowires is responsible for deviation of photon energy in emission bands.
     (6) ZnO-Si core-shell nanowire arrays and ZnO nanodots decorated on silicon nanowire arrays are prepared by metal organic chemical vapor deposition. The pressure in reaction chamber and reaction periods are responsible for the different morphology of ZnO nanostructures. Furthermore, ZnO layers are coated onto the surface of porous silicon nanowire arrays. A emission band covering entire visible light range is observed in porous silicon-ZnO core-shell nanowire arrays. The type-II bandgap alignment is responsible for the simultaneous emission in silicon and ZnO.
引文
[I]R. S. Wagner and W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett.1964,4 (5),89-90.
    [2]S. Iijima. Helical Microtubules of Graphitic Carbon. Nature 1991,354 (6348),56-58.
    [3]M. Yazawa, M. Koguchi and K. Hiruma. Heteroepitaxial Ultrafine Wire-Like Growth of Inas on Gaas Substrates. Appl. Phys. Lett.1991,58 (10),1080-1082.
    [4]M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma. Effect of One Monolayer of Surface Gold Atoms on the Epitaxial-Growth of Inas Nanowhiskers. Appl. Phys. Lett.1992,61 (17),2051-2053.
    [5]H. Yu, J. B. Li, R. A. Loomis, P. C. Gibbons, L. W. Wang and W. E. Buhro. Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc.2003,125 (52),16168-16169.
    [6]H. Yu, J. B. Li, R. A. Loomis, L. W. Wang and W. E. Buhro. Two-versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater.2003,2 (8),517-520.
    [7]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang. Room-temperature ultraviolet nanowire nanolasers. Science 2001,292 (5523), 1897-1899.
    [8]X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber. Single-nanowire electrically driven lasers. Nature 2003,421 (6920),241-245.
    [9]Y. Cui and C. M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001,291 (5505),851-853.
    [10]M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang. Nanowire dye-sensitized solar cells. Nat. Mater.2005,4 (6),455-459.
    [11]X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001,409 (6816), 66-69.
    [12]M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002,415 (6872), 617-620.
    [13]Y. Cui, Q. Q. Wei, H. K. Park and C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001,293 (5533),1289-1292.
    [14]E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher and F. Krausz. Direct measurement of light waves. Science 2004,305 (5688),1267-1269.
    [15]Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber. Logic gates and computation from assembled nanowire building blocks. Science 2001,294 (5545),1313-1317.
    [16]J. Westwater, D. P. Gosain, S. Tomiya, S. Usui and H. Ruda. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 1997,15 (3),554-557.
    [17]A. M. Morales and C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998,279 (5348),208-211.
    [18]M. T. Bjork, B. J. Ohlsson, T. Sass, A. Ⅰ. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett.2002,80 (6),1058-1060.
    [19]Y. Y. Wu, R. Fan and P. D. Yang. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett.2002,2 (2),83-86.
    [20]C. Yang, Z. H. Zhong and C. M. Lieber. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005,310 (5752),1304-1307.
    [21]S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R. E. Dunin-Borkowski, J. Drucker, P. Bennett and J. Robertson. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater.2008,7 (5),372-375.
    [22]Y. Shan and S. J. Fonash. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach. ACS Nano 2008,2 (3),429-434.
    [23]X. T. Zhang, Z. Lii, Q. Li, Y. P. Leung, K. M. Ip and S. K. Hark. Routes to grow well-aligned arrays of ZnSe nanowires and nanorods. Adv. Mater.2005,17 (11),1405-1410.
    [24]J. Ham, W. Shim, D. H. Kim, K. H. Oh, P. W. Voorhees and W. Lee. Watching bismuth nanowires grow. Appl. Phys. Lett.2011,98 (4),043102.
    [25]P. J. Alet, L. Yu, G. Patriarche, S. Palacin and P. R. I. Cabarrocas. In situ generation of indium catalysts to grow crystalline silicon nanowires at low temperature on 1TO. J. Mater. Chem. 2008,18(43),5187-5189.
    [26]E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. R. He and P. D. Yang. Watching GaN nanowires grow. Nano Lett.2003,3 (6),867-869.
    [27]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro. Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors-an Analogy to Vapor-Liquid-Solid Growth. Science 1995,270(5243),1791-1794.
    [28]T. Hanrath and B. A. Korgel. Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J. Am. Chem. Soc.2002,124 (7),1424-1429.
    [29]V. Schmidt and U. Gosele. How nanowires grow. Science 2007,316 (5825),698-699.
    [30]S. Kodambaka, J. Tersoff, M. C. Reuter and F. M. Ross. Germanium nanowire growth below the eutectic temperature. Science 2007,316 (5825),729-732.
