纳米结构硅材料的制备及其在锂离子电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备具有更大容量,更高功率密度和更长循环寿命的下一代锂离子电池,关键是发展具有高性能的电极材料。硅材料由于具有10倍于碳的理论比容量、材料自身在地壳中储量丰富、无毒等优点,有望成为下一代锂离子电池理想的负极材料,因此也成为当前研究的热点。然而,Si材料在嵌锂、脱锂过程中存在严重的体积膨胀,如何解决其体积膨胀所造成的电池容量快速衰减等问题成为目前研究所面临的最大挑战。
     本论文以获得高性能的Si电极为目标,将湿化学方法制备的纳米结构SiO2作为前驱物和模板,制备出Si的纳米管和纳米多孔结构。。方面,采用静电纺丝技术制备出SiO2纳米管,通过镁热还原并结合后续的酸洗除杂制备了Si纳米管,研究了给液速率、外加电压、接受距离等工艺参数对静电纺丝过程的影响,证实了可以通过控制这些工艺参数实现对碳包覆Si纳米管的可控制备。
     另一方面,我们以SiO2纳米球作为前驱物和模板,利用镁热还原反应制备了多孔Si材料。与传统的单晶Si片腐蚀制备相比较,这种方法成本低廉,可实现多孔Si的可控制备。研究了所制备的多孔Si作为锂离子电池负极材料的电化学性能。实验发现,所制备的多孔Si材料的首次放电比容量为1245mAh/g,充电比容量为963mAh/g,首次库仑效率为77.3%,并且具有良好的循环稳定性。
Exploring electrode materials with high performance is critical for fabricating the next generation lithium ion battery with larger capacity, higher power density and longer cycle life. Silicon materials are expected to be the cathode electrode material of the next generation lithium ion battery and have become a research focus due to their high theoretical capacity which is10times than that of carbon, abundance in the earth's crust, non-toxic property, etc. However, there exists large problems with silicon materials about its volume expansion in lithium and delithiation process, how to solve the fast decay of the battery capacity caused by serious volume expansion is a big challenge in the current research.
     This thesis aim to obtain a high performance Si electrode. The wet chemical methods was used to synthesize nanostructured SiO2, which acted as precursor and the template in the fabrication of silicon nanotubes and nano-porous structure.
     On one hand, SiO2nanotubes was fabricated by the electrospinning method, then Si nanotubes was fabricated by Magnesium thermal reduction along with subsequent pickling impurity removing. The influence of the parameters such as the liquid rate, applied voltage, receiving distance on the electrospinning process was researched, and finally it was confirmed that carbon coated Si nanotube can be fabricated in a controlled way by adjusting the above parameters.
     On the other hand, using SiO2nanoparticles as precursor and template, porous silicon material was fabricated by magnesium thermal reduction. Compared with conventional fabrication based on corrosion of monocrystalline Si wafer, this method is inexpensive and can realize controlled fabrication of porous Si. By studying the electrochemical properties of the fabricated porous Si based lithium-ion battery cathode materials, it is found that the porous Si materials have an initial discharge capacity of1245mAh/g, a charging capacity of more than963mAh/g, an initial coulombic efficiency of77.3%, and a good cycling stability.
引文
[1]Martin G E. Fibriller product of electrostatically spun organic material. US.4043331, 1977-08-23.
    [2]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics.1995,35,151-60.
    [3]Taylor G. Disintegration of water drops in an electric field. Pro.Poy.Soc.London A, Mathematical and Phyisical Sciences.1964,280:383-397.
    [4]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinnimg. Materials Letters.2004,58:493-497.
    [5]Givens S R, Gardner K H, Rabolt J F, et al. High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules.2007,40:608-610.
    [6]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999,40:4585-4592.
    [7]Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer.2001,42:261-262.
    [8]Wang C, Hsu CH, Lin JH. Scaling laws in electrospinning of polystyrene solutions. Macromolecules.2006,39:7662-7672.
    [9]Kong C S, Lee T H, Lee K H, et al. Interference between the charged jets in electrospinning of polyvinyl alcohol. Journal of Macromolecular Science Part B-Physics.2009,48:77-91.
    [10]Munir M M, Suryamas A B, Iskandar F, et al. Scaling law on particle-to-fiber formation during electrospinning. Polymer.2009,50:4935-4943.
    [11]Li J, He A, Zheng J, et al. Gelatin and gelatin-hyaluronic acid nanofibrous membaanes produced by electrospinning of their aqueous solution. Biomacromolecules.2006,7: 2243-2247.
    [12]Tripatanasuwan S, Zhong Z X, Reneker D H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer.2007,48: 5742-5746.
    [13]Kennedy D. Breakthough of the year, Science.2001,294:2429-2429.
    [14]Appell D. Nanotechnology:wired for success. Nature.2002,419:553-555.
