无机微滤膜纳米涂层修饰改性与仿生化学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称的陶瓷膜具有在微米级的支撑体上被纳米晶粒覆盖的通透性结构,它与“自清洁性”的动植物的超疏水表面具有相似的结构。这样就可从仿生学的角度研究陶瓷膜。在无机微滤膜的分离过程中,根据筛分原理,一般认为膜的过滤阻力主要集中在顶膜上,而过滤介质与膜的相互作用过程则往往被忽略。本文研究了具有类荷叶结构的仿生无机微滤膜(含纳米晶涂层修饰改性)与过滤介质水的相互作用。
     1、关于涂层中ZrO_2纳米晶与过滤介质水的相互作用
     本研究用四方相ZrO_2纳米晶对α-Al_2O_3无机微滤膜进行了涂层修饰改性,纳米晶改性涂层的表面粗糙度(Ra=6.11μm)明显高于未改性的(1.5μmα-Al_2O_3粉体)表面粗糙度(Ra=0.54μm),其表面粗糙度的比值为11.32,纳米晶涂层改性膜的比表面积是未改性膜的13.87倍。ZrO_2的晶粒越小其表面积也就越大,表面羟基的数量也就越多,表面羟基电离时所呈现出的负电荷也就越高,其Zeta电位的绝对值也就越大,等压下的水通量也就越大。在世界上首次发现:由于无机微滤膜的顶膜对水的团簇结构的解体作用(过膜后的水的电导率产生突跃性大幅度的增加),经纳米晶涂层修饰改性后的无机微滤膜在平均孔径相对于支撑体缩小约10倍以后,在相同压差下其水通量不但没有大幅度地减少,反而明显大于支撑体的水通量。正确解释这一看来似乎违背筛分原理的反常现象有可能导致自然界中一些基本规律的发现。
     2、关于无机微滤膜微孔道内壁的亲、疏水性与过滤介质水的相互作用
     随着无机微滤膜微孔道内壁的亲水性的下降和疏水性的增强,水的渗透通量呈明显的下降趋势。当达到一定的疏水程度后,水的渗透通量趋近于零。无机微滤膜材质的亲水程度与水通量有着内在的联系。
     3、不同离子的吸附状态对水通量的影响
     分别在MgCl_2和NaCl稀溶液中,用AFM研究了四方相ZrO_2纳米涂层的表面排斥力随作用距离的相互关系,Mg~(2+)在ZrO_2纳米涂层表面具有特征吸附,为强烈的短程排斥力。Na~+呈现出惰性电解质的特征,表现为长程排斥力。Mg~(2+)在膜表面的特征吸附,使渗透通量呈下降的趋势。而Na~+的非特征吸附却使水通量呈稍有增大的趋势。
     4、SnO_2纳米晶涂层(含掺杂或掺入)与过滤介质水的相互作用
     分别采用镍、银、铜、钛、铁等过渡金属离子,以不同的掺杂(入)量对微米ZrO_2颗粒表面上的SnO_2纳米晶进行掺杂,研究了改性微滤膜的润湿性和水通量随过渡金属离子掺杂量的变化规律。结果表明,以镍、银、铜、钛、铁掺杂的SnO_2纳米涂层对微滤膜进行修饰改性后,其润湿性和水通量都分别有所提高。
Asymmetric ceramic membrane has the per-foliate structure with the micron- level support was covered by nano-crystal, which is similar with the structure of the "self-cleaning" super-hydrophobic surface of animal and plant. Thus ceramic membrane is studied in the method of bionics. In the separation process of inorganic micro-filtration membrane, it was thought the filtration resistance of ceramic membrane was concentrated on the top layer of membrane according of the screening principle, and it was usually ignored the interaction between membrane and filter media. In this paper the influence was studied the interaction between the bionic inorganic micro-filtration membrane (including nano-crystalline coating modification) with the similar-lotus-leaf structure and water as filter media.