    [31]Y. W. Wang, V. Schmidt, S. Senz and U. Gosele. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol.2006,1 (3),186-189.
    [32]E. C. Garnett, W. J. Liang and P. D. Yang. Growth and electrical characteristics of platinum-nanoparticle-catalyzed silicon nanowires. Adv. Mater.2007,19(19),2946-2950.
    [33]K. Kang, D. A. Kim, H. S. Lee, C. J. Kim, J. E. Yang and M. H. Jo. Low-Temperature Deterministic Growth of Ge Nanowires Using Cu Solid Catalysts. Adv. Mater.2008,20 (24), 4684-4690.
    [34]J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea and L. J. Lauhon. Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem.2009,19 (7),849-857.
    [35]B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang and C. M. Lieber. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007,449 (7164),885-U888.
    [36]S. P. Ahrenkiel, O. I. Micic, A. Miedaner, C. J. Curtis, J. M. Nedeljkovic and A. J. Nozik. Synthesis and characterization of colloidal InP quantum rods. Nano Lett.2003,3 (6),833-837.
    [37]S. Kan, T. Mokari, E. Rothenberg and U. Banin. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater.2003,2 (3),155-158.
    [38]X. M. Lu, D. D. Fanfair, K. P. Johnston and B. A. Korgel. High yield solution-liquid-solid synthesis of germanium nanowires. J. Am. Chem. Soc.2005,127 (45),15718-15719.
    [39]J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000,287 (5457),1471-1473.
    [40]J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel and M. Kuno. Solution-based straight and branched CdSe nanowires. Chem. Mater.2004,16 (25),5260-5272.
    [41]M. S. Gudiksen and C. M. Lieber. Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc.2000,122 (36),8801-8802.
    [42]O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik. Synthesis and Characterization of Inp Quantum Dots. Journal of Physical Chemistry 1994,98 (19), 4966-4969.
    [43]J. M. Nedeljkovic, O. I. Micic, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik. Growth of InP nanostructures via reaction of indium droplets with phosphide ions:Synthesis of InP quantum rods and InP-TiO2 composites. J. Am. Chem. Soc.2004,126 (8),2632-2639.
    [44]S. M. Gao, Y. Xie, J. Lu, G. A. Du, W. He, D. L. Cui, B. B. Huang and M. H. Jiang. Mild benzene-thermal route to GaP nanorods and nanospheres. Inorg. Chem.2002,41 (7), 1850-1854.
    [45]Y. Y. Wu and P. D. Yang. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc.2001,123 (13),3165-3166.
    [46]P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He and H. J. Choi. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater.2002,12 (5),323-331.
    [47]H. Yu, P. C. Gibbons, K. F. Kelton and W. E. Buhro. Heterogeneous seeded growth:A potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc.2001, 123 (37),9198-9199.
    [48]R. X. Yan, D. Gargas and P. D. Yang. Nanowire photonics. Nat. Photonics 2009,3(10), 569-576.
    [49]P. J. Pauzauskie and P. Yang. Nanowire photonics. Materials Today 2006,9(10),36-45.
    [50]L. Brus. Noble Metal Nanocrystals:Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy. Ace. Chem. Res.2008,41 (12),1742-1749.
    [51]Y. J. Oh, S. G Park, M. H. Kang, J. H. Choi, Y. Nam and K. H. Jeong. Beyond the SERS: Raman Enhancement of Small Molecules Using Nanofluidic Channels with Localized Surface Plasmon Resonance. Small 2011,7 (2),184-188.
    [52]P. D. Yang, G Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, T. Deng, G. M. Whitesides, B. F. Chmelka, S. K. Buratto and G. D. Stucky. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 2000,287 (5452),465-467.
    [53]X. H. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006,128(6),2115-2120.
    [54]D. J. Stephens and V. J. Allan. Light microscopy techniques for live cell Imaging. Science 2003, 300(5616),82-86.
    [55]E. J. Anglin, L. Y. Cheng, W. R. Freeman and M. J. Sailor. Porous silicon in drug delivery devices and materials. Adv. Drug Deliver. Rev 2008,60 (11),1266-1277.
    [56]F. Odobel, L. Le Pleux, Y. Pellegrin and E. Blart. New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors:Challenges and Opportunities. Ace. Chem. Res.2010, 43(8),1063-1071.
    [57]K. Q. Peng, X. Wang and S. T. Lee. Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett.2008,92 (16),163103.
    [58]A. P. Goodey, S. M. Eichfeld, K. K. Lew, J. M. Redwing and T. E. Mallouk. Silicon nanowire array photoelectrochemical cells. J. Am. Chem. Soc.2007,129 (41),12344-12345.
    [59]J. R. Maiolo, B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, H. A. Atwater and N. S. Lewis. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 2007,129(41),12346-12347.
