一维Cu-Zn-Al合金纳米结构与固体类流态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体“类流态”是固体表面及其内部存在的一种类似于流体的状态,是一种除气、液、固、液晶之外的一种新的物质存在形式。本文利用金相显微镜、原子力显微镜、X射线衍射仪、扫描电镜、透射电镜等观测仪器对纯金属、合金和非金属材料糜棱状石英岩、辉长岩等进行观察,验证了在常温常压下,这些材料中存在着一种未被人们认知的,具有类似流体特征的非线性振荡现象——“类流态”现象,这是一种非极端条件下新的物质存在状态。其普遍存在于各类固体物质中,当外界条件达到类流态胞区出现的临界值时,固体中就会出现这种状态。“类流态”的宏观表现为材料表面观察到动态的运动并可测量到某些性能的变化,微观表现为用高倍数的仪器进行测量时可以发现点阵结构的变化和X射线衍射谱线的细微波动。将小尺度和大尺度范围内的测量结果进行比较,发现“类流态”现象呈现出典型的分形特征,即局部上显示出无规律性、随机性,而在整体上呈现自相似性。固体“类流态”的振荡过程是一种典型的非线性动力学过程。
    准一维纳米结构材料,包括纳米管、纳米线(棒)、以及复合纳米线(纳米同轴电缆、异质结等),在未来纳米器件中的连接、场发射平板显示、能量存储以及高强度复合材料上,均具有潜在的应用前景。目前有关准一维纳米材料的研究已经成为物理、化学及材料学等学科开展工作的重点。其中,准一维纳米材料的制备则是开展准一维纳米材料研究的前提和基础。本文工作的重点是研究新型准一维纳米结构材料的合成、生长的控制和机理的探索。
    本文首次报道以Cu-Zn-Al合金为基体,在常温常压非真空条件下制得了一系列全新的一维合金纳米结构包括合金纳米管、合金纳米线、合金纳米棒以及分散的零维合金纳米颗粒。随后,通过大量的条件实验摸索合金纳米结构的制备工艺,发现在常温常压下通过HNO3、HCl、H3PO4、HAC按不同比例构成的混合酸处理退火态Cu-Zn-Al合金可以制得合金纳米结构,同时通过大量对比实验排除了双喷电解抛光和离子减薄过程可能对合金纳米结构的生成起作用的怀疑。采用透射电镜、扫描形貌分析、选区衍射、能量分散X射线分析等对制得的纳米结构进行了表征。所得合金纳米管外径为40nm左右,内径从几纳米到十几纳米不等,有顶端被纳米颗粒封闭的形貌,也有顶端开口的形貌;合金纳米线及纳米棒直径在10nm-40nm范围内变化,最大长度可达数微米;合金纳米颗粒的粒径为
Solid quasi-fluid state, which is similar to liquid and exists in surface and interiorof solid, is one new kind of state besides gas, liquid, solid and liquid crystal. In thispaper, the phenomenon which is similar to liquid is validated under normaltemperature and pressure on the surface of pure metal, alloy, mylonitic quartzite,gabbros et al. using metallographic microscope, AFM, X-ray diffractometer, SEM andTEM. The phenomenon reveals a new matter existence state in non-extreme arduousconditions, and the ubiquity is one of its most important characteristics. When theexternal condition reaches the critical value, the phenomenon will appear in solids.
    In macroscopic scale, the dynamical motion can be observed and someperformance changes can be measured in quasi-fluid state cell. Under high powermicroscope, the lattice structure changes can be observed, the X-ray diffractionspectral lines exhibit fine fluctuation. Comparing the small-scale results with the greatones, the irregularity and randomicity appear in local, and the self-comparability isshowed as a whole, i.e. ‘quasi-fluid state' presents a typical fractal character, which isa typical nonlinear dynamical system.
    Quasi-one dimensional (1D) nanomaterials such as nanotubes, nanowires orcomposite (nanocables, nano-heterojunctions) has become the most active areas inphysics, chemistry and materials research due to their potential applications in theconnects of electric or photoelectric nanodevices, field emission panel display, energystorage, and high-strength composites. Among them, the effective synthesis of one-dimensional nanomaterials has always been the research focus related to the one-dimensional nanomaterials. In this thesis, we present our work mainly involved thesynthesis of novel one-dimensional nanomaterials, their growth mechanism and alsoproperties explored.
