基于一维纳米结构的电化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作主要包括基于一维纳米结构的化学与生物传感器的设计与研究,具体工作包括以下几个方面:
     第一,基于束状硅纳米线的谷胱甘肽电化学传感器的研究。利用去除氧化层的硅纳米线表面对金属离子的还原性,将三价金离子还原在硅纳米线表面,在硅纳米线表面形成稳定均匀的金纳米颗粒,并且利用金纳米颗粒易于与巯基反应的特点,将氨基为末端的有机小分子巯基乙胺修饰在金纳米颗粒表面。修饰后的硅纳米线由于其独特的成束性、较大的比表面积、金颗粒的修饰对硅纳米线传导性增强的特点,与化学修饰后所具有的氨基末端与三肽生物分子谷胱甘肽末端的羧基的相互作用,被用作检测谷胱甘肽的直接电化学传感器。实验结果表明,基于硅纳米线的谷胱甘肽传感器具有低浓度线性响应(0.33-2.97μM)、灵敏度高(48.5 mA.mmol-1)、以及检测底限浓度较低(0.33μM,measured)的优点。
     第二,硅纳米线在溶液中的分散与葡萄糖电化学传感器的研究。分别以磷酸缓冲溶液、乙醇溶液与水溶性全氟取代聚合物Nafion溶液作为溶剂,研究了硅纳米线在溶液中的分散。实验结果表明,去除掉氧化层的硅纳米线与金纳米颗粒修饰的硅纳米线在Nafion溶液中可以形成稳定均匀的分散液,在其它溶剂中难以分散;而未经表面处理的硅纳米线在几种溶液中均难以形成分散液。金纳米颗粒修饰的硅纳米线分散液被用于酶电极的修饰,制备了葡萄糖电化学传感器,电化学实验结果表明,硅纳米线的修饰对葡萄糖的传感具有明显的增强作用。根据实验结果,我们提出了去掉氧化层的硅纳米线由于表面的Si-H与Nafion的磺酸基之间的作用而使之易于溶剂化进而在溶液中分散的机理。
     第三,基于硅纳米线阵列的细胞色素c电化学传感器的研究。利用化学刻蚀法由硅片制备了硅纳米线阵列,经过表面去氧化层处理后,制备了检测蛋白质细胞色素c的电化学传感器。实验表明,硅纳米线阵列电极对细胞色素c有良好的电化学响应,并且在低浓度条件下具备线性响应的特点,灵敏度为2.75μA.mM-1。根据与未经表面处理的硅纳米线阵列电极的实验结果相对比,提出了细胞色素c所具备的羧基末端与硅纳米线阵列电极表面的Si-H相互作用从而改善传感性能的检测机理。
     第四,基于表面修饰ZnO纳米管阵列的葡萄糖电化学传感器的研究。在本实验室发展的电化学沉积法制备氧化锌纳米管阵列的基础上,利用氧化锌表面与葡萄糖氧化酶(GOx)之间的静电吸引作用,将GOx修饰在氧化锌纳米管阵列的表面,并引入Nafion以达到进一步固化GOx与增强传感器抗干扰能力的目的,制备了基于氧化锌纳米管阵列的葡萄糖电化学传感器。实验结果证明,由于ZnO纳米管的独特结构使其比表面积相对较大,电化学沉积的方法使ZnO纳米管与基底电极ITO玻璃之间的接触较好,可以改善ZnO结构与基底电极之间的电子传输效率,传感器具备灵敏度高(30.85μA.cm-2.mM-1),线性范围较宽(10μM-4.2 mM),检测底限浓度较低(10μM,measured),响应时间较短(<5s)等优点。
The fabrication and properties of chemical sensors and biosensors based modified one-dimensional nanomaterials have been studied in this doctorial dissertation. The main results can be concluded as follows:
     First, the functionalized SiNWs, chemically modified with Au nanoparticles, and with amino-terminated organic molecules anchored on the surface of the nanoparticles, were fabricated into the electrochemical biosensors for glutathione (GSH). The biosensor showed good linear response to GSH of low concentration (0.33-2.97μM), high sensitivity (48.5 mA.mmol-1), and a low limit of detection (0.33μM, measured) by virtue of strong sorption ability and high electrical conductivity of the modified SiNWs based electrode.
     Second, the dispersion of silicon nanowires in Nafion toward the fabrication of amperometric biosensors for glucose was studied. We demonstrated a convenient method of the dispersion of SiNWs in solvent in virtue of the interaction between Nafion and the surface of SiNWs. The dispersion of the HF-etched SiNWs and Au nanoparticles modified SiNWs exhibited homogeneous and long time steady properties. Moreover, the Au nanoparticles modified SiNWs could be used to modify the enzyme-electrode as the biosensors for glucose sensing, which proved to have an effect of enhancement for the detection of glucose. The present method of the dispersion of the SiNWs and the modification of electrode could be extended to the construction of the one-dimensional nanostructures based nanodevices.
     Third, the direct electrochemical biosensor for cytochrome c based on the silicon nanowire arrays was fabricated. The silicon nanowire arrays were prepared from the etched silicon wafer, which were then treated with nitrohydrochloric acid and HF to remove the cladding silicon oxide sheath. The modified silicon nanowire arrays were further used as the electrode for fabricating the direct electrochemical biosensors for the detection of cytochrome c, which exhibited linear response to cytochrome c at low concentration and high sensitivity of 2.75μA.mM-1 due to the vast surface-to-bulk ratio of the silicon nanowire arrays and the interaction between the carboxyl group of cytochrome and Si-H group provided by the surface of the modified silicon nanowire arrays.
     Fourth, an amperometric biosensor based on enzyme-modified ZnO nanotube arrays for the sensitive detection of glucose was demonstrated. The ZnO nanotube arrays based electrode exhibited high sensitivity of 30.85μA cm-2 mM-1 , wide linear detection range from 10μM to 4.2 mM and the low limit of detection (LOD) of 10μM (measured) for the glucose detection, which benefited from the coupling of the vast surface-to-bulk ratio and the uniquely tubular morphology with the good contact between the substrate electrode (ITO-coated glass) and ZnO nanotube arrays. The fabrication methodology of the present biosensor could be extended to other biosensors based oxidase, such as those for detection of acetylcholine, cholesterol, phenol, etc.
引文
1. L. C. Jnr. Clark, Monitor and Control of Blood Tissue O2 Tensions, Trans. Am. Soc. Artif. Intern. Organs. 1956, 2, 41-48.
    2. L. C. Jnr. Clark, Ann. NY. Acad. Sci., 1962, 102, 29-45.
    3. S. J. Updike, G. P. Hicks, The Enzyme Electrode, Nature, 1967, 214, 986-988.
    4. G. G. Guilbault, J. G. Montalvo, Urea-specific enzyme electrode, J. Am. Chem. Soc., 1969, 91, 2164-2165.
    5. From the website of YSI company, www.ysi.com
    6. G. A. Rechnitz, R. K. Kobos, S. J. Riechel and C. R. Gebauer, A Bio-selective Membrane Electrode Prepared With Living Bacterial Cells, Anal. Chim. Acta., 1977, 94, 357-365.