     1. The interaction between ZrO_2 nano-crystal of the coating and water as filter media.
     It is studiedα-Al_2O_3 inorganic micro-filtration membrane was modified by tetragonal ZrO_2 nano-crystal with the surface-roughness of 6.11μm (Ra=6.11μm), which was higher than the surface-roughness of membrane without modification (Ra=0.54μm) and the ratio of the surface roughness is 11.32. The specific surface area of membrane increase 13.87 times fore-and-aft modification. The smaller the ZrO_2 nano-crystal, the bigger the specific surface area and the more the number of surface hydroxyl and the higher the negative charge due to surface hydroxyl ionization and the larger the absolute value of Zeta potential and the higher the water flux under the same pressure. It is first found in the world: since the disintegration of cluster structure of water effected by the top layer of micro-filtration membrane (the water conductivity sharply increased), and the aperture of the membrane modified by the nano-crystalline coating reducing by 10 times compare to the membrane supports, the water flux of the modified membrane increased under the same pressure. The correct interpretation of these illegitimacy phenomena to be contrary to screening principles leads to the some basic laws discovery of nature.
     2. The hydrophilic and hydrophobic properties of microspore of inorganic micro-filtration membrane and the interaction between the pore inner-wall between and water as filter media
     As the enhancement in hydrophobicity and decrease in hydrophilicity of inorganic micro-filtration membrane pore inner wall, the permeation flux of water showed a decreased trend obviously. The permeation flux of water is closed to zero, when it got to a hydrophobicity point. The hydrophilic degree of micro-filtration membrane' material associated with the water flux.
     3. Effect of the different ions' adsorption on water flux. The relationship of the surface repulsive force of tetragonal ZrO_2 nanocrystalline coating with the effect range was studied by AFM in the dilute solution of MgCl_2 and NaCl. Mg~(2+) was adsorbed on ZrO_2 nano-crystal coating surface, which exhibited the intensive short-range repulsive force. Na~+ showed the characteristic of inert electrolyte, which exhibited the long-range repulsive force. The characteristic adsorption of Mg~(2+) on membrane surface induced the decrease of permeation flux. And the non-characteristic of adsorption of Na~+ induced the increase of permeation flux.
     4. The interaction between SnO_2 nano-crystal coating (include doping or mixture) and water as filter media.
     SnO_2 nano-crystals loading in the ZrO_2-micron particles were doped by the transition metal ions such as Ni、Ag、Cu、Ti、Fe in different amount. The rule of the wetting-ability of modified micro-filtration membrane and the water flux of membrane doped amount by transition metal ion was studied. The results showed the modified micro-filtration membrane by Ni、Ag、Cu、Ti、Fe doped SnO_2 nano-crystal, which exhibited the wetting-ability and the water flux increasing.
引文
[1]周健儿,李会丽,胡学兵.颗粒表面包无机膜工艺及其应用的研究现状.中国陶瓷工业,2005,12(2):22-26.
    [2]周健儿,梁健,朱志刚等.TiO_2对微滤陶瓷复合膜改性的研究--反应物种类的影响.中国陶瓷工业,2002,9(6):1-4.
    [3]周健儿,张小珍,汪永清等.TiO_2改性Al_2O_3微滤膜荷电性及其对膜水通量的影响.中国陶瓷,2007,43(4):7-9.
    [4]周健儿,汪永清,马光华等.ZnO·Al_2O_3修饰Al_2O_3微滤膜的研究.中国陶瓷工业,2002,9(4):1-5.
    [5]周健儿,王艳香,马光华等.溶胶-凝胶法制备超滤Al_2O_3膜的研究--Ⅰ勃姆石溶胶的制备.陶瓷学报,1999,20(2):87-91.
    [6]周健儿,潘锦添,汪永清等.陶瓷微滤膜处理含油污水的反冲洗研究.中国陶瓷,2008,44(7):12-14.
    [7]周健儿,赵学国,马光华等.改性膜的制备与性能研究.中国陶瓷工业,2000,7(4):1-5.
    [8]周健儿,吴建清,刘阳.微孔无机膜的研究状况与展望.中国陶瓷工业,2003,10(4):29-35.
    [9]周健儿,吴汉阳.无机陶瓷分离膜的研究与应用Ⅲ--膜过滤机理简述.中国陶瓷工业,2002,9(5):33-37.
    [10]周健儿,吴汉阳.无机陶瓷分离膜的研究与应用--陶瓷分离膜的研究应用和发展.中国陶瓷,1999,35(3):16-20.