    [60]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett.1998,72 (25),3270-3272.
    [61]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim and S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett.2003,83 (1),63-65.
    [62]E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett.2003,82 (22),3901-3903.
    [63]X. Y. Kong and Z. L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett.2003,3 (12),1625-1631.
    [64]P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao and Z. L. Wang. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005,309 (5741), 1700-1704.
    [65]Z. W. Pan, Z. R. Dai and Z. L. Wang. Nanobelts of semiconducting oxides. Science 2001,291 (5510),1947-1949.
    [66]O. Dulub, L. A. Boatner and U. Diebold. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000(1)over-bar)-O, (10(1)over-bar0), and (11(2)over-bar0) surfaces. Surf. Sci.2002,519 (3),201-217.
    [67]J. E. Jaffe, J. A. Snyder, Z. J. Lin and A. C. Hess. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 2000,62 (3),1660-1665.
    [68]M. Usuda, N. Hamada, T. Kotani and M. van Schilfgaarde. All-electron GW calculation based on the LAPW method:Application to wurtzite ZnO. Phys. Rev. B 2002,66 (12),125101.
    [69]I. Ivanov and J. Pollmann. Electronic-Structure of Ideal and Relaxed Surfaces of ZnO-A Prototype Ionic Wurtzite Semiconductor and Its Surface-Properties. Phys. Rev. B 1981,24 (12), 7275-7296.
    [70]S. J. Pearton, D. P. Norton and F. Ren. The promise and perils of wide-bandgap semiconductor nanowires for sensing, electronic, and photonic applications. Small 2007,3 (7),1144-1150.
    [71]D. C. Look, B. Claflin, Y. I. Alivov and S. J. Park. The future of ZnO light emitters. Phys. Status. Solidi. A 2004,201 (10),2203-2212.
    [72]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner. Recent progress in processing and properties of ZnO. Prog. Mater. Sci.2005,50 (3),293-340.
    [73]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck and A. V. Rodina. Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status. Solidi. B 2004,241 (2),231-260.
    [74]D. J. Gargas, M. E. Toimil-Molares and P. D. Yang. Imaging Single ZnO Vertical Nanowire Laser Cavities Using UV-laser Scanning Confocal Microscopy. J. Am. Chem. Soc.2009,131 (6),2125-2126.
    [75]B. D. Yuhas and P. D. Yang. Nanowire-Based All-Oxide Solar Cells. J. Am. Chem. Soc.2009, 131 (10),3756-3761.
    [76]E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett.2002,81 (10),1869-1871.
    [77]J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada and M. Hara. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 2006,17 (10),2567-2573.
    [78]N. Kumar, A. Dorfman and J. Hahm. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays. Nanotechnology 2006,17 (12),2875-2881.
    [79]P. Sharma, A. Mansingh and K. Sreenivas. Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering. Appl. Phys. Lett.2002,80 (4),553-555.
    [80]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park and C. J. Youn. ZnO devices: Photodiodes and p-type field-effect transistors. Appl. Phys. Lett.2005,87 (15),153504.
    [81]R. L. Hoffman, B. J. Norris and J. F. Wager. ZnO-based transparent thin-film transistors. Appl. Phys. Lett.2003,82 (5),733-735.
    [82]Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang and F. Ren. Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett.2004,85 (12), 2274-2276.
    [83]P. Gorrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht and U. Scherf. Low loss contacts for organic semiconductor lasers. Appl. Phys. Lett.2006,89 (16),161113.
    [84]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater.2005, 4(1),42-46.
    [85]Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev and B. M. Ataev. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett.2003,83 (14),2943-2945.
    [86]Q. X. Yu, B. Xu, Q. H. Wu, Y. Liao, G Z. Wang, R. C. Fang, H. Y. Lee and C. T. Lee. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett.2003,83 (23),4713-4715.
    [87]Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett.2003,83 (23), 4719-4721.
    [88]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park and C. J. Youn. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett.2006,88(24),241108.
    [89]S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan and Z. K. Tang. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett.2006,88 (3),031911.
    [90]X. D. Wang, J. H. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers and Z. L. Wang. Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and A10.5Ga0.5N substrates. J. Am. Chem. Soc.2005,127 (21),7920-7923.
    [91]H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally and P. D. Yang. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc.2003,125 (16),4728-4729.
    [92]J. Y. Lao, J. Y. Huang, D. Z. Wang and Z. F. Ren. ZnO nanobridges and nanonails. Nano Lett. 2003,3 (2),235-238.
    [93]D. Banerjee, J. Y. Lao, D. Z. Wang, J. Y. Huang, Z. F. Ren, D. Steeves, B. Kimball and M. Sennett. Large-quantity free-standing ZnO nanowires. Appl. Phys. Lett.2003,83 (10), 2061-2063.
