川东二叠纪层序充填与沉积物分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华南板块在海西构造阶段以板内运动为主,处于拉张伸展构造环境下,发育了一系列具有拉张或左行拉分性质的裂陷盆地,特别是在二叠纪,拉张活动剧烈(即峨眉地裂运动),并已延伸到盆地内部,在板块上的不同部位形成了一些深水盆地,整体形成了台盆相间、台中有盆、盆中有台的古地理格局,而台盆边缘发育的礁滩恰恰是油气的有利储集体,如“普光”气田、“龙岗”气田等,因而对华南板块二叠纪层序充填与沉积物分布规律的研究具有十分重要的理论意义和现实意义。
     本论文以四川盆地东部(即川东地区)二叠系为研究对象,以野外露头剖面为研究重点,充分利用已有的钻井资料及地震资料,以沉积学、层序地层学、地球化学、古生物学、地球物理学和构造地质学等原理为指导,利用多种分析手段,深入研究二叠系硅质岩的岩石学特征、地球化学特征,以揭示硅质岩的成因类型,挖掘隐藏在硅质岩背后的地质背景信息;分析二叠系的沉积体系、层序充填特征,结合硅质岩研究成果、区域构造背景,以三级层序或三级层序体系域为编图单元,编制具有精确性、等时性、成因连续性等优点的岩相古地理图,揭示研究区的沉积物分布规律,进而分析整个沉积盆地的性质及演化特征,揭示上扬子板块的演化特征。通过研究,得出以下几点成果认识:
     (1)对重庆石柱冷水溪中二叠统茅口组和上二叠统吴家坪组层状硅质岩进行岩石学、主量元素、微量元素、稀土元素及硅氧同位素研究,表明它们都为热水硅质岩,形成于台盆环境中,但茅口组热水硅质岩的特征明显于吴家坪组。①茅口组和吴家坪组硅质岩化学成分均以SiO_2为主,含量分别为80.09%~97.91%和65.52%~97.76%,其Al/(Al+Fe+Mn)平均值分别为0.30和0.4599。Al-Fe-Mn判别图解、SiO_2-Al_2O_3图、SiO_2-Fe_2O_3图、Fe-Mn-(Cu+Co+Ni)三角图解、U-Th图解均表明茅口组和吴家坪组硅质岩绝大部分为热水硅质岩,少部分为非热水硅质岩。②茅口组和吴家坪组硅质岩稀土元素总量都较低,平均值分别为7.509×10~(-6)和38.540×10~(-6),重稀土元素中度富集;Ce中度异常,北美页岩标准化配分模式图略为向左倾斜或平整,Eu无明显正负异常,这些特征表明两组硅质岩成分以热水沉积为主,并有部分非热水成因的物质混入。③茅口组和吴家坪组硅质岩δ~(30)Si的值总体上都位于热水成因硅质岩区域内,根据δ~(18)O值计算得出茅口组和吴家坪组硅质岩形成时,古海水温度变化范围分别为34.45~80.77℃和43.28~93.61℃。④茅口组和吴家坪组硅质岩结构构造表明,该组硅质岩形成于水体较深的环境,这些为滑塌变形构造、灰岩砾石、菊石化石、放射虫、海绵骨针以及薄壳腕足等所证明:MnO/TiO_2值、Al_2O_3/(Al_2O_3+Fe_2O_3)值、δCe值和δ~(30)Si值也均表明茅口组和吴家坪组硅质岩形成于台盆环境。
     (2)二叠纪的沉积过程中,同生断裂活动频繁而强烈,并伴随有火山活动。区内茅口组和吴家坪组热水硅质岩的形成主要取决于以下两个条件:①板内沿断裂拉张,地壳具有可渗透性,海水向下渗透并在一定深度内发生循环,然后上涌。②剖面位于七曜山断裂的附近,该断裂提供了深部热液。下渗的海水与岩浆热液混合,海水被加温后,溶解了大量SiO_2及其他有关元素,并以热泉形式通过断裂喷出,使附近海水中SiO_2含量极大提高并沉淀;同时又促使放射虫和海绵等硅质生物繁殖,形成生物硅质岩
     (3)川东地区二叠系发育了滨岸-潮坪、碳酸盐缓坡、碳酸盐台地、台盆4种沉积体系,研究认为随着生物岩隆的快速发展,晚二叠世吴家坪期的碳酸盐缓坡至长兴期转化为碳酸盐台地。
     (4)识别出6种层序界面的表现形式:古风化壳、古喀斯特作用面、火山事件作用面、最大海泛面、岩性、岩相转换面和底流冲刷侵蚀面,4类与盆地构造演化有关的成因类型:造山侵蚀层序不整合界面、升隆侵蚀层序不整合界面、海侵上超层序不整合界面和暴露层序不整合界面。以此为基础,将研究区二叠系划分出12个三级层序,详细讨论了各层序在不同相区内的特征及其变化,进行了区域对比,并建立了川东二叠纪的层序充填模型。认为层序充填主要受控于构造运动、全球海平面升降、沉积作用和气候四大因素。