    7. I. Karube, T. Matsunaga, S. Mitsuda, S. Suzuki, Microbial Electrode BOD Sensors, Biotechnol. Bioeng., 1977, 19, 1535-1547
    8. J. Janata, S. D. Moss, C. C. Johnson, Selective Chemical Sensitive Field Effect Transducers, U. S. Patent 4020830, 1977.
    9. K. Mosbach, B. Danielsson, The development of biosensors, in particular the enzyme thermistor, Biochim. Biophys. Acta., 1974, 364, 140-145.
    10. C. L. Cooney, J. C. Weaver, S. R. Tannebaum, S. R. Faller, D .V. Shields, M. Jahnke, In: Pye. E. K., L. B. Wingar, Enzyme Engineering, New York, Plenum, 1974, 2, 411-417.
    11. K. P. Voelkl, N. Opitz and D. W Lubbers, Continuous measurement of concentrations of alcohol using a fluorescence-photometric enzymatic method. Fres. Z. Anal. Chem.,1980, 301, 162-163.
    12. G. G. Guilbault, Determination of Formaldehyde with an Enzyme Coated Piezoelectric Crystal, Anal. Chem., 1983, 55, 1682-1684.
    13. A. H. Clemens, P. H. Chang, R. W. Myers, Paris: Proc Journes Ann de Diabtologie de Htel-Dieu, 1976
    14. J. D. Newman, A. P. F. Turner, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectron., 2005, 20, 2435-2453.
    15. B. Liedberg, C. Nylander, I. Lundstrm, Development of an optical waveguide interferometric immunosensor, Sens. Actuat. B, 1983, 4, 299-304.
    16. From the website, www.pharmacia.ca
    17. A. E. G. Cass, D. G. Francis, H. A. O. Hill, Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose, Anal. Chem., 1984, 56, 667-671.
    18. X. L. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Application of Nanoparticles in Electrochemical Sensors and Biosensors, Electroanalysis, 2006, 18, 319-326.
    19. A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, Nanowire Based Electrochemical Biosensors, Electroanalysis, 2006, 18, 533-550.
    20. M. Stoytcheva, N. Nankov and V. Sharkova, Analytical Characterization and Application of A P-Benzoquinone Mediated Amperometric Graphite Sensor With Covalently-Linked Glucose Oxidase, Anal. Chim. Acts., 1995, 315(1-2), 101-107.
    21. A. P. F. Turner, I. Karube, and G. Wilson, Biosensors: Fundamentals and Applications Mir, Moscow, 1992
    22. L. Boguslavsky, H. Kalash, Z. Xu, Beckles, et al., Thin-Film Bienzyme Amperometric Biosensors Based on Polymeric Redox Mediators With Electrostatic Bipolar Protecting Layer, Anal. Chim. Acta., 1995, 311, 15-21.
    23. S. J. Updike and G. P. Hicks, The enzyme electrode, Nature, 1967, 214,986-988.
    24. L. Boguslavsky, H. Kalash, Z. Xu, Beckles, Thin-Film Bienzyme Amperometric Biosensors Based on Polymeric Redox Mediators With Electrostatic Bipolar Protecting Layer ,Anal. Chim. Acta., 1995, 311, 15-21.
    25. A. E. G. Cass, A practical Approach, Biosensors., IRL Press, 1990
    26. M. Shichiri, R. Kawamori, Y. Yamasaki, N. Hakui, H. Abe, Wearable Artificial Endocrine Pancrease with Needle-type Glucose Sensor, Lancet, 1982, 2, 1129-1131.
    27. A. E. G. Cass, G. Davis, G. D. Francis, H. A. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, A. P. F. Turner, Ferrocene-mediated Enzyme Electrode for Amperometric Determination of Glucose, Anal. Chem., 1984, 56, 667-671.
    28. H. A. O. Hill, Eur. Pat. Appl. EPO 125, 139 A2, 14, 45-46, 1984.
    29. J. Frew, H. A. Hill, Electrochemical Biosensors, Anal. Chem., 1987, 59, 933A-944A.
    30. Anon, Current Awareness in Biosensors and Ioelectronics, Biosens. Bioelectron., 1994, 9, R25-R35.
    31. G. G. Guilbault, Analytical Uses of Immobilized Enzymes, Marcel Dekker,1984
    32. S. Caras and Janata, Field Effect Transistor Sensitive to Penicillin, J. Anal. Chem.,1980, 52, 1935-1937.
    33. D. N. Bartlett and J. M. A. Cooper, Review of the Immobilization of Enzymes in Electropolymerized films, J. Electroanal. Chem., 1993, 362, 1-12.
    34. A. Riklin, E. Katz, L. Winner, Improving Enzyme Electrode Contacts by Redox Modification Of Cofactors, Nature, 1995, 376, 672-675.
    35. I. Willner, E. Katz, B. Wiliner, Electrical Contact of Redox Enzyme Layers Associated with Electrodes: Routes to Amperometric Biosensors, Electroanalysis, 1997, 9, 965-977.
    36. J. Wang, Electrochemical Glucose Biosensors, Chem. Rev., 2008, 108, 814-825.
    37. V. G. Gavalas, N. A. Chaniotakis, Polyelectrolyte Stabilized Oxidase Based Biosensors: Effect of Diethylaminoethyl-dextran on the Stabilization of Glucose and Lactate Oxidases into Porous Conductive Carbon, Anal. Chim. Acta., 2000, 404, 67-73.
    38. W. Zhao, J. J. Xu, C. G. Shi, H. Y. Chen, Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing, Langmuir, 2005, 21, 9630-9634.
    39. Q. Chen, Y. Kobayashi, H. Takeshita, T. Hoshi, J. I. Anzai, Avidin-Biotin System-Based Enzyme Multilayer Membranes for Biosensor Applications: Optimization of Loading of Choline Esterase and Choline Oxidase in the Bienzyme Membrane for Acetylcholine Biosensors, Electroanalysis, 1998, 10, 94-97.
    40. 吴霞琴,郭小明,王荣,普鲁士蓝修饰铂盘电极的胆固醇传感器的研制,分析化学, 2001,29,1273-1275.
    41. 吴辉煌,吴宝璋,环糊精聚合物的分子包合作用及在酶电极中的应用,电化学,1998, 4, 210-216.
    42. S. M. Reddy, P. Vadgama, Entrapment of Glucose Oxidase in Non-porous Poly(vinyl chloride), Analytica Chimica Acta, 2002, 461, 57-64.
    43. H. Zheng, H. G. Xue, Y. F. Zhang, A Glucose Biosensor Based on Microporous Polyacrylonitrile Synthesized by Single Rare-earth Catalyst, Biosens. Bioelectron., 2002, 17, 541-545.