    Herewith, Cu-Zn-Al shape memory alloy is a kind of function material with fineperformance and low cost. When we studied it, some new one dimensional alloynano-structures were attained including alloy nanotubes, alloy nanowires, alloynanorodes, and some zero dimension separated alloy nanoparticals in normaltemperature and pressure . Through a mass of experiments, it was found that the alloynano-structures would be attained when the annealed Cu-Zn-Al alloy was treated bymixed acid include HNO3, HCl, H3PO4, HAC. And it was confirmed that twin-jetelectrolytic polishing and ionization had nothing to do with growth of alloy
    nano-structures by large number of experiments. The alloy nano-structures wereattributed by TEM, SEM and EDX. The outer diameter of nanotubes were about40nm, and their inner diameter were from 10nm to 40nm. The top end of somenanotubes were enclosed by nanoparticals and the others top end were open. Thediameter of nanowires and nanorods were from 10nm to 40nm, and the most length ofnanowires and nanorods were over micron. The grain size of nanoparticals were from10nm to 40nm, and their dispersity were fine. The main ingredients of alloynano-structures were Cu, Zn and Al, and the structures of them were polycrystal.In the process of researching growth mechanics of alloy nano-structures, it wasconfirmed that ‘quasi-fluid cell', a kind of non-liner oscillation phenomenon in the alloy,was the critical factor. The alloy atoms motion rules of cell were researched deeply bymetallographic, SEM, TEM, AFM, X-ray and so on. According to the experimentaldata, the chaotic movement of the quasi-fluid cell oscillation thim series in solid isanalyzed, The dynamical system phase space was reconstructed;the systemparameters were calculated, such as Lyapunov exponents, Kolmogorov entropy, andHurst exponents. The results proved that the quasi-fluid is a very complex activity,and it is an obvious process from chaos into order. According to the characters ofquasi-fluid cell such as chaotic, self-organizing and similarity with fluid, the questionsabout where the energy and atoms which composing alloy nano-structures come from,how the alloy nanotubes nucleate and why the atoms can grow directionly could beexplained reasonably. So the grow model of one dimensional alloy nano-structureswere put forward in response to quasi-fluid state.Silicon-based materials have the research focus of semiconductor industry. Inchapter five, a novel method has been developed to produce bulk quantities of siliconnanowires. Encouraging results shows that thesis 1D nanomaterials should havepotential in opto-electric nanodevices in the future. In addition, the alternative methodcould be explored for the synthesis of other 1D nanomaterials.With all successes and failure related to the synthesis of 1D nanomaterials, we getmore knowledge and understanding to the growth mechanics of 1D nanomaterialsbased on Cu-Zn-Al alloy.
引文
[1] Gao Houxiu,Yang Yuqin,et al.,Umwandlungsvorgange in Eniner Cu-Zn-Al Formgeda-chtmisgierung,Praktische Metallographie,1993,30 (4):200-204
    [2] 高后秀,杨渝钦,刘文华等,铜锌铝合金表面非线性振荡花样的研究,金属热处理学报,1995,16 (4):56-59
    [3] 高后秀,张贵杰,陈泉水等,辉长岩中的类流态研究,中国科学,B 辑,33(2):105-110
    [4] 李桂杰,固体“类流态”机理及其与地震孕震的相似性研究,[博士学位论文],天津,天津大学,2004
    [5] 高后秀,杨渝钦,杨敬武等,固态合金中的非线性现象观察,科学通报,1998,43(15):1667-1671
    [6] 杨新娥,高后秀,李京生等,Cu-Zn-Al 合金种类液振荡的非线性机理,物理学报,2001,50(7):1346-1349
    [7] 赵凯华,朱熹宣,黄昀,非线性物理导论,北京:北京大学非线性科学中心,1992.1
    [8] 张加万,高后秀,杨敬武等,固体表面的非线性振荡现象及其计算机仿真,天津大学学报,2001,34(1):35-39
    [9] 马红孺,陆坤权,软凝聚态物质物理学,物理,2000,29(9):516-524
    [10] 统计物理与凝聚态理论的新进展(论文集),中科院数理学部统计物理和凝聚态理论学术小组编,华中工学院出版社,1982.12
    [11] 黄昆著,韩汝奇改编,固体物理学,北京:高等教育出版社,1988.10
    [12] 周凌云,固体物理的量子力学基础,重庆:重庆大学出版社,1989.1
    [13] 刘文华,CuZnAl 形状记忆合金的研制及其表面非线性振荡花样的研究,[硕士学位论文],天津,天津大学,1996
