硅纳米晶体的表面改性及其在太阳电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与体硅材料相比,硅纳米晶体具有量子限域效应和多激子等效应,因而具备独特的电、光学特性,给太阳电池的发展注入了新的活力。硅纳米晶体能够以多种方式应用于太阳电池中:其一,利用硅纳米晶体制作新型太阳电池,比如多激子太阳电池、中间态太阳电池和热载流子太阳电池等;其二,将硅纳米晶体与传统太阳电池相结合,通过减反射和下转换等作用提高太阳电池效率;此外,硅纳米晶体也可与有机物或无机物相结合,制备具有复合结构的太阳电池。但硅纳米晶体的稳定性不好,易被氧化,难均匀分散在常规溶剂中,这两个因素制约了硅纳米晶体的广泛应用。本文的工作,集中解决如何通过表面改性抑制硅纳米晶体的氧化,改善它在溶剂中的分散性,最终,将经过表面改性的硅纳米晶体用于提高传统晶体硅太阳电池的效率。
     首先,利用等离子体硅纳米晶体合成系统制备硅纳米晶体。通过改变气体流量、等离子体气压等参数调节硅纳米晶体的尺寸,最终实现硅纳米晶体的光致发光峰位可调。
     随后,利用苯乙烯、十二烯和十八烯对硅纳米晶体进行表面改性。我们发现碳链越短,改性越容易进行,有机基团在硅纳米晶体表面覆盖率越高,改性后的硅纳米晶体的荧光量子效率越高。当改性时间过长,链接在硅纳米晶体表面的有机基团因空间位阻发生结构重排,在硅纳米晶体表面引入非辐射复合中心,导致硅纳米晶体的量子效率下降。氢化硅烷化反应只可抑制,但不能完全避免硅纳米晶体被氧化。将改性后的硅纳米晶体存放在空气中,硅纳米晶体仍会被缓慢氧化;氧化后硅纳米晶体的发光峰位发生蓝移,而荧光量子效率会受到悬挂键被钝化和取代基团之间相互作用导致结构畸变这两个因素的影响,表现出先升高后降低的变化趋势。
     最后,分别利用苯乙烯和十八烯改性的硅纳米晶体配制硅墨水。通过喷墨打印的方式,将硅墨水有效沉积在太阳电池表面,形成具有多孔结构的硅纳米晶体薄膜。印刷硅墨水后,太阳电池在短波段(300-400 nm)和长波段(640-1100nm)的反射率降低(光吸收增强)。而太阳电池的外量子效率则受到硅纳米晶体薄膜的减反射、硅纳米晶体对短波长光的吸收和下转换等因素的影响,在短波和长波段有不同程度的提高。对于用苯乙烯改性的硅纳米晶体配制的硅墨水,太阳电池效率的相对提高值最高达到1.54%(电池效率从17.10%上升到17.36%)。对于用十八烯改性的硅纳米晶体配制的硅墨水,太阳电池效率的相对提高值最高达2.02%(电池效率从17.19%上升到17.53%)。
Silicon nanocrystals (Si NCs) exhibit fascinating electronic and optical properties. Si NCs are now intensively studied for photovoltaic application. They can be used to fabricate novel solar cell (multiple-exciton solar cells, intermediate-band solar cells, and hot-carrier solar cells), or incorporated in conventional solar cells. It has been realized that during the processing of Si NCs surface modification must be carried out to render the dispersibility of Si NCs in desired media and retard the oxidation of Si NCs.
     Freestanding Si NCs with different sizes are synthesized in a plasma system. Efficient photoluminescence (PL) from Si NCs in the visible and near-infrared spectral regions has been obtained.
     The surface of as-synthesized hydrogen-passivated Si NCs is modified via a hydrosilylation scheme with styrene. dodecene and octadecene. It is found that the peak position of the PL from hydrosilylated Si NCs is hardly affected by the modifier or the hydrosilylation time, but the modification time. However, the quantum yield (QY) of the PL from hydosilylated Si NCs decreases with the increase of hydrosilylation time for all the samples with different modifier. During the storage of hydrosilylated Si NCs in air the PL from hydrosilylated Si NCs blueshifts, while the PL QY for hydosilylated Si NCs initially increases and then decreases. The underlying mechanisms for all the optical behavior of hydrosilylated Si NCs are discussed.