     (5)以三级层序体系域或三级层序为编图单元对研究区进行岩相古地理编图研究,共编制了14张层序岩相古地理图(PSQ1、PSQ2、PSQ3、PSQ4、PSQ5、PSQ6、PSQ7、PSQ8LST、PSQ8TST、PSQ8HST、PSQ9、PSQ10、PSQ11和PSQ12),揭示了区域沉积物分布规律及演化规律。表明:早二叠世梁山期(PSQ1)发育了滨岸沼泽的细粉砂岩、泥页岩夹煤线:中二叠世(PSQ2~PSQ6)海平面升高,发育了开阔台地相的生物碎屑灰岩、含生物碎屑泥晶灰岩等,并常夹有燧石条带、页岩或含有燧石结核,局部地区有生物碎屑滩发育;PSQ7,在石柱地区发育了一硅质岩台盆,区内其它地区仍为开阔台地相沉积;吴家坪早期(PSQ8LST)普遍为一套滨岸相的页岩、铝土质页岩、褐黄色粉砂岩、泥质粉砂岩夹煤线沉积,在研究区北部(梁平)地区以发育玄武岩和辉绿岩为特征。吴家坪中晚期(PSQ8TST~PSQ10)为碳酸盐缓坡沉积,但在PSQ9~PSQ12,石柱冷水溪地区有硅质岩台盆存在;长兴期(PSQ11、PSQ12)为碳酸盐台地沉积,在研究区北部和南部分别存在“开江-梁平”和“石柱”两个泥质灰岩台盆。
     (6)峨眉山玄武岩喷发过程就是大陆裂谷形成演化过程,它始于茅口期,于晚二叠世早期喷出地表,结束于晚二叠世中期,分为以下5个阶段:①茅口早期(PSQ5、PSQ6)深部岩浆开始活动,使上覆地壳处于微上拱状态,海底地形略有起伏,海底未完全固结的沉积物在以上多种因素影响下较易发生塑性滑动,沉积了茅口组瘤状灰岩。富含SiO_2的热液进入海底,混迹于沉积物中,成岩过程中发生分异形成燧石结核或燧石条带。②茅口晚期(PSQ7)岩浆上拱,使上覆地壳形成穹窿,穹隆中心地区容易发生张性裂开,形成一些断陷盆地,盆地中沉积了硅质岩,本区如茅口期石柱台盆。③茅口未期,玄武岩即将喷出地表,岩浆上拱作用使四川盆地全面快速隆升形成穹窿,穹窿全面位于海平面上,形成了中上二叠统之间的平行不整合接触,即为东吴运动。④吴家坪早期(PSQ8LST)峨眉山玄武岩全面喷出地表,穹窿中心为陆相喷发,玄武岩中发育丰富的柱状节理;周边海域为水下喷发,玄武岩中有枕状构造。因地下岩浆大规模流出地表,周边地区基底下沉来弥补岩浆房的空间,在此背景下形成了石柱台盆,沉积了吴家坪组的硅质岩。⑤长兴期火山活动结束,四川盆地整体拉张下沉,大部分地区演变为沉积区,“开江-梁平”泥质灰岩台盆开始演化形成,与“石柱”台盆同时存在。
The South China Plate was under an extensional tectonic setting and was mainly characterized by intraplate movements during the Hercynian stage. A series of extensional rift basins or sinistral pull-apart rift basins were developed in it. Especially in Permian, an intenser extension was developed and extended to inner part of the basin, called Emei Taphrogenesis, which led to the formation of some deep-water basins in different places in the South China Plate. So the paleogeographic pattern presented as basins alternated with platforms, basins in platforms, and platforms in basins. As we know, reefs developed on the margin of platform-basins are good reservoirs of oil and gas, such as Puguang Gas Field and Longgang Gas field. Therefore, it is very meaningful to study the sequence filling and sediment distribution of Permian in the South China Plate.