    44. 何亚明,张维成,王志茹,测酚用的酪氨酸酶媒体玻碳电极的研制,分析测试学报, 1999, 18, 76-78.
    45. T. Tatsuma, Y. Ogawa, R. Sato, Peroxidase-incorporated Sulfonated Polyaniline-polycation Complexes for Electrochemical Sensing of H202, J. Electroanal. Chem., 2001, 501, 180-185.
    46. S. Braun, S. Rappoport, R. Zusman, Biochemically Active sol-gel Glasses: the Trapping of Enzymes, Mater. Lett., 1990, 10, 1-5.
    47. Z. J. Liu, B. Liu, J. L. Kong, Probing Trace Phenols Based on Mediator-free Alumina sol-gel-derived Tyrosinase Biosensor, Anal. Chem., 2000, 72, 4707-4712.
    48. Z. J. Liu, B. H. Liu, M. Zhang, Al2O3 sol-gel Derived Amperometric Biosensor for Glucose, Anal. Chim. Acta., 1999, 392, 135-141.
    49. Chex, G. J. Cheng, S. J. Dong, Amperometric Tyrosinase Biosensor Based on a sol-gel Derived Titanium Oxide-Copolymer Composite Matrix for Detection of Phenolic Compounds, Analyst, 2001, 126, 1728-1732.
    50. B. Q. Wang, S. J. Dong, Sol-gel-Derived Amperometric Biosensor for Hydrogen Peroxide Based on Methylene Green Incorporated in Nafion Film, Talanta, 2000, 51, 565-572.
    51. B. Q. Wang, B. Li, Q. Deng et a1.,Amperometric Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material, Anal.Chem., 1998, 70, 3170-3l74.
    52. A. A. Ciucu, C. Negulescu, R. P. Baldwin, Detection of Pesticides Using an Amperometric Biosensor Based on Ferophthalocyanine Chemically ModifiedCarbon Paste Electrode and Immobilized Bienzymatic System, Biosens. Bioelecron., 2003, 18, 303-310.
    53. S. Q. Liu, J. H. Yu, H. X. Ju, Renewable Phenol Biosensor Based on Atyrosinase Colloidal Gold Modified Carbon Paste Electrode, J. Electroanal. Chem., 2003, 540, 61-67.
    54. H. Y. Wang, S. L. Mu, Bioelectrochemical Response of the Polyaniline Ascorbate Oxidase Electrode, J. Electroanal. Chem., 1997, 436, 43-48.
    55. P. G. Edelman and J. Wang, Biosensors and Chemical Sensors, ACS Symp. Ser. No 487, ACS, Washington D.C., 1992
    56. D. H. Paul, I. B. Leonid, Amperometric Glucose Biosensors Based on Redox Polymer-Mediated Electron Transfer, Anal.Chem., 1991, 63, 677-682.
    57. J. Dumont, G. Fortier, Behavior of Glucose Oxidase Immobilized in Various Electropolymerized Thin Films, Biotechnol. Bioeng., 1996, 49, 544-552.
    58. A. E. G. Cass, Biosensors: A practical Approach, IRL Press, Oxford, 1990
    59. 马全红,邓家祺,苯醌介体修饰的葡萄糖生物传感器,复旦学报, 2000, 39, 400-404
    60. L. R. Junio, G. O. Neto, J. R. Fermande, Determination of Salicylate in Blood Serum Using an Amperometric Biosensor Based on Salicylate Hydroxylase Immobilized in a Polypyrrole-Glutaraldehyde Matrix, Talanta, 2000, 51, 547-557.
    61. B. Piro, L. A. Dang, M. C. Pham, A Glucose Biosensor Based on Modified-Enzyme Incorporated with Electropolymerised Poly(3,4-ethylene-dioxythiophene)-(PEDT) films, J. Electroanal. Chem., 2001, 512, 101-109.
    62. K. Sugawara, H. Fukushi, S. Hoshi, Electrochemical Sensing of Glucose at a Platinum Electrode with a Chitin/Glucose Oxidase Film, Anal. Sci., 2000, 16, 1139-1142.
    63. 钱江红,刘永成,刘海鹰,再生丝素固定葡萄糖氧化酶及其传感器的应用, 高等学校化学学报, 1996, 17, 52-54.
    64. 张先恩,生物传感器,化学工业出版社,北京,2006.
    65. 黄青山,张继恩,吴宏宇,莫云杰,抗体夹心酶联免疫吸附法测定重组溶葡萄球菌酶研究,生物工程学报,2007,23,117-121.
    66. C. Lee, F. C. Anson, Use of Electrochemical Microscopy to Examine Counterion Ejection from Nafion Coatings on Electrodes, Anal. Chem., 1992, 64, 528-533.
    67. 李彤,姚子华,普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器,分析化学, 2004, 32, 237-240.
    68. A. A. Karyakin, Prussian Blue and its Analogues: Electrochemistry and Analytical Applications, Electroanalysis, 2001, 13, 813-819.
    69. A. Dostal, B. Meyer, F. Scholz, et al., Electrochemical Study of Microcrystalline Solid Prussian Blue Particles Mechanically Attached to Graphite and Gold Electrodes-Electrochemically Induced Lattice Reconstruction, J. Phys. Chem., 1995, 99, 2096-2103.
    70. D. Mattos IL, L. Gorton, Metal-Hexacyanoferrate Films: A Tool in Analytical Chemistry, Quimica Nova, 2001, 24, 200-205.
    71. A. A. Karyakin, E. E. Karyakina, L. Gorton, On the Mechanism of H2O2 Reduction at Prussian Blue Modified Electrodes, Electrochem. Commun., 1999, 1, 78-82
    72. D. Mattos IL., L. Gorton, T. Ruzgas, A. A. Karyakin, Sensor for Hydrogen Peroxide Based on Prussian Blue Modified Electrode: Improvement of the Operational Stability, Anal. Sci., 2000, 16, 795-798.
    73. J. D. Qiu, H. Z. Peng, R. P. Liang, M. Xiong, Preparation of Three-Dimensional Ordered Macroporous Prussian Blue Film Electrode for Glucose Biosensor Application, Electroanalysis, 2007, 11, 1201-1206.
    74. J. Wang, F. Lu, L. Angnes, J. Liu, Remarkably Selective Metallized Carbon Amperometric Biosensors, Anal. Chim. Acta.,1995, 305, 3-7.
    75. 董绍俊,田敏,刘柏峰,二茂铁-AQ 修饰碳纤维微葡萄糖传感器的研究,分析化学, 1993, 21, 255-258.
    76. 纪学锋,章咏华,介体双酶 D-氨基酸传感器的制备,分析化学, 1993, 21, 625-629.
    77. S. H. Choi, S. D. Lrr, J. H. Shin, et a1., Amperometric Biosensors Employing anInsoluble Oxidant as an Interference-Removing Agent, Anal. Chim. Acta., 2002, 461, 251-260.