     Hydosilylated Si NCs are dispersed in solvents to form Si ink. Si-NC films are obtained at the surface of Si solar cells by means of ink-jet printing. The reflectance and the external quantum efficiency (EQE) of Si solar cell have been measured. Enhancement of solar cell efficiency up to 2.02% is observed. Both the antireflection of Si-NC films and the downshifting of Si NCs contribute to the efficiency enhancement.
引文
[1]A.G. Cullis, L.T. Canham, and P.D.J. Calcott. The structural and luminescence properties of porous silicon. Journal of Applied Physics,1997,82(3):909-965.
    [2]J. Heitmann, F. Muller, M. Zacharias, and U. Gosele. Silicon nanocrystals:Size matters. Advanced Materials,2005,17(7):795-803.
    [3]S. Takeoka, M. Fujii, and S. Hayashi. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Physical Review B,2000. 62(24):16820-16825.
    [4]D. Kovalev and M. Fujii. Silicon nanocrystals:Photosensitizers for oxygen molecules. Advanced Materials,2005,17(21):2531-2544.
    [5]S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto. Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Physical Review B, 1998,58(12):7921-7925.
    [6]P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, and D. Brumhead. Identification of radiative transitions in highly porous silicon. Journal of Physics-Condensed Matter,1993. 5(7):L91-L98.
    [7]X.D. Pi, R.W. Liptak, S.A. Campbell, and U. Kortshagen. In-flight dry etching of plasma-synthesized silicon nanocrystals. Applied Physics Letters,2007,91(8).
    [8]J.A. Kelly and J.G.C. Veinot. An Investigation into Near-UV Hydrosilylation of Freestanding Silicon Nanocrystals. Acs Nano,2010,4(8):4645-4656.
    [9]J.G.C. Veinot. Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chemical Communications,2006,40):4160-4168.
    [10]A. Gupta, M.T. Swihart, and H. Wiggers. Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis:Exploring the Photoluminescence Behavior Across the Visible Spectrum. Advanced Functional Materials,2009,19(5): 696-703.
    [11]D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters,2006,88(23).
    [12]L. Mangolini and U. Kortshagen. Plasma-assisted synthesis of silicon nanocrystal inks. Advanced Materials,2007,19(18):2513.
    [13]K. Imakita, M. Fujii, and S. Hayashi. Spectrally resolved energy transfer from excitons in Si nanocrystals to Er ions. Physical Review B,2005,71(19).
    [14]X.B. Chen, X.D. Pi, and D.R. Yang. Critical Role of Dopant Location for P-Doped Si Nanocrystals. Journal of Physical Chemistry C,2011,115(3):661-666.
    [15]X.D. Pi, X.B. Chen, and D.R. Yang. First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron. Journal of Physical Chemistry C,2011,115(20):9838-9843.
    [16]S. Ossicini, E. Degoli, F. lori, E. Luppi, R. Magri, G. Cantele, F. Trani, and D. Ninno. Simultaneously B-and P-doped silicon nanoclusters:Formation energies and electronic properties. Applied Physics Letters,2005,87(17).
    [17]G. Cantele, E. Degoli, E. Luppi, R. Magri. D. Ninno, G. ladonisi, and S. Ossicini. First-principles study of n-and p-doped silicon nanoclusters. Physical Review B,2005, 72(11).
    [18]L. Pavesi and R. Turan, Silicon Nanocrystals.2010, Weinheim:WILEY-VCH Verlag Gmbh & Co. KGaA.
    [19]S.K. Kim, C.H. Cho, B.H. Kim, S.J. Park, and J.W. Lee. Electrical and optical characteristics of silicon nanocrystal solar cells. Applied Physics Letters,2009,95(14).
    [20]M. Asheghi, M.N. Touzelbaev, K.E. Goodson, Y.K. Leung, and S.S. Wong. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. Journal of Heat Transfer-Transactions of the Asme,1998,120(1):30-36.
    [21]G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. ArensFischer. Temperature-dependent thermal conductivity of porous silicon. Journal of Physics D-Applied Physics,1997,30(21): 2911-2916.
    [22]L.T. Canham. Silicon quantum wire arrey fabrication by electrochemical and chemical and wafers. Applied Physics Letters,1990,57(10):1046-1048.