     This dissertation was primarily focused on the Permian in eastern Sichuan basin. Base on the field outcrops and a large of logging data, and seismic materials, this paper studied the Permian cherts and their implications with multiple methods. The principle of Sedimentology, Sequence Stratigraphy, Geochemistry, Paleontology, Geophysics and Tectonics and some other traditional geology theories were used as the instructions of this paper. Besides, the characters of deposition system, sequence filling, and regional tectonic setting were analyzed. With regarding sequence or sequence systems tract, we drew the sequence-based lithofacies paleogeography map more scientifically, isochronously, continuously, and precisely. At the same time, we described and inferred the sediment distribution, and the characteristics and evolution of Permian sedimentary basin in eastern Sichuan basin as well as the evolution of the Permian Upper Yangtze Plate. According to the results, we obtained the findings as following:
     (1) The petrology, and distribution of major and minor elements, REE, and SiandO-isotopic geochemistry indicated that the Middle Permian Maokou Formation and the Upper Permian Wujiaping Formation consist of hydrothermal silicates in Lengshui Stream of Shizhu, Chongqing and they were deposited in inter-platform basins.①The contents of SiO_2 in the Maokou and Wujiaping Formation are relatively high, and the value is 80.09%-97.91% and 65.52%-97.76% respectively. The ratio of Al/(Al+Fe+Mn) is regarded as a helpful criterion for identifying hydrothermal silicates from other silicates. The average ratios are 0.30 and 0.4599 in the Maokou and Wujiaping Formation. In addition, along with the projection in Fe-Mn- (Cu+Co+Ni) ternary diagram, SiO_2-Al_2O_3, SiO_2-Fe_2O_3, and U-Th relative diagram, most of the Maokou and Wujiaping Formations' silicate samples fall into the hydrothermal field. Only a few of them were not originated from hydrothermal.②In the Maokou and Wujiaping Formation, the REE contents of silicate are low (7.509×10~(-6) and 38.540×10~(-6)), with mid enrichment of HREE and negative anomaly of Ce. Eu has not evident anomaly. These features suggest that the silicates are hydrothermal genetic.③The Silicon (δ~(30)Si) and Oxygen (δ~(18)O) isotope compositions are similar to hydrothermal origin. Based on the Oxygen isotope fractionation equation of chert and water, the paleotemperatures of the silicates in the Formations are 34.45-80.77℃and 43.28-93.61℃.④The well preserved remains of radiolarians, thin-shell brachiopoda, ammonites, and spongy spicules were recorded in the silicates. Moreover, slumps and limestone gravels were found in the silicates. These petrology characters indicate that the Maokou and Wujiaping Formations' silicates were deposited in inter-platform basins. This conclusion was supported by the geochemical data of the silicates, whch are the values of MnO/TiO_2, Al_2O_3/(Al_2O_3+Fe_2O_3), 8Ce andδ~(30)Si.