    [14] 高后秀,崔振铎,杨贤金等,20CrMnTi 钢表面的非线性振荡现象,兵器材料科学与工程,2000,23(4):25-27,70
    [15] M. Giesen,G. Schulze,et al.,Fast decay of adatom islands and mounds on Cu (111):a new effective channel for interlayer mass transport,Phys. Rev. Lett.,1998,80(3):552-555
    [16] K. Morgenstern,E. Lagsgaard,et al.,Transition from one-dimensional to two-dimensional island decay on an anisotropic surface,Phys. Rev. Lett.,1999, 83(8):1613-1616
    [17] K. Morgenstern,G. Rosenfeld,et al.,Decay of two-dimensional Ag islands on Ag (111),Phys. Rev. Lett.,1996,76(12):2113-2116
    [18] 高后秀,杨敬武等,封面照片,科学通报,1999,44(9)
    [19] 张贵杰,固体“类流态”现象的混沌动力学特征及机理研究,[博士学位论文],天津,天津大学,2003
    [20] 郑冀,纳米掺杂AgSnO2电触头材料及其单晶硅类流态结构的研究,[博士学位论文],天津,天津大学,2004
    [21] Ma Junhai,The nonlinear chaotic model reconstruction for the experimental data obtained from different dynamic system,Appl. Math. & Mech.,1999,20(11):1214-1221
    [22] J. Theiler,Spurious dimension from correlation algorithms applied to limited time-series data,Phys. Rev. A,1986,34(3):2427-2432
    [23] M. B. Kennel et al.,Determining embedding dimension for phase-space recon-struction using a geometrical construction,Phys. Rev. A,1992,45:3403-3411
    [24] H. D. I. Abarbanel et al.,The analysis of observed chaotic data in physical systems,Rev. Mod. Phys.,1993,65:1331-1392
    [25] D. Kugiumtzis,State space reconstruction parameters in the analysis of chaotic time series -the role of the time window length,Phys. D,1996,95:13-28
    [26] Holger Kantz,Thomas Schreiber,Nonlinear time series analysis,Cambridge:Cambridge University Press,1997
    [27] 周佩玲,储阅春,彭虎,非线性时间序列数据中的关联维提取,信号处理,2002,18(3):275-277
    [28] H. S. Kim,R. Eykholt,J. D. Salas,Nonlinear dynamics, delay times, and embedding windows,Phys. D,1999,127:48-60
    [29] G. Benetin,L. Galgani,J. -M. Strelcyn,Kolmogorov entropy and numerical experiments,Phys. Rev. A,1976,14:2338-2345
    [30] A. Wolf,J. B. Swift,H. L. Swinney,et al.,Determining Lyapunov exponent from a time series,Phys. D,1985,16:285-317
    [31] M. Sano and Y. Sawada,Measurement of the Lyapunov spectrum from a chaotic time series,Phys. Rev. Lett.,1985,55:1082-1085
    [32] S. Sato,M. Sano and Y. Sawada,Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic system,Prog. Theor. Phys.,1987,77:1-19
    [33] D. Kugiumtzis,State space reconstruction parameters in the analysis of chaot-ic time series – the role of the time window length,Phys. D,1996,95:13-28
    [34] J. -P. Eckmann,D. Ruelle,Ergodic theory of chaos and strange attractors,Rev. Mod. Phys.,1985,57(3):617-656
    [35] J. -P. Eckmann,S. O. Kamphorst,et al.,Liapunov exponents from time series,Phys. Rev. A,1986,34(6):4971-4979
    [36] Wu ZuoBing,Remark on metric analysis of reconstructed dynamics from chaotic time series,Phys. D,1995,85:485-495
    [37] 何钰泉,混沌物理学概论(讲义),天津大学应用物理系,1996,3:94-138
    [38] J. C. Schouten,et al.,Maximum-likelihood estimation of the entropy of an attractor,Phys. Rev. E,1994,49(1):126-129
    [39] J. -P. Eckmann,et al.,Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems,Phys. D,1992,56:185-187
    [40] 陈颙,陈凌编著,分形几何学,北京:地震出版社,1998.7:138-163
    [41] 张志琨,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2001.10:29-36
    [42] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001.3:9-16
    [43] 冯孙齐,俞大鹏,张洪洲等,一维硅纳米线的生长机制及其量子限制效应的研究,中国科学,1999,A 辑,29(10):921-926
    [44] Hu J T,Odom T W,Lieber C M,et al.,Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes,Acc Chem Res,1999,32(5):435-445
    [45] 陈长乐,固体物理学,西安:西北工业大学出版社,2000.11
    [46] Iijima S,Helical microtubles of graphitic carbon,Nature,1991,354(7):56-59
    [47] G. Z. Wang,W. Chen,C. H. Liang,et al,Preparation and characterization of CdS nanoparticles by ultrasonic irradiation , Inorganic Chemistry Communication,2001,4:208-210