    [23]S. Guha, M.D. Pace, D.N. Dunn, and I.L. Singer. Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing. Applied Physics Letters, 1997,70(10):1207-1209.
    [24]Q. Zhang, S.C. Bayliss, and D.A. Hutt. Blue photoluminescence and local-structure of Si nanostructure embedded in SiO2 materials. Applied Physics Letters,1995,66(15): 1977-1979.
    [25]T. Orii, M. Hirasawa, and T. Seto. Tunable, narrow-band light emission from size-selected Si nanoparticles produced by pulsed-laser ablation. Applied Physics Letters,2003,83(16): 3395-3397.
    [26]F. Iacona, G. Franzo, and C. Spinella. Correlation between luminescence and structural properties of Si nanocrystals. Journal of Applied Physics,2000,87(3):1295-1303.
    [27]Y.Q. Wang, G.L. Kong, W.D. Chen, H.W. Diao, C.Y. Chen, S.B. Zhang, and X.B. Liao. Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix. Applied Physics Letters,2002,81 (22):4174-4176.
    [28]F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli. and F. Priolo. Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. Journal of Applied Physics,2004,95(7):3723-3732.
    [29]L.A. Nesbit. Annealing characteristics of Si-rich SiO2 films. Applied Physics Letters,1985. 46(1):38-40.
    [30]N.M. Park, C.J. Choi, T.Y. Seong, and S.J. Park. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Physical Review Letters,2001.86(7): 1355-1357.
    [31]D.Y. Song, E.C. Cho, G. Conibeer, C. Flynn, Y.D. Huang, and M.A. Green. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Solar Energy Materials and Solar Cells,2008, 92(4):474-481.
    [32]K.A. Pettigrew, Q. Liu, P.P. Power, and S.M. Kauzlarich. Solution synthesis of alkyl-and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chemistry of Materials, 2003,15(21):4005-4011.
    [33]X.D. Pi, R.W. Liptak, J.D. Nowak, N. Pwells, C.B. Carter, S.A. Campbell, and U. Kortshagen. Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach. Nanotechnology,2008,19(24).
    [34]Y. Watanabe, M. Shiratani, T. Fukuzawa, H. Kawasaki, Y. Ueda, S. Singh, and H. Ohkura. Contribution of short lifetime radicals to the growth of particles in SiH4 high frequency discharges and the effects of particles on deposited films. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1996,14(3):995-1001.
    [35]A.A. Fridman, L. Boufendi, T. Hbid, B.V. Potapkin, and A. Bouchoule. Dusty plasma formation:Physics and critical phenomena. Theoretical approach. Journal of Applied Physics,1996,79(3):1303-1314.
    [36]B.J. Hinds, T. Yamanaka, and S. Oda. Emission lifetime of polarizable charge stored in nano-crystalline Si based single-electron memory. Journal of Applied Physics,2001,90(12): 6402-6408.
    [37]C.L. Cheng, C.W. Liu, J.T. Jeng, B.T. Dai, and Y.H. Lee. Fabrication and Characterizations of Black Hybrid Silicon Nanomaterials as Light-Trapping Textures for Silicon Solar Cells. Journal of the Electrochemical Society,2009,156(5):H356-H360.
    [38]T. Ifuku, M. Otobe, A. Itoh, and S. Oda. Fabrication of nanocrystalline silicon with small spread of particle size by pulsed gas plasma. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1997,36(6B):4031-4034.
    [39]K. Nishiguchi, X. Zhao, and S. Oda. Nanocrystalline silicon electron emitter with a high efficiency enhanced by a planarization technique. Journal of Applied Physics,2002,92(5): 2748-2757.
    [40]M. Otobe, T. Kanai, T. Ifuku, H. Yajima, and S. Oda. Nanocrystalline silicon formation in a SiH4 plasma cell. Journal of Non-Crystalline Solids,1996,198(875-878.
    [41]L. Boufendi, A. Bouchoule, R.K. Porteous, J.P. Blondeau, A. Plain, and C. Laure. Paticle interactions in dusty plasmas. Journal of Applied Physics,1993,73(5):2160-2162.
    [42]F. Delachat, M. Carrada, G. Ferblantier, J.J. Grob. and A. Slaoui. Properties of silicon nanoparticles embedded in SiNx deposited by microwave-PECVD. Nanotechnology,2009. 20(41).