    78. S. Yabuki, F. Mizutani, Y. Hirata, Preparation of a Microperoxidase and Ferrocene-Immobilized Polyion Complex Membrane for the Detection of Hydrogen Peroxide, J. Electroanal. Chem., 1999, 468, 117-120.
    79. K. Yamamoto, T. Ohgaru, M. Torimura et al., Highly-Sensitive Flow Injection Determination of Hydrogen Peroxide with a Peroxidase Immobilized Electrode and its Application to Clinical Chemistry, Anal. Chim. Acta., 2000, 406, 201-207.
    80. J. Wang, D. S. Park, P. V. Pamidi, Tailoring the Macroporosity and Performance of sol-gel Derived Carbon Composite Glucose Sensors, J. Electroanal. Chem., 1997, 434, 185-189.
    81. 张成如,杨孔章,新型 α,β-不饱和羰基桥联双二茂铁衍生物的合成及其成膜性,高等学校化学学报, 1996, 17, 401-404.
    82. H. K. Tonmura, K. Yamamoto et al., Amperometric Determination of NAD(P)H with Peroxidase-Based H2O2-Sensing Electrodes and its Application to Isocitrate Dehydrogenase Activity Assay in Serum, J. Electroanal. Chem., 1999, 478, 33-39.
    83. A. C. Pereira, L. F. Fernando, G. D. Neto et a1., Reagentless Biosensor for Isocitrate Using one Step Modified Pt-Ir microelectrode, Talanta, 2001, 53, 801-806.
    84. 屠一锋,陶春红,亚甲蓝作为酶电极电子传递介体的性能研究,分析科学学报, 1997, 13, 189-192.
    85. 何亚明,张维成,王志茹,测酚用的酪氨酸酶媒体玻碳电极的研制,分析测试学报, 1999, 18, 76-78.
    86. D. Quan, J. N. Shim, J. D. Kim et al., Electrochemical Determination of Nitrate with Nitrate Reductase-Immobilized Electrodes under Ambient Air, Anal. Chem., 2005, 77, 4467-4473.
    87. S. A. Glazier, E. R. Campbell, W. H. Campbell, Construction and Characterization of Nitrate Reductase-Based Amperometric Electrode and Nitrate Assay of Fertilizers and Drinking Water, Anal. Chem., 1998, 70, 1511-1515.
    88. A. Bonfranceschi, A. P. Cordoba, S. Keunchkarian et al., Transport Across Poly(o-aminophenol) Modified Electrodes in Contact with Media Containing Redox Active Couples, A Study Using Rotating Disc Electrode Voltammetry, J. Electroanal. Chem.,1999,477(5):1-13
    89. S. Dong, T. Kuwana, Cobalt Porphyrin Nafion Film on Carbon Microarray Electrode to Monitor Oxygen for Enzyme Analysis of Glucose, Electroanalysis, 1991, 3, 485-491.
    90. S. Koide, K. Yokoama, Electrochemical Characterization of an Enzyme Electrode Based on a Ferrocene-Containing Redox Polymer, J. Electroanal. Chem., 1999, 468, 193-201.
    91. O. Niwa, R. Kurita, Z. M. Liu, et al., Subnanoliter Volume Wall-Jet Cells Combined with Interdigitated Microarray Electrode and Enzyme Modified Planar Microelectrode, Anal. Chem., 2000, 72, 949-995.
    92. B. Nalini, S. S. Narayanan, Amperometric Determination of Ascorbic Acid Based On Electrocatalytic Oxidation Using a Ruthenium(III) Diphenyldithiocarbamate Modified Carbon Paste Electrode, Anal. Chim. Acta., 2000, 405, 93-97.
    93. 白春礼,纳米科技现在与未来,四川科技出版社,2001.
    94. 孟宪伟,冉均国,苟立等,金属与非金属纳米颗粒增强葡萄糖生物传感器,材料科学与工艺, 2004, 1,163-166.
    95. 江龙,量子化尺寸纳米颗粒及其在生物体系中的作用,无机化学学报, 2000, 16, 185-194.
    96. F. Q. Tang, X. W. Meng, D. Chen, et al., Glucose Biosensor Enhanced by Nanoparticles, Science in China Series B, 2000, 43, 268-274.
    97. 吴宝艳,杨钰,宋昭,纳米颗粒对葡萄糖生物传感器性能影响的研究,高技术通讯, 2005, 15, 50-54.
    98. 任湘菱,唐芳琼,纳米铜颗粒-酶-复合功能敏感膜生物传感器,催化学报, 2000, 21, 455-458.
    99. M. J. Eddowes, H. A. O. Hill, Novel Method for the Investigation of the Electrochemistry of Metalloproteins: Cytochrome C, J. Chem. Soc. Chem. Commun., 1977, 21, 771-772.
    100.P. Yeh, T. Kuwana, Reversible Electrode Reaction of Cytochrome C, Chem. Lett., 1977, 70, 1145-1148.
    101.M.R. Tarasevich, A. I. Yaropolov, V. A. Bogdanovskaya and S.D. Varfolomeev, Electrocatalysis of a Cathodic Oxygen Reduction by Laccase, Bioelectrochem. Bioenerg., 1979, 6, 393–403.
    102.A. I. Yaropolov, V. Malovik, S. D. Varfolomeev, I. V. Berezin, Electroreduction of Hydrogen Peroxide on an Electrode with Immobilized Peroxidase, Dokl. Akad. Nauk. SSSR, 1979, 249, 1399-1401.
    103.F. A. Armstrong, Probing Metalloproteins by Voltammetry, Structure and Bonding, 1990, 72, 137-221.
    104.K. G. Thomas, P. V. Kamat, Chromophore-Functionalized Gold Nanoparticles, Acc. Chem. Res., 2003, 36, 888-898.
    105.Y. Zhuo, R. Yuan, Y. Q. Chai, D. P. Tang, L. Y. Zhang, N. Wang, X. L. Li, Q. Zhu, A Reagentless Amperometric Immunosensor Based on Gold Nanoparticles/Thionine/Nafion Membrane Modified Gold Electrode for Determination of α-1-Fetoprotein, Electrochem. Commun., 2005, 7, 355-360.
    106.P. A. Fiorito, V. R. Goncales, E. A. Ponzio, S. I. C. de Torresi, Synthesis, Characterization and immobilization of Prussian Blue Nanoparticales: A Potential Tool for Biosensing Devices, Chem. Commun., 2005, 14, 366-368.
    107.Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld and I. Willner, “Plugging into Enzymes”: Nanowiring of Redox Enzymes by a Gold Nanoparticle, Science, 2003, 299, 1877-1881.
    108.H. Cai, Y. Xu, N. N. Zhu, P. He and Y. Z. Fang, An Electrochemical DNA Hybridization Detection Assay Based on a Silver Nanoparticle Label, Analyst, 2002, 127, 803-808.