    [11]李月明,周健儿,朱小平等.假凝胶法制备Al_2O_3微滤分离膜的研究.陶瓷学报,2003,24(2):67-70.
    [12]周健儿,汪永清,马光华等.均相沉淀法涂覆ZnO工艺对微孔Al_2O_3分离膜改性作用的研究[I]--反应温度与涂覆次数的影响.陶瓷学报,2001,22(4):209-214
    [13]周健儿,胡学兵,于云等.SnO_2纳米晶粒对α-Al_2O_3微滤膜的改性作用.硅酸盐学报,2007,35(11):1444-1447.
    [14]周健儿,胡学兵,于云等.工艺因素对α-Al_2O_3微粒表面SnO_2涂层zeta电位的影响.硅酸盐学报,2007,35(2):202-205.
    [15]李月明,周健儿,马光华等.热处理工艺对制备Al_2O_3超滤膜的影响.中国陶瓷工业,2002,9(6):21-24.
    [16]周健儿,吴建青,汪永清等.纳米TiO_2涂层对Al_2O_3微滤膜的改性研究.无机材料学报.2006,21(3):725-730.
    [17]周健儿,吴建青,汪永清等.纳米ZnO涂层对Al_2O_3微滤膜的改性.硅酸盐学报,2004,32(12):1464-1469.
    [18]周健儿,胡学兵,汪永清等.纳米SnO_2涂层对α-Al_2O_3微滤膜的改性研究.稀有金属材料与工程,2007,36(增2):481-484.
    [19]周健儿,胡学兵,于云等.纳米ZnO涂层对不同孔径α-Al_2O_3微滤膜的修饰作用.无机材料学报,2007,22(6):1216-1220.
    [20]周健儿,孙健,王艳香.溶胶-凝胶法制备超滤Al_2O_3膜的研究--非担载超滤Al_2O_3膜的制备.陶瓷学报,2001,22(1):1-6.
    [21]周健儿,张小珍,汪永清等.ZnO改性Al_2O_3颗粒表面荷电性研究.人工晶体学报,2008,37(3):721-725.
    [22]周健儿,汪永清,张小珍等.ZrO_2/堇青石微滤膜表面荷电性能及其对膜通量的影响.硅酸盐学报,2009,37(2):299-303.
    [23]周健儿,孙健,王艳香.溶胶-凝胶法制备超滤Al_2O_3膜的研究--非担载超滤Al_2O_3膜的制备.陶瓷学报,2001,22(1):1-6.
    [24]周健儿,马光华,顾幸勇等.一种改性的陶瓷微滤膜[P].中国专利:1513588.2004-07-21.
    [25]周健儿,江伟辉,张小珍等.一种复合改性的Al_2O_3微滤膜[P].中国专利:1879953.2006-12-20.
    [26]周健儿,汪永清,江伟辉等.一种用于无机微滤膜改性的装置[P].中国专利:2902433.2007-05-23.
    [27]周健儿,包启富,汪永清等.无机陶瓷膜在含油废水中的应用进展.陶瓷学报,2008,29(1):54-57.
    [28]周健儿,胡学兵,于云等.氧化物纳米涂层显微结构对α-Al_2O_3微滤膜水通量的影响.人工晶体学报,2007,36(4):889-983.
    [29]李月明,周健儿,陆佩文等.以无机盐为前驱体制备超滤膜的研究.陶瓷学报,2002,23(2):87-91.
    [30]Zhou J.E.,Hu X.B.,Yu Y.,et al.Process Influence on Microstructure of ModificativeZinc Oxide Nano-coating of α-alumina Microfiltration Membrane.人工晶体学报,2008,37(6):1410-1414.
    [31]Liu Y.,Zhou J.E.,Larbot Andre,et al.Study on the Modification of Alpha-alumina Tubular Membrane with Nano Zinc Oxide.)人工晶体学报,2007,36(5):1187-1192.
    [32]Barthlott W,Neinhuis C.Purity of the sacred lotus or escape from contamination in biological surface[J].Plantar.1997,202:1-8.
    [33]Neinhuis C,Barthlott W.Characterization and distribution of water-repellent self-cleaning plant surface[J].Annals of botany.1997,79:667-667.