    [43]R.W. Liptak, B. Devetter, J.H. Thomas, U. Kortshagen, and S.A. Campbell. SF6 plasma etching of silicon nanocrystals. Nanotechnology.2009,20(3).
    [44]C.R. Gorla, S. Liang, G.S. Tompa, W.E. Mayo, and Y. Lu. Silicon and germanium nanoparticle formation in an inductively coupled plasma reactor. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1997,15(3):860-864.
    [45]J. Zou, P. Sanelle, K.A. Pettigrew, and S.M. Kauzlarich. Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4. Journal of Cluster Science,2006,17(4): 565-578.
    [46]Y. Ikeda, T. Ito, Y.L. Li, M. Yamazaki, Y. Hasegawa, and H. Shirai. Synthesis of novel p-type nanocrystalline Si prepared from SiH2Cl2 and SiCl4 for window layer of thin film Si solar cell. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2004,43(9A):5960-5966.
    [47]M. Hirasawa, T. Orii, and T. Seto. Size-dependent crystallization of Si nanoparticles. Applied Physics Letters,2006,88(9).
    [48]A. Bapat, U. Kortshagen, S.A. Campbell, C.R. Perrey, and C.B. Carter, Synthesis of crystalline silicon nanoparticles in low-pressure inductive plasmas, in Quantum Confined Semiconductor Nanostructures.2003. p.301-306.
    [49]A. Bapat, C.R. Perrey, S.A. Campbell, C.B. Carter, and U. Kortshagen. Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma. Journal of Applied Physics,2003,94(3):1969-1974.
    [50]I.B. Bernstein and I.N. Rabinowitz.Theory of electrostatic probes in a low-density plasma. Physics of Fluids,1959,2(2):112-121.
    [51]A. Bouchoule and L. Boufendi. Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Science & Technology,1993,2(3):204-213.
    [52]R. Gresback, Z. Holman, and U. Kortshagen. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals. Applied Physics Letters,2007,91(9).
    [53]Z. Shen, T. Kim, U. Kortshagen, P.H. McMurry, and S.A. Campbell. Formation of highly uniform silicon nanoparticles in high density silane plasmas. Journal of Applied Physics, 2003,94(4):2277-2283.
    [54]M. Ehbrecht and F. Huisken. Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. Physical Review B,1999,59(4):2975-2985.
    [55]Z.F. Li and E. Ruckenstein. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Letters,2004, 4(8):1463-1467.
    [56]S. T. Nanostructured materials for solar energy conversion. Elsevier,2006,131-192.
    [57]沈文忠,谢卫强.硅纳米线太阳电池研究.新材料产业,2009,9:61-63.
    [58]何宇亮,丁建宁,彭英才,高晓妮.对硅薄膜型太阳电池的一些思考.物理,2008,37(12):862-869.
    [59]R.T. Ross and A.J. Nozik. Efficiency of hot-carrier solar-energy solar-energy converters. Journal of Applied Physics,1982,53(5):3813-3818.
    [60]R.D. Schaller and V.I. Klimov. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters,2004,92(18).
    [61]A. Luque and A. Marti. The Intermediate Band Solar Cell:Progress Toward the Realization of an Attractive Concept. Advanced Materials.2010,22(2):160-174.
    [62]M.C. Beard, K.P. Knutsen, P.R. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, and A.J. Nozik. Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters, 2007,7(8):2506-2512.
    [63]A.J. Nozik. Quantum dot solar cells. Physica E-Low-Dimensional Systems & Nanostructures,2002,14(1-2):115-120.
    [64]G.J. Conibeer, C.W. Jiang, D. Konig, S. Shrestha, T. Walsh, and M.A. Green. Selective energy contacts for hot carrier solar cells. Thin Solid Films,2008,516(20):6968-6973.
    [65]D. Timmerman, I. Izeddin, P. Stallinga, I.N. Yassievich, and T. Gregorkiewicz. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics,2008,2(2):105-109.
    [66]M.A. Green, Third generation concepts for photovoltaics. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion,2003.50-54.
    [67]沈文忠.面向下一代光伏产业的硅太阳电池研究新进展.自然杂志,2010,32(3):135-142.