    [94]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett.2001,78 (4),407-409.
    [95]E. C. Greyson, Y. Babayan and T. W. Odom. Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater.2004,16 (15),1348-1352.
    [96]H. Q. Yan, R. R. He, J. Pham and P. D. Yang. Morphogenesis of one-dimensional ZnO nano-and microcrystals. Adv. Mater.2003,15 (5),402-405.
    [97]C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee. Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater.2004, 14 (6),589-594.
    [98]C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz and S. T. Lee. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater.2003,15 (10),838-841.
    [99]K. A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson and W. Seifert. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005,5(4),761-764.
    [100]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally and P. D. Yang. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Edit.2003,42 (26),3031-3034.
    [101]K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004,14 (16),2575-2591.
    [102]S. Yamabi and H. Imai. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem.2002,12 (12),3773-3778.
    [103]R. A. McBride, J. M. Kelly and D. E. McCormack. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem.2003,13 (5), 1196-1201.
    [104]B. Q. Cao, W. P. Cai, G. T. Duan, Y. Li, Q. Zhao and D. P. Yu. A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology 2005,16(11),2567-2574.
    [105]T. Trindade, J. D. P. Dejesus and P. Obrien. Preparation of Zinc-Oxide and Zinc-Sulfide Powders by Controlled Precipitation from Aqueous-Solution. J. Mater. Chem.1994,4 (10), 1611-1617.
    [106]H. Zhang, D. R. Yang, X. Y. Ma and D. L. Que. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. J. Phys. Chem. B 2005,109 (36), 17055-17059.
    [107]Z. Wang, X. F. Qian, J. Yin and Z. K. Zhu. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir.2004,20 (8), 3441-3448.
    [108]L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater.2003,15 (5),464-466.
    [109]M. Yin, Y. Gu, I. L. Kuskovsky, T. Andelman, Y. Zhu, G. F. Neumark and S. O'Brien. Zinc oxide quantum rods. J. Am. Chem.Soc.2004,126 (20),6206-6207.
    [110]M. Yin and S. O'Brien. Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc.2003,125 (34),10180-10181.
    [111]M. Yin, C. K. Wu, Y. B. Lou, C. Burda, J. T. Koberstein, Y. M. Zhu and S. O'Brien. Copper oxide nanocrystals. J. Am. Chem. Soc.2005,127 (26),9506-9511.
    [112]B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. R. He and P. D. Yang. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Edit.2006,45 (3),420-423.
    [113]T. Andelman, Y. Y. Gong, M. Polking, M. Yin, I. Kuskovsky, G. Neumark and S. O'Brien. Morphological control and photoluminescence of zinc oxide nanocrystals. J. Phys. Chem. B 2005,109(30),14314-14318.
    [114]B. Panigrahy, M. Aslam and D. Bahadur. Aqueous Synthesis of Mn-and Co-Doped ZnO Nanorods.J. Phys. Chem. C 2010,114(27),11758-11763.
    [115]J. B. Cui and U. J. Gibson. Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires. J. Phys. Chem. B 2005,109 (46),22074-22077.
    [116]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. D. Yang. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett.2005,5 (7),1231-1236.
    [117]J. L. Birman. Polarization of Fluorescence in CdS and ZnS Single Crystals. Phys. Rev. Lett. 1959,2(4),157-159.
    [118]A. Lempicki. Polarization of Fluorescence in ZnS and CdS Single Crystals. Phys. Rev. Lett. 1959,2(4),155-157.
    [119]J. J. Hopfield. Fine Structure in the Optical Absorption Edge of Anisotropic Crystals. J. Phys. Chem. Solids 1960,15 (1-2),97-107.
    [120]D. G Thomas. The Exciton Spectrum of Zinc Oxide. J. Phys. Chem. Solids 1960,15 (1-2), 86-96.
    [121]Y. S. Park, C. W. Litton, T. C. Collins and D. C. Reynolds. Exciton Spectrum of ZnO. Phys. Rev.1966,143 (2),512-519.
    [122]B. Segall. Intrinsic Absorption Edge in 2-6 Semiconducting Compounds with Wurtzite Structure. Phys. Rev.1967,163 (3),769-778.
    [123]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G Cantwell and W. C. Harsch. Valence-band ordering in ZnO. Phys. Rev. B 1999,60 (4),2340-2344.
    [124]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause and H. O. Everitt. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 2004,70(19),195207.
    [125]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch and G. Cantwell. Neutral-donor-bound-exciton complexes in ZnO crystals (vol 57, pg 12151,1998). Phys. Rev. B 1998,58(19),13276-13276.
    [126]E. V. Lavrov, J. Weber, F. Borrnert, C. G. Van de Walle and R. Helbig. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 2002,66 (16), 165205.