    [34]Barthlott W.The lotus-effect of nature's model for self-cleaning surface[J].ITB International Textile Bull,2001.
    [35]L.Q.Ren,Z.W.Han,L.M.Tian and J.Q.Li.Characteristics of the non-smooth surface morphology of living creatures and its application in agricultural engineering.[C].2th international conference on design & nature.2004:275-284.
    [36]Sun J.R.,Li J.Q.,Cheng H.,Dai Z.D.,Ren L.Q.Restudies on body surface of dung beetle and application of its bionics flexible technique[J].Journal of Bionics Engineering.2004,1(1):53-60.
    [37]Han Zhiwu,Liu Zubin,Yang Zhuojuan,Yan Yuying,Ren Luquan.Computer simulation of rolling wear on bionic non-smooth convex surface[J].Journal of Bionics Engineering.2004,4(1):241-247.
    [38]邱兆美.典型生物表面非光滑形态评价指标及植物表面功能性试验[硕士论文].吉林:吉林大学.2005.
    [39]W.Barthlott,C.Neinhuis.Purity of the Sacred lotus or escape frome contamination in biological surface[J].Planta.1997,202:1-8
    [40]Zhong-Ze Gu,Hiroshi Uetsuka,Kazuyuki Takahashi,et al.Structural Color and the Lotus Effect[J].Angew.Chem.Int.Ed..2003,42(8):894-897.
    [41]G.S.Watson,J.A.Watson.Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy[J].Applied Surface Science.2004,235:139-144.
    [42]C.Neinhuis,W.Barth lott.Characterization and distribution of water-renellent,self-cleaning plant surfaces[J].Ann.Bot..1997,79(6):667-667.
    [43]金美花.超疏水性纳米界面材料的制备及研究[博士论文].吉林:吉林大学.2004.
    [44]颜肖慈,罗明道.21世纪化学丛书-界面化学.北京.化学工业出版社.2005:168-169.
    [45]Tom Stiphenson,Simon Judd,et al.Membrane Bioreactors for Wastewater Treatment (膜生物反应器污水处理技术)(张树国,李咏梅译.北京:环境科学与工程出版中心.2003.
    [46]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:环境科学与工程出版中心.2002.
    [47]苏毅.无机膜的特性、制造及应用.化学世界.2001,11:604.
    [48]楼雅青等.荷电膜的研究及其应用.净水技术.2003,4:4.
    [49]V.T.Zaspalis,W.vanPraag,K.Keizer.Reactions of methanol over catalytically active alumina membranes.[J].Appl.Catal.1991,74(1):204-222
    [50]石跃红.无机膜制备技术的进展.山西化工.1999,4:14.
    [51]徐南平.无机膜研究进展.化学进展.1995.1:45
    [52]韦奇等.无机陶瓷膜表面改性技术研究进展.功能材料.1999,6:18.
    [53]尹津龙.无机陶瓷膜修饰技术进展.膜科学与技术.1997,8:1.
    [54]徐南平等.陶瓷膜工程设计从工艺到微结构.膜科学与技术.2006,2:1-5.
    [55]Xomeritakis G.,Lin Y S.CVD of solid oxides in porous media for ceramic membrane preparation or modification Explicit solutions for deposition characteristics[J].Chem Eng Sci,1994,49:3909-3922
    [56]Uhlhom R,R.Keizer K,Burggraaf A J..Gas and surface diffusion in modified a γ-alumina system[J],J Membr.Sci,1989,46:225-241.
    [57]Pampach R,Haberkc K.Ceramic powders[M].Amsterdam:Elsevier scientific pub.Company,1983,623.
    [58]郑水林.粉体表面改性[M].北京:中国建材工业出版社.1995:70-86.
    [59]陈春霞.用高能球磨制备氧化铁/聚氯乙烯纳米复合材料[J].材料研究学报.2000,14(3):334.
    [60]Anderson M A,Rubin A J.Adsorption of inorganics at solidliguid interfaces.Ann Arbor[M].Science Publishers,Inc.1981,98.
    [61]胡金华.新型氢氧化镁阻燃剂的应用研究[J].工程塑料应用.1990(4):15.
    [62]刘立华.硬脂酸钠改性纳米氢氧化镁效果研究[J].北京化工大学学报.2004,31(3):31-34.