    [48] G. Z. Wang,Y. W. Wang,W. Chen,et al,A Facile synthesis route to CdS nanoparticles at room temperature,Materials Letters,2001,48:269-272
    [49] 成会明,纳米碳管-制备.结构.物性及应用,北京:化学工业出版社,2001.3:48-105
    [50] 唐东升,唐成名,刘朝晖等,碳纳米管的结构、制备、物性和应用,邵阳高等专科学校学报,2001,14(2):81-90 127
    [51] 吴琪琳,顾书英,碳纳米管应用研究的现状和未来,同济大学学报(自然科学版),2002,30(2):213-217
    [52] 姜靖雯,彭峰,碳纳米管应用研究现状与发展,材料科学与工程学报,2003,21(3):464-468
    [53] 王娟,程翥,碳纳米管的研究现状,材料导报,2003,17(3):52-54
    [54] Chung S W,Yu T W,and Heath J R.The nanotriode:A nanoscale field-emission tube,Appl Phys Lett,1999,75(18):2068-2070
    [55] Cui Y , and Lieber C M , Drected Assembly of one-Dimensional Nanostructures into Functional Networks,Science,2001,291:851-853
    [56] Robert F,Service,Sorting Technique May Boost Nanotube Research,Science,2003,300:2018
    [57] Tenne R,Margulis L,Genut M,et al,Polyhedral and cylindrical structures of tungsten disulphide,Nature,1992,360:444-446
    [58] Homyonfer M,Alperson B,Rosenberg Y,et al,Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy,J Am Chem Soc,1997,119:2693-2698
    [59] Ajayan P.M,Iijima S,Capillarity-induced filling of carbon nanotubes,Nature, 1993,361:333-334
    [60] Tans S.J,Devorel M.H,Dai H,Thess A,et al,Individual single-wall carbon nanotubes as quantum wires,Nature,1997,386:474
    [61] Alivisatons A.P,Semiconductor cluster, nanocrystals, and qutum dots,Science, 1996,271:933
    [62] Nath M,Govindaraj A,Rao C N R,Simple synthesis of MoS2 and WS2 nanotubes,Adv Mater,2001,13:283-286
    [63] Liao H W,Wang Y F,Zhang S Y,et al,A solution low-temperature route to MoS2 fiber,Chem mater,2001,13:6-8
    [64] Chen J,Li S L,Xu Q,et al,Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem Comun,2002,1722-1723
    [65] Rothschild A,Poppvitz-Biro R,Lourie O,et al,Morphology of multiwall WS2 nanotubes,JPhys Chem B,2000,104:8976-8981
    [66] J L Y Chen,Synthesis of aligned gallium nitride nanowire quasi-arrays,Rapid Communication,2000,71(3):349-350
    [67] Zhou Guangwen,Zhang Ze,Yu Dapeng,Preparation and microstructure of one dimensional nano materials,China science (A),1999,29(1):85-91
    [68] Li Y D,Wang J W,Deng Z X,et al,Bismuth nanotubes:A rational low-temperature synthetic route,J Am Chem soc,2001,123(4):9904-9905
    [69] Yu D P,Bai Z G,Ding Y,et al,Nanoscale silicon wires synthesized using simple physical evaporation,Appl Phys Lett,1998,72:3458-3460
    [70] Han W Q,Fan S S,Li Q,et al,Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-confined Reaction,Science,1997,277:1287-1289
    [71] Kondo Y,Takayanagi K,Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,Science,2000,289:606-608
    [72] Liang C H,Meng G W,Wang G Z,et al,Catalytic synthesis and photoluminescence of β-Ga2O3 Nanowires,Appl Phys Lett,2001,78(2):3202
    [73] Satishkumar B C,Govindaraj A,Natha M,Synthesis of metal oxide nanorods using carbon nanotubes as templates,J Mater Chem,2000,10:2115
    [74] Gao M H,Hu C W,et al,A controllable synthetic route to Cu, Cu2O and CuO nanorods,Chem Commun,2003,1884-1885
    [75] Pan Z W,Dai Z R,Wang Z L,Nanobelts of Semiconducting Oxides,Science, 2001,291:1947-1949
    [76] Homyonfer M,Alperson B,Rosenberg Y,et al,Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy,J Am Chem Soc,1997,119:2693-2698
    [77] Rapport L,Bilik Y,Homyonfer M,et al,Hollow nanoparticles of WS2 as potential solid-state lubricants,Nature,1997,387:791-793
    [78] Mdleni M M,Hyeon T,Suslick K S,Sonochemical synthesis of nanostructured molybdenum sulfide,J Am Chem Soc,1998,120:6189-6190
    [79] Chen J,Kuriyama N,Yuan H T,et al,Electrochemical hydrogen storage in MoS2 nanorubes,J Am Chem Soc,2001,123:11813-11814
    [80] 陈军,李锁龙,高峰等,多壁MoS2纳米低温催化制备,中国科学,B辑,2002,32(6):515-518
    [81] 陈军,陶占良,李锁龙等 开口WS2纳米管的制备,复旦学报(自然科学版),2003,42(3):262-265
    [82] 靳蓓,康惠宝,刘吉平,二氧化硅纳米管的制备及表征,化工新型材料,2003,31(10):21-23.