    [15]Min B, Lee S, Lim J, et al. Chitin and chitosan nnaofibers:electrospinning of chitin and deacetylation of chitin nanofibers. Polymer.2004,45:7137-7142.
    [16]Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membrances in neutral or weak basic aqueous solutions. Biomacromolecules.2006,7: 2710-2714.
    [17]Huang Z, Zhang Y, Ramakrishan S, et al. Electrospinning and mechanical characterization of gelation nanofibers. Polymer.2004,45:5361-5368.
    [18]Greinar A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers, Angewandte Chemie International Edition.2007,46:5670-5703.
    [19]Ohkawa K, Cha D, Kim H, et al. Electrospinning of chitosan. Macromolecular Rapid Communication.2004,25:1600-1605.
    [20]Jing HL, Fang DF, Hsiao BS, et al. Optimizaton and characterization of dextran membrances prepared by electrospinning. Biomacromolecules.2004,5:326-333.
    [21]Wang X F, Ding B, Sun M, et al. Nanofibours polyethlyleneimine membranes as sensitive coating for quartz crystal microbalance-based formaldehyde senesore. Sensors and Actuators B:Chemical.2010,144:11-17.
    [22]Li D, Xia Y N. Fabrication of titania nanofibers of nickel ferrite prepared by electrospinning. Nano Letters.2003,3:555-560.
    [23]Ding B, Kim H, Kim C, et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films.2008,516:2495-2501.
    [24]Barakat N A M, Khil M S, Sheikh F A, et al. Synthesis and optical properties of two cobalt oxides(CoO and Co3O4) nanofibers produced by electrospinning process. Journal of Physical Chemistry C.2008,112:12225-12233.
    [25]Lu B G, Guo X S, Bao Z, Li X D, Liu Y X, Zhu C Q, Wang Y Q and Xie E Q. Direct preparation of carbon nanotubes and nanobelts from polymer. Nanoscale.2011,3: 2145-2149.
    [26]Zhu C Q, Lu B A, Su Q, Xie E Q, Lan W. A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalys. Nanoscale.2012,4: 3060-3064.
    [27]Loscertales I G, Barrero A, Guerrero I, et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science.2002,295:1695-1698.
    [28]Li L, Frey M W, Green T B. Modification of air filter media with nylon-6 nanofibers. Journal of Engineered Fibers and Fabrics.2006,6:1-22.
    [29]Sony X F, Wang Z J, Liu Y B, et al. A highly sensitive ethanol senor based on mesoporous ZnO-SnO2 nanofibers. Nanotechnology.2009,20:0775501.
    [30]Jang L, Zhao Y, Zhai J. A lotus leaf like superhydrophoic surface:a porous microsphere/naofiber composite film prepared by electrohydrodynamica. Angewandte Chemie.2004,116:4438-4441.
    [31]Song M Y, Kin D Y, Inh K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology.2004,15:1861-1865.
    [32]Wang H, Lu X, Zhao Y, et al. Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning. Materials Letters.2006,60:2480-2484.
    [33]Shen X Q, Xiang J, Song F Z, et al. Characterization and magnetic properties of electrospun Col-xZnxFe204 nanofibers. Applied Physics A.2009,99:189-195.
    [34]Hou H, Reneker D. Carbon nanotubes on carbon nanofibers:a novel structure based on electrospun polymer nanofibers. Advanced Materials.2004,16:69-73.
    [35]Torres-giner S, Martinez-abad A, Ocio M J, et al. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. Journal of Food Science.2010,75:N69-N79.
    [36]Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect tran sistors [J]. Nature, 2003,424:654-657.
    [37]唐元洪.硅纳米线及硅纳米管[M].北京:化学工业出版社,2007.
    [38]Sha J, Niu J, Ma X Y, et al. Silicon nanotubes, Advanced Materials,2002,14(17):1219-1221.
    [39]Jeong S Y, Kim J Y, Yang H D, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy[J]. Advanced Materials,2003,15:1172-1176
    [40]Bozhi Tian, Xiaolin Zheng. Thomas J. Kempa, Ying Fang, Nanfang Yu, Guihua Yu, Jinlin Huang,Charles M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J].Nature,2007,449:885-889.
    [41]Stelzner T, Pietsch M, Andf'a G, et al. Silicon nanowire-based solar cells[J]. Nanotechnology, 2008,19:295203.
    [42]Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Applied Physics Letters,2007,91:233117.
    [43]Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J].Nature Nanotechnology,2008,3:31-35.
    [44]Park M H, Kim M G, Joo J, et al. Silicon Nanotube Battery Anodes[J]. Nano Letters,2009,9 (11):3844-3847.
    [45]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithiumbatteries[J]. Nature,2001,414:359-367.
    [46]OBROVAC M N, CHRISTENSEN L. Structural changes in silicon anodes during lithium insertion/extraction [J].Electrochem Solid-State Lett,2004,7:A 93-A 97.