    [63]任欢鱼.Fe3O4纳米颗粒的表面改性[J].化学研究.2003,14(1):11-13.
    [64]沈钟.有机化钙硅胶的制备和性质[J].江苏化工.1993,21(2):10-13.
    [65]李晓娥.纳米二氧化钛有机化改性研究[J].无机盐工业.2001,339(4):5-7.
    [66]章正熙.纳米碳酸钙湿法表面改性的研究及其机理探讨[J].北京化工大学学报.2002,29(3):49-52.
    [67]杜振霞.纳米碳酸钙表面改性及在涂料中的应用研究[J].北京化工大学学报.1999,26(2):83-85.
    [68]王伟.纳米Fe_3O_4颗粒改性详析[J].材料科学与工艺.2001,9(4):431-433.
    [69]周吉高.纳米氧化锆粉体的表面改性研究[J].无机材料学报.1996,11(2):237-240.
    [70]刘颖.Fe_3O_4.超细分散体系的制备[J].功能材料.1999,30(1):24-28.
    [71]刘阳桥.纳米3Y-TZP水悬浮液性质研究[J].高等学校化学学报.2002,23(11):2155-2158.
    [72]刘阳桥.纳米Y-TZP悬浮液的团聚抑制研究[J].无机材料学报.2002,17(6):1292-1296.
    [73]Yong Zhang,et al.Surface modification of superpara-magnetic magnetite nano particles and their intracellular uptake[J].Biometerials.2002(23):1553-1561.
    [74]张巨先.非均匀成核法涂覆改性纳米SiC粉体表面研究[J].硅酸盐学报.1998,26(6):762-767.
    [75]张巨先.Al_2O_3和Y_2O_3包覆的SiC复合粒子制备[J].无机材料学报.1999,14(3):380-384.
    [76]Sabbides Th G,Koutsoukos P G.The effect of surface treatment with inorganic orthophosphate on the dissolution of calcium carbonate[J].Journal of Crystal Growth.1996,165:268-272.
    [77]Do Su Kim,Churl Kyoung Lee.Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid[J].Applied Surface Science.2002,202:15-23.
    [78]傅建杭.用近红外光谱研究金属氧化物的表面羟基对其催化活性的影响[J].洛阳工学院学报.1993,14(3):95-99.
    [79]余爱萍.抗紫外纳米ZnO粉体的制备与表面改性[J].上海化工.2001,20:13-15.
    [80]徐存英.纳米二氧化钛的表面改性研究[J].云南化工.2000,27(5):6-7.
    [81]李燕.纳米ZrO_2超细粉的制备及表面改性[J].安徽建筑工业学院学报.1999,7(2):57-59.
    [82]林安.纳米二氧化钛表面化学改性及在涂料中的应用[J].材料保护.2002,35(11):6-7.
    [83]沈钟.酯化硅胶的物理结构和表面性质的研究[J].化学学报.1991,19:446-450.
    [84]钱翼清.TDI改性纳米SiO_2表面[J].功能材料.2001,27(5):6-7.
    [85]Hassan Mahfuz,et al.Fabrication,synthesis and mechanical characterization of nanoparticles inflused polyurethane foams[J].Composites(Part A:Appliedscience and manufacturing),2004(35):453-460.
    [86]Marie-Isabelle Baraton.Surface chemistry of TiO_2 nanoparticles[J]:Influence on electrical and gas sensing properties.Journal of the European Ceramic Society.2004(24):1399-1404.
    [87]沈钟.苯基化硅胶的物理结构和表面性质的研究[J].化学学报.1990,48:846-850.
    [88]邵长生.白炭黑表面改性及其对橡胶力学性能的影响[J].橡胶工业.1991,33:106-109.
    [89]周树学.改性纳米SiO_2对高固体分丙烯酸酯聚氨酯涂料性能的影响[J].机械工程材料.2004,28(2):41-43.
    [90]Jeanette Gouzalez.Effects of coupling agent on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO_3[J].European Polymer Journal.2002,38:2465 -2475.
    [91]马正先.纳米氧化锌的表面改性[J].矿冶.2004,13(2):50-52.