    [83] Cuong Pham-Huu,Nicolas Keller,Gaby Ehret,et al,The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential,Catalysis,2001,200:400-410
    [84] Zeheng Yang,Yunle Gu,Preparation of Mn5Si3 nanocages and nanotubes by molten salt flux,Solid State Communications,2004,130:347-351
    [85] D Golberg,Y Bando,Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM,Physica B,2002,323:60-66
    [86] Hui Zhang,Xiangyang Ma,Jin Xu, et al,Synthesis of CdS nanotubes by chemical bath deposition,Crystal Growth,2004,263:372-376
    [87] V. Badri,A.M. Hermann,Metal hydride batteries: Pd nanotube incorporation into the negative electrode,International Journal of Hydrogen Energy,2000,25:249-253
    [88] Li Y D,Li X L,He R R,et al,Artificial lamellar mesostructures to WS2 nanotubes,J Am Chem Soc,2002,124(7):1411-1416
    [89] 董亚杰,李亚栋,一维纳米材料的合成、组装与器件,科学通报,2002,47(9):641-649
    [90] 徐大鹏,徐正,CdS 纳米管有序阵列的制备和表征,无机化学学报,2002,18(9):871-873
    [91] 周光文,张泽,俞大鹏,一维纳米材料的合成及显微结构,中国科学,A辑,1999,29(1):85-91
    [92] Demczyk B G,Cumings J,Zett Al,et al,Structure of boron nitride nanotubules,Appl Phys Lett,2001,78:2772-2774
    [93] Rao C N,Rgovindara J A,Deepak F,et al,Surfactant-assisted synthesis of semiconductor nanotubes and nanowires,Appl Phys Lett,2001,78:1853-1855
    [94] J L Y Chen,Synthesis of aligned gallium nitride nanowire quasi-arrays ,Rapid Communication,2000,71(3):349-350
    [95] Yu D P,Lee C S,Bello I,et al,Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature,Solid state Commun,1998,105(6):403-407
    [96] 邢英杰,奚中和,薛增泉等,用催化剂控制硅纳米线直径的研究,真空科学与技术,2002,22(增刊):15-17
    [97] 余承忠,田博之,范杰等,嵌段共聚物反介观液晶相新方法合成多级有序排列的二氧化硅纳米棒,高等学校化学学报,2003,24(1):5-8
    [98] 朱彦武,陈喜红,陈耀锋等,超细氧化硅纳米线阵列的制备和发光特性. 发光学报,2004,25(2):173-176
    [99] 胡卫兵,史伯安,但悠梦等,一种制备SiO2纳米线的新方法,中国科学,2002,32(2):164-167
    [100] Wagner R S,Ellis W C,Vapor-liquid-solid mechanism of single crystal growth,Appl Phys Lett,1964,4:89
    [101] Yu D P,Huang Q L,Ding Y,et al.,Amorphous silica nanowires:intensive blue light emitters,Appl Phys Lett,1998,72(21):3076-3078
    [102] E.F.Kukovitsky,S.G.L.VOV,N.A.Sainov,VLS-Growth of carbon nanotubes from the vapor,Chemical Physics Letters,2000,317:65-70
    [103] C.C.Chen,C.C.Yeh,C.H.Liang,et al.,Prpparation and characterization of carbon nanotubes encapsulated GaN nanowires, Journal of Physics and Chemistry of Solids ,2001,62:1577-1586
    [104] 杜金红,苏革,成会明,等,螺旋形碳纤维的固相催化生长机制,中国科学,E 辑,2003,33(7):604-608
    [105] CheG.L,Lakshmi B B,Fisher E R,et al,Carbon nanotybule membranes for electrochemical energy storge and production,Nature,1998,393:346
    [106] C. Klünker,J. B. Hannon,M. Giesen,et al.,Activation energy for the decay of two-dimensional islands on Cu(100),Phys. Rev. B,1998,58(12):7556-7559