    109.J. J. Xu, W. Zhao, X. L. Luo and H. Y. Chen, A sensitive biosensor for Lactate Based on Layer-by-Layer Assembling MnO2 Nanoparticles and Lactate Oxidase on Ion-Sensitive Field-Effect Transistors, Chem. Commun., 2005, 6, 792-794.
    110.S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354 , 56-58.
    111.M. Musameh, J. Wang, A. Merkoci, Low-potential Stable NADH Detection atCarbon Nanotube Modified Glassy Carbon Electrodes, Electrochem. Commun., 2002, 45, 743-746.
    112.胡陈果,王万录.碳纳米管的电化学性质及其应用研究,功能材料,2005,36, 730—733
    113.罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用,高等学校化学学报,2000,21,1372-1374.
    114.陈荣生,肖华,黄卫华,等.单壁碳纳米管修饰的高灵敏纳米碳纤维电极,高等学校化学学报,2003,24, 808-8lO.
    115.张升晖,胡胜水.多壁碳纳米管修饰玻碳电极测定乙炔雌二酮,应用化学,2005,22, 857-860.
    116.J. X. Wang , M. X. Li , Z. J. Shi, Electrocatalytic Oxidation of 3,4-Dihydroxyphenylacetic Acid at a Glassy Carbon Electrode Modified with Single Wall Carbon Nanotubes, Electrochim.Acta., 2001, 47, 651-657.
    117.J. Wang, M. Musameh, Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors, Anal. Chem., 2003, 75, 2075-2079.
    118.J. Wang, M. Musameh, Y. Lin, Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors, J. Am. Chem. Soc., 2003, 125, 2408-2409.
    119.T. Someya, J. Small, P. Kim, C. Nucholls, J. T. Yardley, Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors, Nano. Lett., 2003, 3, 877-881.
    120.J. Li, Y. J. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nano. Lett., 2003, 3, 929-933.
    121.Y. C. Tsai, S. C. Li, J. M. Chen, Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function, Langmuir, 2005, 21, 3653-3658.
    122.Y. H. Lin, F. Lu, Y. Tu, Z. F. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano. Lett., 2004, 4, 191-195.
    123.K. Bestman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, C. Dekker, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, Nano. Lett.,2003, 3, 727-730.
    124.E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine, R. C. Haddon, Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors, J. Phys. Chem. B, 2004, 108, 19717-19720.
    125.M. Krishna Kumar, S. Ramaprabhu, Nanostructured Pt Functionlized Multiwalled Carbon Nanotube Based Hydrogen Sensor, J. Phys. Chem. B, 2006, 110, 11291-11298.
    126.P. P. Joshi, S. A. Merchant, Y. D. Wang, D. W. Schmidtke, Amperometric Biosensors Based on Redox Polymer-Carbon Nanotube-Enzyme Composites, Anal. Chem., 2005, 77, 3183-3188.
    127.Z. Y. Sun, X. R. Zhang, N. Na, Z. M. Liu, B. X. Han, G. M. An, Synthesis of ZrO2-Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol, J. Phys. Chem. B, 2006, 110, 13410-13414.
    128.Y. D. Wang, P. P. Joshi, K. L. Hobbs, M. B. Johnson, D. W. Schmidtke, Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers, Langmuir, 2006, 22, 9776-9783.
    129.Y. M. Zhang, D. J. Zhang, C. B. Liu, Novel Chemical Sensor for Cyanides: Boron-Doped Carbon Nanotubes, J. Phys. Chem. B, 2006, 110, 4671-4674.
    130.A. Star, V. Joshi, S. Skarupo, D. Thomas, J. C. P. Gabriel, Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes, J. Phys. Chem. B, 2006, 110, 21014-21020.
    131.S. Peng, K. Cho, Ab Initio Study of Doped Carbon Nanotube Sensors, Nano. Lett., 2003, 3, 513-517.
    132.P. W. Barone, R. S. Parker, M. S. Strano, Single-Walled Carbon Nanotube Optical Sensor: Design, Fluorophore Properties, Advantages, and Disadvantages, Anal. Chem., 2005, 77, 7556-7562.
    133.E . Palecek, Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid, Nature,1960,188, 656-657.
    134.P. Boubukova, M. Vojtiskova, E. Palecek, Determination ofSubmierogranguantities of Circular Duplex DNA in Plasmid Samples by Absorptive Stripping Vohammetry, Ana1.Lett., 1987,20, 275-291.
    135.K. B. Wu, J. J. Fei, B. Wen, Direct Electrochemistry of DNA,Guanine and Adenine at a Nanostructuredfilm Modified Electrode, Ana1.Bioana1.Chem.,2003,376, 205-209.
    136.L. Y. Heng,A. Chou,J. Yu, Demonstration of the Advantages of Using Bamboo-like Nanotubes for Electrochemical Biosensor Applications Compared with Single Walled Carbon Nanotubes, Electrochem. Commun., 2005,7, 1457-1462.
    137.Y. K. Ye, H. X. Ju, Rapid Detection of ssDNA and RNA Using Multi-walled Carbon Nanotubes Modified Screen-Printed Carbon Electrode, Biosen.Bioelec., 2005, 21, 735-741.
    138.G. Lu, P. Maragakis, E. Kaxiras, Carbon Nanotube Interaction with DNA, Nano. Lett.,2005, 5, 897-900.
    139.D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, Small-Diameter Silicon Nanowire Surfaces, Science, 229, 1874-1877.
    140.Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, 2001, 294, 1313-1317.
    141.Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, T. K. Sham, Microstructure and Field-Emission Characteristics of Boron-doped Si Nanoparticle Chains, Appl. Phys. Lett., 2001, 79, 1673-1675.
    142.D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, A. Majumdar, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett., 2003, 83, 2934-2936.
    143.X. H. Sun, H. Y. Peng, Y. H. Tang, et al., Surface Reactivity of Si Nanowires, J. Appl. Phys., 2001, 89, 6396-6399.
    144.X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S. T. Lee, Silicon Nanowires as Chemical Sensors, Chem. Phys. Lett., 2003, 369, 220-224.
    145.O. H. Elibol, D. Morisette, D. Akin, J. P. Denton, R. Bashir, Integrated NanoscaleSilicon Sensors Using Top-Down Fabrication, Appl. Phys. Lett., 2003, 83, 4613-4615.
    146.Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293, 1289-1292.
    147.J. I. Hahm, C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano. Lett., 2004, 4, 51-54.
    148.Z. Li, Y. Chen, X. Li, Sequence-specific Label-free DNA Sensors Based on Silicon Nanowires, Nano. Lett., 2004, 4, 245-247.
    149.J. Kong, N. R. Franklin, C. W. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science, 2000, 287, 622-625.
    150.M. W. Shao, H. Yao, M. L. Zhang, N. B. Wong, Y. Y. Shan, S. T. Lee, Fabrication and Application of Long Strands of Silicon Nanowires as Sensors for Bovine Serum Albumin Detection, Appl. Phys. Lett., 2005, 87, 183106 (1-3).