    [68]赵杰,曾一平.新型高效太阳能电池研究进展.物理,2011,40(4):233-240.
    [69]C.Y. Liu and U.R. Kortshagen. A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals. Nanoscale Research Letters,2010,5(8): 1253-1256.
    [70]I. Perez-Wurfl, X.J. Hao, A. Gentle, D.H. Kim, G. Conibeer, and M.A. Green. Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications. Applied Physics Letters,2009,95(15).
    [71]C.Y. Liu, Z.C. Holman, and U.R. Kortshagen. Hybrid Solar Cells from P3HT and Silicon Nanocrystals. Nano Letters,2009,9(1):449-452.
    [72]V. Svrcek, D. Mariotti, Y. Shibata, and M. Kondo. A hybrid heterojunction based on fullerenes and surfactant-free, self-assembled, closely packed silicon nanocrystals. Journal of Physics D-Applied Physics,2010,43(41).
    [73]V. Svrcek, S. Cook, S. Kazaoui, and M. Kondo. Silicon Nanocrystals and Semiconducting Single-Walled Carbon Nanotubes Applied to Photovoltaic Cells. Journal of Physical Chemistry Letters,2011,2(14):1646-1650.
    [74]孔凡太,戴松元.染料敏化太阳电池研究进展.化学进展,2006,18(11):1409-1429.
    [75]Y. Kim, C.H. Kim, Y. Lee, and K.J. Kim. Enhanced Performance of Dye-Sensitized TiO2 Solar Cells Incorporating COOH-Functionalized Si Nanoparticles. Chemistry of Materials, 2010,22(1):207-211.
    [76]R. Chaoui, B. Mahmoudi, and Y.S. Ahmed. Porous silicon antireflection layer for solar cells using metal-assisted chemical etching. Physica Status Solidi a-Applications and Materials Science.2008,205(7):1724-1728.
    [77]S. Strehlke, S. Bastide, J. Guillet. and C. Levy-Clement. Design of porous silicon antireflection coatings for silicon solar cells. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2000,69(9)81-86.
    [78]X. Pi, Q. Li, D. Li, and D. Yang. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Solar Energy Materials and Solar Cells,2011.95(10):2941-2945.
    [79]Z. Yuan, G. Pucker, A. Marconi. F. Sgrignuoli. A. Anopchenko, Y. Jestin. L. Ferrario. P. Bellutti. and L. Pavesi. Silicon nanocrystals as a photoluminescence down shifter for solar cells. Solar Energy Materials and Solar Cells,2011,95(4):1224-1227.
    [80]W. van Sark, A. Meijerink, R.E.I. Schropp, J.A.M. van Roosmalen, and E.H. Lysen. Enhancing solar cell efficiency by using spectral converters. Solar Energy Materials and Solar Cells,2005,87(1-4):395-409.
    [81]M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, and M.H. Nayfeh. Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Applied Physics Letters,2007,91(6).
    [82]B.S. Richards. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells,2006,90(9):1189-1207.
    [83]A. Shalav, B.S. Richards, and M.A. Green. Luminescent layers for enhanced silicon solar cell performance:Up-conversion. Solar Energy Materials and Solar Cells.2007,91(9): 829-842.
    [84]E. Klampaftis, D. Ross, K.R. McIntosh, and B.S. Richards. Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum:A review. Solar Energy Materials and Solar Cells,2009,93(8):1182-1194.
    [85]V. Svrcek. A. Slaoui, and J.C. Muller. Silicon nanocrystals as light converter for solar cells. Thin Solid Films,2004,451(384-388.
    [86]C. Tablero. Analysis of the electronic properties of intermediate band materials as a function of impurity concentration. Physical Review B.2005,72(3).
    [87]A. Marti, E. Antolin, C.R. Stanley, C.D. Farmer, N. Lopez. P. Diaz, E. Canovas, P.G. Linares, and A. Luque. Production of photocurrent due to intermediate-to-conduction-band transitions:A demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters,2006,97(24).
    [88]A. Luque and A. Marti. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters,1997,78(26):5014-5017.
    [89]P. Palacios. K. Sanchez, J.C. Conesa, and P. Wahnon. First principles calculation of isolated intermediate bands formation in a transition metal-doped chalcopyrite-type semiconductor. Physica Status Solidi a-Applications and Materials Science,2006,203(6):1395-1401.