    [107] J. B. Hannon,H. Hibino,N. C. Bartelt,et al.,Dynamics of the Silicon (111) Surface Phase Transition,Nature,2000,405:552-554
    [108] L. B. Zuev,V. I. Danilov,S. A. Barannikova,et al.,A New Type of Plastic Deformation Waves in Solids,Appl. Phys. A,2000,71:91-94
    [109] 徐祖耀,江伯鸿,形状记忆材料,上海:上海交通大学出版社,2000: 105-120
    [110] Wayman C M,Proc of the Int Conf on Martensite Transformation,1979:88
    [111] T Enami,S nenno,C M Wayman,钢的组织转变译文集,北京:机械工业出版社,1985:220-230
    [112] 徐祖耀,马氏体相变与马氏体,北京:科学出版社,1981:492
    [113] 王永立,形状记忆合金应用实践杂谈,仪表材料,1986,17(2):109
    [114] 洛阳铜加工场中心实验室金相组,铜及铜合金相图谱,北京:冶金工业出版社,1983:48
    [115] 李如生,非平衡热力学和耗散结构,北京:清华大学出版社,1986:28-36
    [116] 高后秀,张贵杰,麻亚宁等,外加应力场刺激下固体“类流态”胞区的响应特征,材料热处理学报,2002,23(4):62-65
    [117] 胡卓超,何长树,赵骧等,电场回复对 08Al 深冲钢板再结晶组织及织构的影响,东北大学学报,2002,23(7):663-666
    [118] 周细枝,李尧,陈洪,电场和电流对 7475 铝合金再结晶的影响,轻合金加工技术,2002,29(7):43-44
    [119] 魏齐龙,陈铮,刘兵等,电场时效对铝锂合金性能和断裂特征的影响,稀有金属,2002,26(3):161-165
    [120] 王义真,实用磁路设计,天津:天津科学技术出版社,1992:51
    [121] 王西宁,陈铮等,磁场对材料固态相变影响的研究进展,材料导报,2002, 16(2):25-27
    [122] 邹继斌,刘宝廷等,磁路与磁场,哈尔滨:哈尔滨工业大学出版社,1998:103
    [123] Y. Lei,C. H. Liang,Y. C. Wu,et al,Preparation of highly orderde nanoporous Comembranes assembled by small quantum-sized Co particles,Vac. Sci & Tech B,2001,19(4):743-746
    [124] W. Chen,W. P. Cai,C. H. Liang,et al,Synthesis and characterization of Au nanoparticles within pores of mesoporous silica induced by ultrasonic irradiation,Materials Research Bulletin,2001,36(1-2):335-342
    [125] G. Z. Wang,W. Chen,C. H. Liang,et al,Preparation and characterization of CdS nanoparticles by ultrasonic irradiation , Inorganic Chemistry Communication,2001,4:208-210
    [126] G. Z. Wang,Y. W. Wang,W. Chen,et al,A Facile synthesis route to CdS nanoparticles at room temperature,Materials Letters,2001,48:269-272
    [127] Wu Y Y,Yang P D,Ermanium/carbon core-sheath nanostructres,Appl Phys Lett,2000,77(1):43-45
    [128] 陈泉水,高后秀,刘双翼等,一维非碳纳米结构材料研究的动向,化工进展,2004,23(2):140-145
    [129] 高后秀, 陈泉水, 刘双翼等,Cu-Zn-Al 合金纳米结构与固体类流态,天津大学学报,2004,37(7):565-569
    [130] 黄惠忠,纳米材料分析,北京:化学工业出版社,2003:345
    [131] Seidensticker R G,Hamilton D R,Growth mechanism in of germanium dendrics : three twin dendrites, experiments on and models for the entrie interface,J Appl Phys,1963,34(3):113
    [132] Hamilton D R,Seidensticker R G. Propagation mechanism of germanium dendrics,J Appl Phys,1960,131(1):1165
    [133] Bennett A I,Longini R L,Dendritic growth of germanium crystals,Phys Rev, 1959,116:53
    [134] Gao Houxiu,Zhang Guijie,Chen Quanshui,et al,Quasi-fluid state in gabbro,Science In China (series B),2003,46(2):1-8
    [135] Amelinckx S,Zhang X B,Bernaerts D,et al,A formation mechanism for catalytically grown helix-shaped graphite nanotubes,Science,1994,265:635-639.