    151.M. W. Shao, Y. Y. Shan, N. B. Wong, S. T. Lee, Silicon Nanowire Sensors for Bioanalytical Applications: Glucose and Hydrogen Peroxide Detection, Adv. Funct. Mater., 2005, 15, 1478-1482.
    152.C. Mu, Q. Zhao, D. S. Xu, Q. K. Zhuang, Y. H. Shao, Silicon Nanotube Array/Gold Electrode for Direct Electrochemistry of Cytochrome c, J. Phys. Chem. B, 2007, 111, 1491-1495.
    153.W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, S. T. Lee, Silicon Nanowires for High-Sensitivity Glucose Detection, Appl. Phys. Lett., 2006, 88, 213104 (1-3).
    154.M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang, Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature, Angew. Chem. Int. Ed., 2004, 41, 2405-2408.
    155.E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts, Appl. Phys. Lett., 2002, 81, 1869-1871.
    156.J. F. Liu, X. Wang, Q. Peng, Y. D. Li, Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials, Adv. Mater., 2005, 17, 764-767.
    157.J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, Zinc Oxide Nanocomb Biosensor for Glucose Detection, Appl. Phys. Lett., 2006, 88, 233106 (1-3).
    158. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, et. al, Enzymatic Glucose Biosensor based on ZnO Nanorod Array Grown by Hydrothermal Decomposition, Appl. Phys. Lett., 2006, 89, 123902 (1-3).
    1. Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Diamter Modification of Silicon Nanowires by Ambient Gas, Appl. Phys. Lett., 1999, 75, 1842-1844.
    2. D. P. Yu, C. S. Lee, I. Bello, et al. Synthesis of Nano-scale Silicon Wires by Excimer Laser Ablation at High Temperature, Solid State Commun., 1998, 105, 403-407.
    3. Y. L. Zhang, Y. G. Guo, D. T. Sun, Research Progress of Nanowires: Preparation and Growth Mechanism, Mater. Sci. Eng., 2001, 19, 131-136.
    4. X. B. Zeng, Y. Y. Xu, S. B. Zhang, et al. Silicon Nanowires Grown on a Pre-annealed Si Substrate, Journal of Crystal Growth, 2003, 247, 13-16.
    5. Y. F. Zhang, Y. H. Tang, C. Lam, et al. Bulk-quantity Si Nanowires Synthesized by SiO Sublimation, J. Cryst. Growth, 2003, 212, 115-118.
    6. L. KokKeong, M. R. Joan, Growth Characteristics of Silicon Nanowires Synthesized by Vapor-Liquid-Solid Growth in Nanoporous Alumina Templates, J. Cryst. Growth, 2003, 254, 14-22.
    7. K. T. Boon, X. H. Sun, Silicon-Based Low-Dimensional Nanomaterials and Nanowires, Chem. Rev., 2007, 107, 1454-1532.
    8. F. M. Anna, A. Jordi, D. P. Joan, C. Albert, R. M. Joan, Synthesis of Silicon Nanowires with Wurtzite Crystalline Structure by Using Standard Chemical Vapor Deposition, Adv. Mater., 2007, 19, 1347-1351.
    9. H. Wang, X. H. Zhang, X. M. Meng, S. M. Zhou, S. K. Wu, W. S. Shi, S. T. Lee, Bulk Preparation of Si-SiOx Hierarchical Structures: High-Density Radically Oriented Amorphous Silica Nanowires on a Single-Crystal Silicon Nanocore, Angew. Chem. Int. Ed., 2005, 44, 6934-6937.
    10. D.D.D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, Small Diameter Silicon Nanowire Surface, Science, 2003, 299, 1874-1877.
    11. X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, B. K. Teo, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon(from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, J. Am. Chem. Soc., 2002, 124: 14464-14471.
    12. Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293, 1289-1292.
    13. J. I. Hahm, C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Lett., 2003, 4, 51-54.
    14. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams , Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Lett., 2004, 4, 245-247.
    15. M. W. Shao, Y. Y. Shan, N. B. Wong, S. T. Lee, Silicon Nanowire Sensors for Bioanalytical Applications: Glucose and Hydrogen Peroxide Detection, Adv. Funct. Mater., 2005, 15, 1478-1482.
    16. X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S. T. Lee, Silicon Nanowires as Chemical Sensors, Chem. Phys. Lett., 2003, 369, 220-224.
    17. X. H. Sun, C. P. Li, N. B. Wong, C. S. Lee, S. T. Lee, Reductive Growth of Nanosized Ligated Metal Clusters on Silicon Nanowires, Inorg. Chem., 2002, 17, 4331-4336.
    18. S. Curello, C. Ceconi, A. Cargnoni, A. Cornacchiari, R. Ferrari, A. Albertini, Improved procedure for Determining Glutathione in Plasma as an Index of Myocardial Oxidative Stress, Clin. Chem., 1987, 33, 1448–1449.
    19. J. D. Adams, J. N. Johannessen and J. P. Bacon, Quantification of Glutathione and Glutathione Disulfide in Human Plasma, Clin. Chem., 1987, 33, 1676-1677.
    20. L. Yang, W. Z. Wei, J. J. Xia, H. Tao, P. H. Yang, Capacitive Biosensor for Glutathione Detection Based on Electropolymerized Molecularly Imprinted Polymer and Kinetic Investigation of the Recognition Process, Electroanal., 2005, 17, 969-977.
    21. W. R. Jin, W. Li, Q. Xu, Quantitative Determination of Glutathione in Single Human Erythrocytes by Capillary Zone Electrophoresis with ElectrochemicalDetection, Electrophoresis, 2000, 21, 774-779.
    22. A. H. Trabesinger, P. Boesiger, Improved Selectivity of Double Quantum Coherence Filtering for the Detection of Glutathione in the Human Brain in Vivo, Magn. Reson. Med., 2001, 45, 708-710.
    23. P. K. Sudeep, S. T. Shibu Joseph, K. G. Thomas, Selective Detection of Cysteine and Glutathione Using Gold Nanorods, J. Am. Chem. Soc., 2005, 127, 6516-6517.
    24. X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, B. K. Teo, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, J. Am. Chem. Soc., 2002, 124, 14464 -14471.
    25. 腾岛昭(日本)等著,陈震、姚建年译,电化学测定方法,第一版,北京:北京大学出版社,1995.
    26. T. Kamidate and H. Watanabe, Peroxidase Catalysed Luminol Chemiluminescence Method for the Determination of Glutathione, Talanta, 1996, 43, 1733-1738.
    1. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, Small-Diameter Silicon Nanowire Surfaces, Science, 229, 1874-1877.
    2. D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, A. Majumdar, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett., 2003, 83, 2934-2936.
    3. T. Toriyama, D. Funai and S. Sugiyama, Piezoresistance Measurement on Single Crystal Silicon Nanowires, J. Appl. Phys., 2003, 93, 561-565.