    [127]E. V. Lavrov, J. Weber, F. Borrnert, C. G. Van de Walle and R. Helbig. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 2002,66 (16), 165205.
    [128]M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson and K. G. Lynn. Infrared spectroscopy of hydrogen in ZnO. Appl. Phys. Lett.2002,81 (20),3807-3809.
    [129]L. J. Wang and N. C. Giles. Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J. Appl. Phys.2003,94 (2), 973-978.
    [130]A. Janotti and C. G Van de Walle. Native point defects in ZnO. Phys. Rev. B 2007,76 (16), 165202.
    [131]K. A. Muller and J. Schneider. Conduction Electron Spin Resonance in Group Ii-Vi Semiconductors and Phosphors. Physics Letters 1963,4 (5),288-291.
    [132]N. Y. Garces, N. C. Giles, L. E. Halliburton, G Cantwell, D. B. Eason, D. C. Reynolds and D. C. Look. Production of nitrogen acceptors in ZnO by thermal annealing. Appl. Phys. Lett.2002, 80(8),1334-1336.
    [133]A. Janotti and C. G Van de Walle. Oxygen vacancies in ZnO. Appl. Phys. Lett.2005,87 (12), 122102.
    [134]F. Leiter, H. Alves, D. Pfisterer, N. G Romanov, D. M. Hofmann and B. K. Meyer. Oxygen vacancies in ZnO. Physica. B 2003,340,201-204.
    [135]S. Limpijumnong, S. B. Zhang, S. H. Wei and C. H. Park. Doping by large-size-mismatched impurities:The microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Phys. Rev. Lett.2004,92(15),155504.
    [136]S. Limpijumnong, X. N. Li, S. H. Wei and S. B. Zhang. Substitutional diatomic molecules NO, NC, CO, N2, and O2:Their vibrational frequencies and effects on p doping of ZnO. Appl. Phys. Lett.2005,86 (21),211910.
    [137]P. Erhart and K. Albe. First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide. Phys. Rev. B 2006,73 (11),115207.
    [138]R. Dingle. Luminescent Transitions Associated with Divalent Copper Impurities and Green Emission from Semiconducting Zinc Oxide. Phys. Rev. Lett.1969,23 (11),579-581.
    [139]L. S. Vlasenko and G. D. Watkins. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 2005,71(12),125210.
    [140]O. F. Schirmer and D. Zwingel. Yellow Luminescence of Zinc Oxide. Solid State Commun. 1970,8(19),1559-1563.
    [141]D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris and M. J. Callahan. Time-resolved photoluminescence lifetime measurements of the Gamma(5) and Gamma(6) free excitons in ZnO. J. Appl. Phys.2000,88 (4),2152-2153.
    [142]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause and H. O. Everitt. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 2004,70(19),195207.
    [143]D. DimovaMalinovska, M. SendovaVassileva, N. Tzenov and M. Kamenova. Preparation of thin porous silicon layers by stain etching. Thin Solid Films 1997,297 (1-2),9-12.
    [144]X. Li and P. W. Bohn. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett.2000,77 (16),2572-2574.
    [145]K. Tsujino and M. Matsumura. Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst. Electrochem. Solid St 2005,8 (12), C193-C195.
    [146]E. S. Kooij, K. Butter and J. J. Kelly. Silicon etching in HNO3/HF solution:Charge balance for the oxidation reaction. Electrochem. Solid St 1999,2 (4),178-180.
    [147]D. R. Turner. On the Mechanism of Chemically Etching Germanium and Silicon. J. Electrochem. Soc.1960,107 (3), C66-C66.
    [148]S. Cruz, A. Honig-dOrville and J. Muller. Fabrication and optimization of porous silicon substrates for diffusion membrane applications. J. Electrochem. Soc.2005,152 (6), C418-C424.
    [149]T. Hadjersi, N. Gabouze, E. S. Kooij, A. Zinine, A. Ababou, W. Chergui, H. Cheraga, S. Belhousse and A. Djeghri. Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon. Thin Solid Films 2004,459 (1-2),271-275.
    [150]K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu. Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Funct. Mater.2003,13 (2),127-132.
    [151]K. Tsujino and M. Matsumura. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv. Mater.2005,17 (8),1045-1047.
    [152]Y. Harada, X. L. Li, P. W. Bohn and R. G. Nuzzo. Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J. Am. Chem. Soc.2001,123 (36),8709-8717.
    [153]C. Chartier, S. Bastide and C. Levy-Clement. Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim. Acta 2008,53 (17),5509-5516.
    [154]S. Chattopadhyay, X. L. Li and P. W. Bohn. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys.2002,91 (9),6134-6140.