    [92]瞿雄伟.钛酸酯偶联剂在碳酸钙填充PVC中的应用研究[J].河北工业大学学报.2001,30(1):84-86.
    [93]林美娟.铝酸酯偶联剂在天然橡胶/碳酸钙复合体系中的应用[J].橡胶工业.1996,43(1):30-33.
    [94]Espiard P,Guyot A.Poly(ethyl acrylate)latexes encapsulating nanoparticles of silica.Grafting process on silica[J].Polymer.1995,36(23):4391.
    [95]钱家盛.纳米SiO_2表面聚合物接枝改性的研究[J].安徽化工.2000,108(6):13-14.
    [96]Qing Liu,et al.Surface modification of nano-apatite by grafting organic polymer[J].Biomatials.1998(19):1067-1072.
    [97]H.-J.Glasel,et al.Radiation-cured polymeric nanocomposites of enhanced surface-mechanical properties[J].Nuclear Instruments and Methods in Physics Research B.2003(208):303-308.
    [98]李晓.纳米碳酸钙湿式复合改性工艺探索[J].材料科学与工程.2002,20(3):367-370.
    [99]Bertalan Gy,Marosi Gy,Anna P,et al.Role of interface modification in filled and flame-retarded polymer systems[J].Solid State Ionics.2001,141:211-215.
    [100]李国栋.无团聚纳米氧化锌的制备与机理研究[J].中国陶瓷.2003,39(4):6-9.
    [101]邹玲.表面修饰二氧化钛纳米粒子的结构表征及形成机理[J].物理化学学报.2001,17(4):305-309.
    [102]吴志申.油酸/PSt/TiO_2复合纳米微球的制备[J].应用化学.2001,18(3):236-238.
    [103]刘雪宁.表面改性的纳米氧化锌的制备及其吸收特性[J].物理化学学报.2000,16(8):746-748.
    [104]陈爽.亲油性ZnS纳米微粒的合成[J].高等学校化学学报.2000,21(3):472.
    [105]陆佩文.无机材料科学基础.武汉:武汉工业大学出版社.1996:38、124、229
    [106]师昌绪.材料大辞典.北京:化学工业出版社.1994.第16、478、589、932、1023、1069页
    [107]K.A.杰克逊.材料科学与技术丛书-半导体工艺.北京:科学出版社.1999:55、214.
    [108]Neelesh A.patankar.On the Modeling of Hydrophobic Contact Angles on Rough Surfaces[J].Langmuir.2003,19:1249-1253.
    [109]W.Chen,A.Y.Fadeev,M.C.Hsieh,et al.Ultrahydrophobic and ultralyophobic surfaces:Some comments and examples[J].Langmuir.1999,15:3395-3399.
    [110]张方志.无机粒子的表面修饰及其聚合物的制备与性能研究[博士论文].兰州:兰州大学.2008.
    [111]Yu Jiaguo,Pan Mu,Zhang Lianmeng.Preparation of Ultrafine Particle ZrO2 by Wet Chemical Method and its principle of phase transition[J].Chinese Science Bulletin.1991,36 16:1270-1272.
    [112]A.Nakajima,A.Fujishima,K.Hashimoto,T.Watanabe.Adv.Mater.1999,11(16),1365.
    [113]J.Genzer,K.Efimenko.Creating Long-lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers[J].Science.2000,290,2130.
    [114]Ji Guangming,Tao Jie.Effect of Coupling Agent on ZnO Nanoparticles Distribution in Polypropylene[J].Journal of nanjing University of Aeronautics and astronautics.2004,36(2):262-266.
    [115]Wu Yefan.Biomimetic Combining Catalysis of Cubane Type Clusters with Ferrer-sulfur and Polyphenylene Sulfide[D].directed by Cai Qirui.Xiamen University,1988.
    [116]Ito T,Buhlmann P,Umezawa Y.Scanning Tunneling Microscopy Using Chemically Modified Tips[J].Anal.Chem.1998,70:255-259.
    [117]蒋子铎,邝生鲁,杨诗兰.动态法测定粉末-液体体系的接触角.化学通报.1987,7:17-21.
    [118]徐南平等.多孔陶瓷膜支撑体在HNO_3溶液中的腐蚀性能研究.化学工程.2008.36:48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700