    [1]X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,2nd ed., edited by P. Klug and L. E. Alexander (Wiley, New York,1974).
    [2]拉曼布里渊散射(第二版),程光煦著(北京,科学出版社,2008)
    [3]分子振动红外和拉曼振动光谱理论,小威尔逊(Wilson, E. B.)等著,胡皆汉译(北京,科学出版社,1985).
    [4]Characterization of Nanophase Materials, Edited by Zhonglin Wang (Wiley-VCH Verlag GmbH,2000).
    [1]Sha J, Niu J, Ma X Y, et al. Silicon nanotubes, Advanced Materials,2002,14(17):1219-1221.
    [2]Jeong S Y, Kim J Y, Yang H D, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy [J]. Advanced Materials,2003,15:1172-1176
    [3]Sun Z, Zussman E, Yarin A L, Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Advanced Materials,2003,15 (22):1929-1932.
    [4]Yu H J, Fridrikh S V, Rutledge G C, Production of submicrometer diameter fibers by two-fluid electrospiiming[J]. Advanced Materials,2004,16(17):1562-1566.
    [5]Li D, Xia Y, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Letters,2004,4 (5):933-938.
    [6]Zussman E, Yarin A L, Bazilevsky A V, et al. Electrospun polyacrylonitrile/poly (methyl methacrylate)-derived turbostratic carbon micro-/nanotubes[J]. Advanced Materials,2006,18 (3):348-353.
    [7]Dror Y, Salalha W, Avrahami R, et al. One-step production of polymeric microtubes by co-electrospinning[J]. Small,2007,3 (6):1064-1073.
    [8]Dayal P, Kyu T, Porous fiber formation in polymer-solvent system undergoing solvent evaporation[J] Journal of Applied Physics,2006,100 (4), art. no.043512. (043512-1-043512-6.)
    [9]Ye Cai, Shawn M.Allan,* and Kenneth H. Sandhage**, Three-Dimensional Magnesia-Based Nanocrystal Assemblies Via Low-Temperature Magnesiothermic Reaction of Diatom Microshells. J. Am. Ceram. Soc.,88 [7] 2005-2010 (2005)
    [10]J. Doshi, D. H. Reneker, "Electrospinning process and applications of electrospun fibers", J. Electrostatics,1995,35(2-3):151-160
    [11]Min B, Lee S, Lim J, et al. Chitin and chitosan nnaofibers:electrospinning of chitin and deacetylation of chitin nanofibers, Polymer,2004,45,7137-7142.
    [12]Huang Z, Zhang Y, Ramakrishan S, et al. Electrospinning and mechanical characterization of gelation nanofibers, Polymer,2004,45,5361-5368.
    [13]Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membrances in neutral or weak basic aqueous solutions, Biomacromolecules,2006,7, 2710-2714.
    [1]J. Rong, C. Masarapu, J. Ni, Z. Zhang, B. Wei, ACS Nano 4 (2010) 4683-4690.
    [2]A. Andersson, M. Herstedt, A. Bishop, K. Edstrom, Electrochimica Acta 47 (2002) 1885-1898.
    [3]W. Wang, P. Kumta, ACS Nano 4 (2010) 2233-2241.
    [4]H. Kim, B. Han, J. Choo, J. Cho, Angewandte Chemie 120 (2008) 10305-10308.
    [5]M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F. Petrat, Chemical communications 2005 (2005) 1566-1568.
    [6]M. Park, M. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Letters 9 (2009) 3844-3847.
    [7]L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano Letters 9 (2009) 491-495.
    [8]UlllirA. Eleetrolytie shaping of germanium and silieon.Syst.Teeh.,1956,35:333
    [9]Lim P, Brock J R, Trachtenberg I. Laser-induced etching of silicon in hydrofluoric acid [J].Appl. Phys. Lett.,1992,60 (4):486-488.
    [10]Qianwang Chen, Jingshen Zhu, X.G. Li. et al. Photoluminescence in porous silicon obtained by hydrothermal etching [J]. Physics Letters A,1996,220 (4-5):293-296.
    [11]徐少辉,熊机洪等。电化学脉冲腐蚀法制备窄峰发射的多孔硅微腔[J].半导体学报,2002,23(3):272-275.
    [12]Liang S H C, Gay I D. A 13C solsd-state NMR、study of the chemjsorption and decomposition of ethanol on MgO. Journal of Catalysis,1986,101(2):293-300
    [13]Yang P D, Lieber C M, Nanorod-superconductor composites:A pathway to materials with high current densities. Science,1996,273(5283):1836-1480
    [14]Xu B Q, Wei J M, Wang H Y, Nano-MgO:novel preparation and application as support of Ni catalyst for CO2 reforming of methane, Cataiystis,2001,68(1-3):217-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700