    4. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, 2001, 294, 1313-1317.
    5. Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, T. K. Sham, Microstructure and Field-Emission Characteristics of Boron-doped Si Nanoparticle Chains, Appl. Phys. Lett., 2001, 79, 1673-1675.
    6. D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, A. Majumdar, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett., 2003, 83, 2934-2936.
    7. X. H. Sun, H. Y. Peng, Y. H. Tang, et al., Surface Reactivity of Si Nanowires, J. Appl. Phys., 2001, 89, 6396-6399.
    8. X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S. T. Lee, Silicon Nanowires as Chemical Sensors, Chem. Phys. Lett., 2003, 369, 220-224.
    9. O. H. Elibol, D. Morisette, D. Akin, J. P. Denton, R. Bashir, Integrated Nanoscale Silicon Sensors Using Top-Down Fabrication, Appl. Phys. Lett., 2003, 83, 4613-4615.
    10. Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293, 1289-1292.
    11. J. I. Hahm, C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano. Lett., 2004, 4,51-54.
    12. Z. Li, Y. Chen, X. Li, Sequence-specific Label-free DNA Sensors Based on Silicon Nanowires, Nano. Lett., 2004, 4, 245-247.
    13. J. Kong, N. R. Franklin, C. W. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science, 2000, 287, 622-625.
    14. M. W. Shao, H. Yao, M. L. Zhang, N. B. Wong, Y. Y. Shan, S. T. Lee, Fabrication and Application of Long Strands of Silicon Nanowires as Sensors for Bovine Serum Albumin Detection, Appl. Phys. Lett., 2005, 87, 183106 (1-3).
    15. M. W. Shao, Y. Y. Shan, N. B. Wong, S. T. Lee, Silicon Nanowire Sensors for Bioanalytical Applications: Glucose and Hydrogen Peroxide Detection, Adv. Funct. Mater., 2005, 15, 1478-1482.
    16. 张旭志,焦奎,赵常志,孙伟,碳纳米管在电化学传感器中的应用进展,化学试剂,2006,28,717-723.
    17. Y. Zhuo, R. Yuan, Y. Q. Chai, D. P. Tang, L. Y. Zhang, N. Wang, X. L. Li, Q. Zhu, A Reagentless Amperometric Immunosensor Based on Gold Nanoparticles/Thionine/Nafion Membrane Modified Gold Electrode for Determination of α-1-Fetoprotein, Electrochem. Commun., 2005, 7, 355-360.
    18. J. Z. He, J. B. Xu, Z. Xie, M. F. Chiah, N. Ke, W. Y. Cheung, I. H. Wilson, X. L. Ma, Y. H. Tang, N. Wang, C. S. Lee, S. T. Lee, Sample Refinement and Manipulation of Silicon Nanowires: a Step Towards Single Wire Characterization, Material Characterization, 2002, 48, 177-181.
    19. J. Z. He, J. B. Xu, M. S. Xu, Z. Xie, I. H. Wilson, X. L. Ma, Q. Li, N. Wang, L. S. Hung, C. S. Lee, S. T. Lee, Dispersion, Refinement, and Manipulation of Single Silicon Nanowires, Appl. Phys. Lett., 2002, 80, 1812-1814.
    20. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, Semiconductor Nanowires from Oxides, J. Mater. Res., 199, 14, 4503-4507.
    21. X. H. Sun, C. P. Li, N. B. Wong, C. S. Lee, S. T. Lee, Reductive Growth of Nanosized Ligated Metal Clusters on Silicon Nanowires, Inorg. Chem., 2002, 17, 4331-4336.
    1. A. A. Karyakin,E. A. Puganova,I. A. Budashov,I. N. Kurochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko, S. D. Varfolomeyev, Prussian Blue Based Nanoelectrode Arrays for H202 Detection, Ana1.Chem., 2004, 76, 474-478.
    2. V. Mori,M.Bertotti, Amperometric Detection with Micro-Electrodes in Flow Injection Analysis:Theoretical Aspects and Application in the Determination of Nitrite in Saliva, Talanta,1998,47, 651-658.
    3. Y. H. Lin, F. Lu, Y. Tu, Z. F. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano. Lett., 2004, 4, 191-195.
    4. L. Montelius, B. Heidari, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, Nanoimprint- and UV-Lithography: Mix & Match Process for Fabrication of Interdigitated Nanobiosensors, Microelectron. Eng.,2000, 53, 521-524.
    5. R. M. Penner,C. R.Martin, Preparation and Electrochemical Characterization of Ultramicroelectrode Ensembles, Anal. Chem.,1987,59, 2625-2630.
    6. K. Uosaki, K. Okazaki, H. Kita, H. Takahashi, Preparative Method for Fabricating a Microelectrode Ensemble: Electrochemical Response of Microporous Aluminum Anodic Oxide Film Modified Gold Electrode, Anal. Chem., 1990, 62, 652-656.
    7. G. W. She, X. H. Zhang, W. S. Shi, X. Fan and J. C. Chang, Electrochemical/Chemical Synthesis of Highly-Oriented Single-Crystal ZnO Nanotube Arrays on Transparent Conductive Substrates, Electrochem. Commun., 2007, 9, 2784-2788
    8. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee and C. H. Liu, Controlled Synthesis of Oriented Single-Crystal ZnO Nanotube Arrays on Transparent Conductive Substrates, Appl. Phys. Lett., 2008, 92, 053111(1-3)
    9. E. Sabatani,I.Rubinstein, Simultaneous Measurement of Gaseous Diffusivityand Solubility in Liquids, J. Phys. Chem., 1987, 91, 6663-1668.
    10. E. Jeoung, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russell, V. M. Rotello, Fabrication and Characterization of Nanoelectrode Arrays Formed via Block Copolymer Self-Assembly, Langmuir,2001,17, 6396-6398.
    11. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. J. Cho, Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano. Lett., 2003, 3, 347-351.
    12. B. Brunetti, P. Ugo, L. M. Moretto and C. R. Martin, Electrochemistry of Phenothiazine and Methylviologen Biosensor Electron-Transfer Mediators at Nanoelectrode Ensembles, J. Electroanal. Chem.,2000,491, 166-174.
    13. V. P. Menon,C. R.Martin, Fabrication and Evaluation of Nanoelectrode Ensembles, Anal. Chem.,1995, 67, 1920-1928.
    14. C. Mu, Q. Zhao, D. S. Xu, Q. K. Zhuang and Y. H. Shao, Silicon Nanotube Array/Gold Electrode for Direct Electrochemistry of Cytochrome c, J. Phys. Chem. B, 2007, 111, 1491-1495.
    15. K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry, Adv. Mater., 2002, 14, 1164-1167.
    16. K. Q. Peng, Z. P. Huang and J. Zhu, Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays, Adv. Mater., 2004, 16, 73-76.