    [155]C. Y. Chen, C. S. Wu, C. J. Chou and T. J. Yen. Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature. Adv. Mater.2008,20 (20),3811-3815.
    [156]K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee and J. Zhu. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater.2006,16 (3),387-394.
    [157]K. Q. Peng, A. J. Lu, R. Q. Zhang and S. T. Lee. Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Adv. Funct. Mater.2008,18(19),3026-3035.
    [158]K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu and J. Zhu. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Edit.2005,44 (18),2737-2742.
    [159]X. H. Xia, C. M. A. Ashruf, P. J. French and J. J. Kelly. Galvanic cell formation in silicon/metal contacts:The effect on silicon surface morphology. Chem. Mater.2000,12 (6), 1671-1678.
    [160]C. L. Lee, K. Tsujino, Y. Kanda, S. Ikeda and M. Matsumura. Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. J. Mater. Chem.2008,18 (9), 1015-1020.
    [161]K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan and S. Lee. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem-eur. J.2006,12 (30),7942-7947.
    [162]K. Q. Peng, Z. P. Huang and J. Zhu. Fabrication of large-area silicon nanowire p-n junction diode arrays. Adv. Mater.2004,16(1),73-76.
    [163]K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater.2002,14(16),1164-1167.
    [164]K. Q. Peng and J. Zhu. Simultaneous gold deposition and formation of silicon nanowire arrays. J. Electroanal. Chem.2003,558,35-39.
    [165]K. Q. Peng and J. Zhu. Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim. Acta 2004,49 (16),2563-2568.
    [166]Z. P. Huang, Y. Wu, H. Fang, N. Deng, T. L. Ren and J. Zhu. Large-scale Si1-xGex quantum dot arrays fabricated by templated catalytic etching. Nanotechnology 2006,17 (5),1476-1480.
    [167]Z. P. Huang, T. Shimizu, S. Senz, Z. Zhang, X. X. Zhang, W. Lee, N. Geyer and U. Gosele. Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions. Nano Lett.2009,9 (7),2519-2525.
    [168]Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz and U. Gosele. Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett.2008,8 (9),3046-3051.
    [169]T. Hadjersi. Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H2O solutions. Appl. Surf. Sci.2007,253 (9),4156-4160.
    [170]M. Nahidi and K. W. Kolasinski. Effects of stain etchant composition on the photo luminescence and morphology of porous silicon. J. Electrochem. Soc.2006,153 (1), C19-C26.
    [171]K. S. Nahm, Y. H. Seo and H. J. Lee. Formation mechanism of stains during Si etching reaction in HF-oxidizing agent H2O solutions. J. Appl. Phys.1997,81 (5),2418-2424.
    [172]Q. W. Chen, X. J. Li and Y. H. Zhang. Microstructure and light emitting in porous silicon derived from hydrothermal etching. High Pressure Res.2001,20 (1-6),1-8.
    [173]H. A. Chen, H. Wang, X. H. Zhang, C. S. Lee and S. T. Lee. Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles. Nano Lett. 2010,10 (3),864-868.
    [174]Z. P. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer and U. Gosele. Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon. J. Phys. Chem. C 2010,114 (24),10683-10690.
    [175]M. A. Van Hove. Enhanced vibrations at surfaces with back-bonds nearly parallel to the surface. J. Phys. Chem. B 2004,108 (38),14265-14269.
    [176]Y. Q. Qu, X. Zhong, Y. J. Li, L. Liao, Y. Huang and X. F. Duan. Photocatalytic properties of porous silicon nanowires. J. Mater. Chem.2010,20 (18),3590-3594.
    [177]M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth and H. S. Leipner. High-resolution analytical electron microscopy of catalytically etched silicon nanowires. Appl. Phys. A-mater.2009,95 (2),325-327.
    [178]A. I. Hochbaum, D. Gargas, Y. J. Hwang and P. D. Yang. Single Crystalline Mesoporous Silicon Nanowires. Nano Lett.2009,9 (10),3550-3554.
    [179]P. T. K. Chin, C. D. M. Donega, S. S. Bavel, S. C. J. Meskers, N. A. J. M. Sommerdijk and R. A. J. Janssen. Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J. Am. Chem. Soc.2007,129 (48),14880-14886.
    [180]S. Kim, B. Fisher, H. J. Eisler and M. Bawendi. Type-11 quantum dots:CdTe/CdSe(core/shell) and CdSe/ZinTe(core/shell) heterostructures. J. Am. Chem. Soc.2003,125 (38),11466-11467.
    [181]C. H. Wang, C. W. Chen, C. M. Wei, Y. F. Chen, C. W. Lai, M. L. Ho and P. T. Chou. Resonant Energy Transfer between CdSe/ZnS Type I and CdSe/ZnTe Type Ⅱ Quantum Dots. J. Phys. Chem. C 2009,113 (35),15548-15552.