    [90]C. Tablero. Electronic and magnetic properties of ZnS doped with Cr. Physical Review B. 2006,74(19).
    [91]K.M. Yu, W. Walukiewicz. J.W. Ager. D. Bour, R. Farshchi, O.D. Dubon, S.X. Li, I.D. Sharp, and E.E. Haller. Multiband GaNAsP quaternary alloys. Applied Physics Letters. 2006,88(9).
    [92]M.A. Green. Third generation concepts for photovoltaics. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C.2003.50-54.
    [93]Y. Takeda and T. Motohiro. Highly efficient solar cells using hot carriers generated by two-step excitation. Solar Energy Materials and Solar Cells,2011.95(9):2638-2644.
    [94]P. Aliberti, Y. Feng, S.K. Shrestha, M.A. Green, G. Conibeer, L.W. Tu, P.H. Tseng, and R. Clady. Effects of non-ideal energy selective contacts and experimental carrier cooling rate on the performance of an indium nitride based hot carrier solar cell. Applied Physics Letters. 2011.99(22).
    [95]K.A. Littau, M.A. Dugan, S. Chen, and M.D. Fayer. Dynamics in a low-temperature glass fast generation and detection of optical holes. Journal of Chemical Physics,1992,96(5): 3484-3494.
    [96]B. Giesen, H. Wiggers, A. Kowalik, and P. Roth. Formation of Si-nanoparticles in a microwave reactor:Comparison between experiments and modelling. Journal of Nanoparticle Research,2005,7(1):29-41.
    [97]M. Liu, G.H. Lu, and J.H. Chen. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal carbon nanotube hybrid structures. Nanotechnology,2008, 19(26).
    [98]M.R. Scriba, D.T. Britton, C. Arendse, M.J. van Staden, and M. Harting. Composition and crystallinity of silicon nanoparticles synthesised by hot wire thermal catalytic pyrolysis at different pressures. Thin Solid Films,2009,517(12):3484-3487.
    [99]J.E. Allen, B.M. Annaratone, and U. de Angelis. On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma. Journal of Plasma Physics,2000, 63:299-309.
    [100]L. Mangolini and U. Kortshagen. Selective nanoparticle heating:Another form of nonequilibrium in dusty plasmas. Physical Review E,2009,79(2).
    [101]X. Chen. X. Pi. and D. Yang. Bonding of Oxygen at the Oxide/Nanocrystal Interface of Oxidized Silicon Nanocrystals:An Ab Initio Study. Journal of Physical Chemistry C,2010, 114(19):8774-8781.
    [102]D.J. Norris, A.L. Efros, and S.C. Erwin. Doped nanocrystals. Science,2008,319(5871): 1776-1779.
    [103]W.A. Tisdale, K.J. Williams, B.A. Timp. D.J. Norris, E.S. Aydil, and X.Y. Zhu. Hot-Electron Transfer from Semiconductor Nanocrystals. Science,2010,328(5985): 1543-1547.
    [104]V.I. Klimov. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals:Implications for lasing and solar energy conversion. Journal of Physical Chemistry B,2006,110(34):16827-16845.
    [105]U. Kortshagen. Nonthermal plasma synthesis of semiconductor nanocrystals. Journal of Physics D-Applied Physics,2009,42(11).
    [106]M. Saadoun, H. Ezzaouia, B. Bessais, M.F. Boujmil, and R. Bennaceur. Formation of porous silicon for large-area silicon solar cells:A new method. Solar Energy Materials and Solar Cells,1999,59(4):377-385.
    [107]L. Stalmans, J. Poortmans, H. Bender, M. Caymax, K. Said, E. Vazsonyi, J. Nijs, and R. Mertens. Porous silicon in crystalline silicon solar cells:A review and the effect on the internal quantum efficiency. Progress in Photovoltaics,1998,6(4):233-246.
    [108]A. Prasad, S. Balakrishnan, S.K. Jain, and G.C. Jain. Porous silicon-oxide antireflection coaing for solar-cells. Journal of the Electrochemical Society.1982,129(3):596-599.
    [109]D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Kunzner, and F. Koch. Optical absorption cross sections of Si nanocrystals. Physical Review B,2000,61(7):4485-4487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700