    17. X. Liu, C. Kim, J. Yang, R. Jemmerson, X. Wang, () Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c, Cell, 1996, 86, 147-57.
    18. S. R. Lynch, D. Sherman, R. A. Copeland, Cytochrome c Binding Affects the Conformation of Cytochrome a in Cytochrome c Oxidase, J. Biol. Chem., 1992, 267, 298-302.
    19. W. W. Chen, H. Yao, C. H. Tzang, J. J. Zhu, M. S. Yang, S. T. Lee, Silicon Nanowires for High-Sensitivity Glucose Detection, Appl. Phys. Lett., 2006, 88,213104 (1-3).
    20. X. H. Sun, C. P. Li, N. B. Wong, C. S. Lee, S. T. Lee, Reductive Growth of Nanosized Ligated Metal Clusters on Silicon Nanowires, Inorg. Chem., 2002, 41, 4331-4336.
    1. C. Klingshirm, R. Hauschild, H. Priller, M. Decher, J. Zeller, H. Kalt, ZnO Rediscovered – Once Again, Superlattices Microstruct.,2005, 38, 209-222.
    2. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films, Adv. Funct. Mater., 13, 811 (2003)
    3. J. M. Bao, M. A. Zimmler, F. Capasso, X. W. Wang and Z. F. Ren, Broadband ZnO Single-Nanowire Light-Emitting Diode, Nano. Lett., 6, 1719 (2006)
    4. Q. H. Li, Y. X. Liang, Q. Wan and T. H. Wang, Oxygen Sensing Characteristics of Individual ZnO Nanowire Transistors, Appl. Phys. Lett., 85, 6389 (2004)
    5. Z. L. Wang and J. H. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,Science, 312, 242 (2006)
    6. J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang and R. J. Saykally, Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers, Nano. Lett., 4, 197 (2004)
    7. A. Dorfman, N. Kumar, J. Hahm, Highly Sensitive Biomolecular Fluorescene Detection Using Nanoscale ZnO Platforms, Langmuir, 2006, 22, 4890-4895
    8. A. Dorfman, N. Kumar, J. Hahm, Nanoscale ZnO-Enhanced Fluoresecne Dtection of Protein Interactions, Adv. Mater., 2006, 18, 2685-2690.
    9. L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu, Y. L. Liu, The Sensitivity of Gas Sensors Based On Single ZnO Nanowire Modulated by Helium Ion Radiation, Appl. Phys. Lett., 2007, 91, 173110 (1-3).
    10. S. M. Al-Hill, R. T. Al-Mofarji, M. Willander, Zinc Oxide Nanorod for Intracellular pH Sensing, Appl. Phys. Lett., 2006, 89, 173119 (1-3).
    11. P. Feng, Q. Wan, T. H. Wang, Contact-Controlled Sensing Properties of Flowerlike ZnO Nanostructures, Appl. Phys. Lett., 2005, 87, 213111 (1-3).
    12. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns, J. Am. Chem. Soc., 2002, 124,12954-12955.
    13. G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli and G. Giunta, A Novel Method For the Preparation of NH3 Sensors Based on ZnO-In Thin Films, Sensors and Actuators B, 1995, 25, 588-590.
    14. J. A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan and D. Fischer, Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 , J. Phys. Chem. B, 2000, 104, 319-328.
    15. F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu. Y. Z. Xian, L. T. Jin and K. Yamamoto, Immobilization of Uricase on ZnO Nanorods for a Reagentless Uric Acid Biosensor, Anal. Chim. Acta., 2004, 519, 155-160.
    16. J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong, Zinc Oxide Nanocomb Biosensor for Glucose Detection, Appl. Phys. Lett., 2006, 88, 233106 (1-3).
    17. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai and C. M. Li, Enzymatic Glucose Biosensor Based on ZnO Nanorod Array Grown by Hydrothermal Decomposition, Appl. Phys. Lett., 2006, 89, 123902 (1-3).
    18. G. W. She, X. H. Zhang, W. S. Shi, X. Fan and J. C. Chang, Electrochemical/Chemical Synthesis of Highly-Oriented Single-Crystal ZnO Nanotube Arrays on Transparent Conductive Substrates, Electrochem. Commun., 2007, 9, 2784-2788
    19. 腾岛昭(日本)著,陈震、姚建年译,电化学测定方法,第一版,北京:北京大学出版社,1995.
    20. J. H. Yu, S. Q. Liu and H. X. Ju, Glucose Sensor for Flow Injection Analysis of Serum Glucose Based on Immobilization of Glucose Oxidase in Titania Sol-Gel Membrane, Biosens. Bioelectron., 2003, 19, 401-409.
    21. S. Hrapovic, Y. L. Liu, K. B. Male and J. H. T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem., 2004, 76, 1083-1088.
    22. T. J. Chara, R. Rajagopalan and A. Heller, “Wired” Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of InterferingSubstances, Anal. Chem., 1994, 66, 2451-2457.
    23. K. Ogata, K. Koike, T. Tanite, T. Komuro, S. Sasa, M. Inoue and M. Yano, High Resistive Layers Toward ZnO-based Enzyme Modified Field Effect Transistor, Sens. Actuators B, 2004, 100, 209-211.
    24. Y. H. Yang, H. F. Yang, M. H. Yang, Y. L. Liu, G. L. Shen, and R. Q. Yu, Amperometric Glucose Biosensor Based on a Surface Treated Nanoporous ZrO2/Chitosan Composite Film as Immobilization Matrix, Anal. Chim. Acta., 2004, 525, 213-220.
    25. Z. Fan and D. J. Harrison, Permeability of Glucose and Other Neutral Species through Recast Perfluorosulfonated Ionomer Films, Anal. Chem., 1992, 64, 1304-1311.
    26. G. Fortier, M. Vaillancourt and D. Belanger, Evaluation of Nafion as Media for Glucose Oxidase Immobilization for the Development of an Amperometric Glucose Biosensor, Electroanalysis, 1992, 4, 275-283.
    27. K. Takahiko, I. K. Hiroko, O. Yoshiyuki, Amperometric Glucose Sensors Based on Immobilized Glucose Oxidase-Polyquinone System, Anal. Chem., 1994, 66, 1231-1235.
    28. J. Wang, L. Angnes, Miniaturized Glucose Sensors Based on Electrochemical Codeposition of Rhodium and Glucose Oxidase onto Carbon-Fiber Electrodes, Anal. Chem., 1992, 64, 456-459.
    29. H. Durliat, and M. Comtat, Amperometric Enzyme Electrode for Determination of Glucose Based on Thin-Layer Spectroelectrochemistry of Glucose Oxidase, Ananl. Chem., 1984, 56, 148-152.
    30. C. Malitesta, F. Palmisano, L. Torsi, P. G. Zambonim, Glucose Fast-Response Amperometric Sensor Based on Glucose Oxidase Immobilized in an Electropolymerized Poly(o-phenylenediamine) Film, Anal. Chem., 1990, 62, 2735-2740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700