    [182]C. T. Cheng, C. Y. Chen, C. W. Lai, W. H. Liu, S. C. Pu, P. T. Chou, Y. H. Chou and H. T. Chiu. Syntheses and photophysical properties of type-Ⅱ CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J. Mater. Chem.2005,15 (33),3409-3414.
    [183]F. R. Fan, Y. Ding, D. Y. Liu, Z. Q. Tian and Z. L. Wang. Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal:ZnO Nanorods on Ag Nanocrystals. J. Am. Chem. Soc.2009,131 (34),12036-12037.
    [184]C. Pacholski, A. Kornowski and H. Weller. Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Edit.2004,43 (36),4774-4777.
    [185]S. E. Habas, P. D. Yang and T. Mokari. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc.2008,130 (11),3294-3295.
    [186]T. Mokari, E. Rothenberg, Ⅰ. Popov, R. Costi and U. Banin. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004,304 (5678),1787-1790.
    [187]T. Mokari, C. G. Sztrum, A. Salant, E. Rabani and U. Banin. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater.2005,4(11), 855-863.
    [188]N. Satoh, T. Nakashima and K. Yamamoto. Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. J. Am. Chem. Soc.2005,127 (37), 13030-13038.
    [189]T. Hirakawa and P. V. Kamat. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc.2005,127 (11),3928-3934.
    [190]A. Kay and M. Gratzel. Dye-sensitized core-shell nanocrystals:Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 2002,14 (7),2930-2935.
    [191]A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik and M. Chergui. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods. Appl. Phys. Lett.2007,90 (9),093104.
    [192]J. P. Falck, A. Levy, M. A. Kastner and R. J. Birgeneau. Charge-Transfer Spectrum and Its Temperature-Dependence in La2cuo4. Phys. Rev. Lett.1992,69 (7),1109-1112.
    [193]R. Passler. Temperature dependence of fundamental band gaps in group IV, III-V, and Ⅱ-Ⅵ materials via a two-oscillator model. J. Appl. Phys.2001,89 (11),6235-6240.
    [194]T. J. Liptay and R. J. Ram. Temperature dependence of the exciton transition in semiconductor quantum dots. Appl. Phys. Lett.2006,89 (22),223132.
    [195]A. Olkhovets, R. C. Hsu, A. Lipovskii and F. W. Wise. Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys. Rev. Lett.1998,81(16),3539-3542.
    [196]V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000,290 (5490),314-317.
    [197]V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000,287 (5455),1011-1013.
    [198]V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire and A. Piryatinski. Single-exciton optical gain in semiconductor nanocrystals. Nature 2007,447 (7143),441-446.
    [199]D. Oron, M. Kazes and U. Banin. Multiexcitons in type-Ⅱ colloidal semiconductor quantum dots. Phys. Rev. B 2007,75 (3),035330.
    [200]R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner and E. Lifshitz. Continuous-Wave Pumping of Multiexciton Bands in the Photoluminescence Spectrum of a Single CdTe-CdSe Core-Shell Colloidal Quantum Dot. Phys. Rev. Lett.2009,102 (19), 197401.
    [201]D. C. Reynolds, D. C. Look, B. Jogai and H. Morkoc. Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN. Solid State Commun.1997, 101 (9),643-646.
    [202]D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones and J. Jenny. Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO. Solid State Commun.1998,106 (10),701-704.
    [203]A. F. Kohan, G Ceder, D. Morgan and C. G Van de Walle. First-principles study of native point defects in ZnO. Phys. Rev. B 2000,61 (22),15019-15027.
    [204]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.1996, 79 (10),7983-7990.
    [205]K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. HampdenSmith and T. T. Kodas. Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. J. Lumin.1997,75 (1),11-16.
    [206]L. S. Vlasenko and G. D. Watkins. Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K. Phys. Rev. B 2005,72(3),115212.
    [207]T. Sekiguchi, N. Ohashi and Y. Terada. Effect of hydrogenation on ZnO luminescence. Japanese Journal of Applied Physics Part 2-Letters 1997,36 (3 A), L289-L291.
    [208]J. Zheng, Y. Yang, B. Yu, X. B. Song and X. G. Li. [0001] oriented aluminum nitride one-dimensional nanostructures:Synthesis, structure evolution, and electrical properties. ACS Nano 2008,2(1),134-142.
    [209]U. Cvelbar, Z. Q. Chen, M. K. Sunkara and M. Mozetic. Spontaneous Growth of Superstructure alpha-Fe2O3 Nanowire and Nanobelt Arrays in Reactive Oxygen Plasma. Small 2008,4(10),1610-1614.
    [210]C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng and L. D. Zhang. Zinc oxide nanostructures: Morphology derivation and evolution. J. Phys. Chem. B 2005,109 (42),19758-19765.