    [136] Kawaguchi M,Nozaki K,Motojima S,et al,A growth mechanism of regularly coiled carbon fibers through acetylene phrolysis,J Cryst Growth,1992,118:309-313
    [137] Dujardin E,Bacsa W.S,Chatelais A,et al,Capillarity and wetting of carbon nanotubes,Science,1994,265::1 850-1 852
    [138] Ugarte D,Chatelain A,de Heer W A,Nanocapillarity and chemistry in carbon nanotubes,Science,1996,274:1 897-1 899
    [139] Ajayan P.M,Iijima S,Capillarity-induced filling of carbon nanotubes,Nature, 1993,361:333-334
    [140] Tsang S.C,Harris P.J.F,Green M.L.H,Thinning and opening of carbon nanotubes by oxidation using carbon dioxide,Nature,1993,362:520-522
    [141] Ajayan P.M,Ebbesen T.W,Ichihashi T,et al,Opening carbon nanotubes with oxygen and implications for filling,Nature,1993,362:522-525
    [142] Tsang S C,Chen Y K,Harris P J F,et al,A simple chemical method of opening and filling carbon nanotubes,Nature,1994,372:159-162
    [143] Li W Z,Xie S S,Qian L X,et al,Large-scale synthesis of aligned carbon nanotubes,Science,1996,274:1 701-703
    [144] 高后秀,陈泉水,刘双翼等,Cu-Zn-Al 合金纳米分叉结构的制备及显微分析,功能材料,2004,35(增):3307-3310
    [145] Amelinckx S,Zhang X B,Bernaerts D,et al,A formation mechanism for catalytically grown helix-shaped graphite nanotubes,Science,1994,265: 635-639
    [146] Kawaguchi M,Nozaki K,Motojima S,et al,A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis,J Cryst Growth, 1992,118:309-313
    [147] 陈泉水,高后秀,刘双翼等,一维 Cu-Zn-Al 合金纳米结构的合成与表征,兵器材料科学与工程,2004,27(4):51-54
    [148] Terrones M,Grobert N,Olivares J,et al,Controlled production of aligned-nanotube bundles,Nature,1997,388:52-55
    [149] 高后秀,张贵杰,陈泉水等,辉长岩中的类流态研究,中国科学,B 辑, 2003,33(2):105-110
    [150] Chen Quanshui,Gao Houxiu,Liu Shuangyi,et al,One-dimensional nano-structure of Cu-Zn-Al alloy,Journal of University of Science and Technology Beijing,2004,11(5):469-473
    [151] 陈泉水,高后秀,刘双翼等,一维 Cu-Zn-Al 合金纳米结构的低温制备,材料热处理学报,2004 25(3):14-17
    [152] Kawaguchi M,Nozaki K,Motojima S,et al,A growth mechanism of regularly coiled fibers through acetylence pyrolysis,J cryst Growth,1992,118:309-313
    [153] Amelinckx S,Zhang X B,bernaerts D,et al,A formation mechanism for catalytically grown helix-shaped graphite nanotubes,Science,1994,265:635-639
    [154] Givargizov E I,Periodic instability in whisker growth,J Cryst Growth,1975,31:20-30
    [155] Givargizov E I,Fundamental aspects of VLS growth,J Cryst Growth,1973,20:217-226
    [156] Yu D P,Lee C S,Bello I,et al,Synthesis of nano-scale silicon wires by excimer laser at high temperature,Solid state Commun,1998,105:403-407
    [157] Zhang G W,Zhang Z,Bai Z G,et al,Transmission electron microscopy study on Si nanowires,Appl Phys Lett,,1998,73:677-679
    [158] Wang N,Tang Y H,Zhang Y F,et al,Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation,Chem Phys Lett,1998,293:368-372
    [159] 高后秀,陈泉水,刘双翼等,Quasi-fluid State in Solid and Cu-Zn-Al Alloy Nano-tube,材料热处理学报,2004,25(5):66-68
    [160] 李海波, 官杰, 胡安广等,纳米材料的制备方法,松辽学刊,1993,1:19-24