    [211]S. Li, X. Z. Zhang, L. H. Zhang and M. Gao. Twinning-induced kinking of Sb-doped ZnO nanowires. Nanotechnology 2010,21 (43),435602.
    [212]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater.2001,13 (2),113-116.
    [213]J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006,440 (7080),69-71.
    [214]L. Y. Cao, B. Garipcan, J. S. Atchison, C. Y. Ni, B. Nabet and J. E. Spanier. Instability and transport of metal catalyst in the growth of tapered silicon nanowires. Nano Lett.2006,6 (9), 1852-1857.
    [215]N. S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels and M. Zacharias. Reactive VLS and the Reversible Switching between VS and VLS Growth Modes for ZnO Nanowire Growth. J. Phys. Chem. C 2010,114 (23),10323-10329.
    [216]H. Fang, X. D. Li, S. Song, Y. Xu and J. Zhu. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 2008,19 (25),255703.
    [217]E. C. Garnett and P. D. Yang. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc.2008,130 (29),9224-9225.
    [218]Y. J. Hwang, A. Boukai and P. D. Yang. High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity. Nano Lett.2009,9 (1),410-415.
    [219]K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee and J. Zhu. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005,1 (11),1062-1067.
    [220]V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk and S. H. Christiansen. Silicon Nanowire-Based Solar Cells on Glass:Synthesis, Optical Properties, and Cell Parameters. Nano Lett.2009,9 (4),1549-1554.
    [221]A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. D. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008,451 (7175),163-165.
    [222]K. Q. Peng, J. S. Jie, W. J. Zhang and S. T. Lee. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett.2008,93 (3),033105.
    [223]B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang and X. L. Cheng. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv. Funct. Mater.2008,18 (16),2348-2355.
    [224]M. L. Zhang, C. Q. Yi, X. Fan, K. Q. Peng, M. W. Shao, N. B. Wong, M. S. Yang, R. Q. Zhang and S. T. Lee. A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay Appl. Phys. Lett.2008,92 (19),043116.
    [225]M. W. Cao, X. Y. Song, J. Zhai, J. B. Wang and Y. L. Wang. Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J. Phys. Chem. B 2006,110 (26), 13072-13075.
    [226]F. Shi, Y. Y. Song, H. Niu, X. H. Xia, Z. Q. Wang and X. Zhang. Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chem. Mater.2006,18 (5), 1365-1368.
    [227]Y. Xiu, L. Zhu, D. W. Hess and C. P. Wong. Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett.2007,7 (11),3388-3393.
    [228]Y. H. Seo, K. S. Nahm and K. B. Lee. Mechanistic Study of Silicon Etching in Hf-KBrO3-H2O Solution. J. Electrochem. Soc.1993,140 (5),1453-1458.
    [229]H. Noguchi, T. Kondo and K. Uosaki. Photoelectrochemical and photoluminescence (PL) properties of p-type porous silicon/electrolyte solution interface:Potential dependent PL spectra as a result of size dependent quenching. J. Phys. Chem. B 1997,101 (25),4978-4981.
    [230]C. W. Cheng, B. Yan, S. M. Wong, X. L. Li, W. W. Zhou, T. Yu, Z. X. Shen, H. Y. Yu and H. J. Fan. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. Acs Applied Materials & Interfaces 2010,2 (7),1824-1828.
    [231]I. S. Jeong, J. H. Kim and S. Im. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Appl. Phys. Lett.2003,83 (14),2946-2948.
    [232]R. Konenkamp, R. C. Word and C. Schlegel. Vertical nanowire light-emitting diode. Appl. Phys. Lett.2004,85 (24),6004-6006.
    [233]S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen, T. P. Chen, J. D. Ye, G. Q. Lo, D. L. Kwong and K. L. Teo. Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n,p)-Si heterostructured light-emitting diodes. Appl. Phys. Lett.2008,93 (1),013506.
    [234]C. F. Pan and J. Zhu. The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. J. Mater. Chem.2009,19 (7),869-884.
    [235]K. Sun, Y. Jing, N. Park, C. Li, Y. Bando and D. L. Wang. Solution Synthesis of Large-Scale, High-Sensitivity ZnO/Si Hierarchical Nanoheterostructure Photodetectors. J. Am. Chem. Soc. 2010,132(44),15465-15467.
    [236]B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi. (CdSe)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101 (46),9463-9475.
    [237]L. J. Lauhon, M. S. Gudiksen, C. L. Wang and C. M. Lieber. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002,420 (6911),57-61.
    [238]X. G. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc.1997,119 (30),7019-7029.
    [239]H. B. Fu and J. N. Yao. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc.2001,123 (7),1434-1439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700