    [161] 高后秀,刘双翼,陈泉水等,常温常压下 Cu-Zn-Al 合金一维纳米结构的制备,功能材料,2004,35(增):2999-3302
    [162] Ihara S,Itoh S. Helically,Coiled and Toroidal Cage Forms of Graphitic Carbon,Carbon Natotubes. NY,Pergamon,1996,77
    [163] Amelinckx S,Zhang X B,Bernaerts D,et al.,A formation mechanism for catalyically grown helix-sharped graphite nanotubes,Sicence,1994,265:635-639
    [164] Wong E W,Sheehan P E,Lieber C M,Nanobeam mechanics: elastity, strength and toughness of nanorods and nanotubes,Sicence,1997,277,1971-1975
    [165] Meng G W,Zhang L D,Mo C M,et al,Preparation of β-SiC nanorods with and without amorphous SiO2 wrapping layers,J Mater Res,1998,13(9):2533-2538
    [166] A.M.Morales,C.M.Lieber,A laser ablation method for the synthesis of crystalline semicon-ductornanowires,Science,1998,279(5348):208-211
    [167] J.Westwater,D.P.Gosain,S.Usui,et al,Growth of silicon nanowires viagold/silane vapor-liquid-solid reaction,J.Vac.Sci.Technol.B,1997,15(3):554-557.
    [168] Morales A M,Lieber C M,A laser ablation method for the synthesis of crystalline semiconductor nanowires,Science,1998,278:208-211
    [169] 周光文,张泽,俞大鹏,一维纳米材料的合成及显微结构,中国科学,A辑,1999,29(1):85-88.
    [170] Yu D P,Lee C S,Bello I,et al,Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature,Solid State Com-mun, 1998,105:403-407
    [171] Duan X,Lieber C M.General synthesis of compound semiconductor nanowires,Adv.Mster,2000,12(4)298-301
    [172] 李梦轲,陆梅,王成伟,等,取向碳纳米管/硅纳米线复合阵列的制备,中国科学,B 辑,32(3):204-209
    [173] YU D P,HANG Q L,DING Y,et al,Amorphous silica nanowires:Intensive blue light emitters,Appl. Phys. Lett.,1998,279:208-211
    [174] Zhang M,Bando Y,Wadal L,et al,Synthesis of nanotubes and nanowires of silicon oxide,J. Mater. Sci. Lett,1999,18(23):1911-1913
    [174] Guo Y Z,Wu J S,Zhang Y F,Manipulation of single-wall carbon nanowires by chemical vapor deposition,Chem phys Lett,2002,362:314-318
    [175] Zhonglin Wang,Nanowires and nanobelts – Materials, Properties and Devices,Vol Ⅰ:Metal and Semiconductor Nanowires,清华大学出版社,2004,3:368-369
    [176] 方晓生,氧化物、硫化物准一维纳米材料的可控性生长及物性研究,第五届中国功能材料会议纳米材料专题,2004
    [177] Tang C C,Fan S S,Dang H Y,et al,Growth of SiC nanorods prepared by carbon nanotubes-confined reaction,J Cryst Growth,2000,210:595-599
    [178] 张洪涛,徐重阳,Sol-gel 法制备纳米碳化硅晶须的研究,电子元件与材料,2000,19(3):9-12
    [179] 韩伟强,范守善,李群庆等,采用碳纳米管制备的碳化硅纳米晶须研究.无机材料学报,1997,12(6):774-777
    [180] Larisa S Abovyan,Hayk H Nersisyan,Synthesis of alumina-silicon carbide composites by chemically activated self-propagating reactions , Ceramics International,2001,27:163-169
    [181] 谢挺,吴玉程,张立德,单晶氮化硅(α-Si3N4)纳米线的制备及其光学性能,第五届中国功能材料及其应用学术会议论文集III.2004,35(增刊):3027-3029
    [182] L Alvarez,T Guillard,J L Sauvajol,et al,Growth mechanisms and diameter evolution of single wall carbon nanotubes,Chemical Physics Letters,2001,342(6):7-14
    [183] A Fonsela,K Hernadi,J B Nagy,et al,Growth mechanism of coiled carbon nanotubes,Synthetic Metals,1996,77:235-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700