     (2) There were many syndepositional faults and volcanisms of Permian in eastern Sichuan basin. And the heat source responsible for hydrothermal convection is presented in study area. Two factors constrained the formation of hydrothermal silicates in the Maokou Formation and Wujiaping Formation:①Extensions along with the faults of the interior plate which lead to the crust being permeable, thus the sea water leaked into deep crust and was heated; Therefore, the circulation occurred and hot fluid upwelled.②Studied section is located near the Qiyaoshan fault, which could be the pass of hot liquid from deep crust. At that time, sea water encountered and was heated with magmatic liquid, and then dissolved much SiO_2 and other elements. Final, the warmer sea water with dissolved SiO_2 sprayed out from the faults, which made sea water be near the fault and contain much more SiO_2. At the same time, biota of radiolarian and sponge which enrich in SiO_2 grew much better and led to biogenic silicate deposition.
     (3) Four types of depositional system of the Permian developed in eastern Sichuan basin, which are coast-tidal flat depositional system, carbonate ramp depositional system, carbonate platform depositional system, and inter-platform basins depositional system. Because of the rapid development of reef-building, the paleoenvironment of the study area was changed from carbonate ramp depositional system to carbonate platform depositional system during Changxing.
     (4)In the strata, 6 kinds of sequence boundary characters were recognized, which are weathering crust, action surface of ancient karst, action surface of volcano event, flooding transgressive surface, transition surface of rock character and facies, erosion surface of turbidity flow in basin. Four kinds of contributing factor related to basin evolution are identified: orogenic erosional unconformity, uplift erosional sequence unconformity, transgressive onlap sequence unconformity, exposed sequence unconformity. Base on these, the Permian were divided into 12 third-order sequences in the study area, and different characters in different facies was discussed and correlated regionally in detail. Meanwhile, sequence stratigraphy filling models from PSQ1 to PSQ12 were establish in eastern Sichuan basin as well. In general, every sequence was dominantly controlled by the tectonic movements, global sea level change, sediments supply and paleoclimate.
     (5)According to the division of third-order sequences or third-order sequence systems, fourteen sequence-based lithofacies-paleogeography maps were figured out (PSQ1, PSQ2, PSQ3, PSQ4, PSQ5,PSQ6, PSQ7,PSQ8LST, PSQ8TST,PSQ8HST,0 PSQ9,PSQ10, PSQ11 and PSQ12). These maps revealed the features of sediment distribution and basin evolution. The reconstructed paleogeography showed that: 1) fine siltstones and shales with coal-line of coast deposited in the Liangshan period (PSQ1); 2) With sea-level rising, bioclastic limestones and bioclastic micrites intercalated with chert belts, shales or chert concretions were deposited on open platform in the Middle Permian Qixia Formaiton and Maokou Formation (PSQ2-PSQ6); 3) An inter-platform basin was developed in Shizhu area in PSQ7, although the other areas were still open platform; 4) In PSQ8LST, the sediments were characterized by shales, bauxitic shales, brown siltstones, and argillaceous siltstones with coal-line of coast environment. But basalts were developed in Liangping in the north of study area; 5) In PSQ8TST-PSQ12, sediments of carbonate ramps were accumulated in the study area. However, there was an inter-platform basin with silicates in PSQ9-PSQ12 in Shizhu, Chongqing; 6) The paleoenvironments of the study area were changed from carbonate ramp depositional system to carbonate platform depositional system during PSQ11-PSQ12. Two inter-platform basins with argillaceous limestone were developed in Liangping and Shizhu.
     (6) The eruption of Emei basalt was a process of continental rift evolution, which started in Maokou period in the early of Late Permian, and ended in Changxin period. The eructation of Emei basalt could be divided into five phases:①In the early of Maokou Period(PSQ5, PSQ6), magma in mantle started to be active, which made overlain crust updoming and made sea floor be fluctuated slightly. Under the influence of a variety of above factors, slides of incomplete consolidated marine sediments happened, therefore, the Maokou Formation nodular limestone deposited. Hydrothermal fluid enriched in SiO_2 went into sea floor and permeated into the marine sediments, which deposited as chert nodules or bands in diagenesis.②In the late of Maokou period (PSQ7), the upwelling of magma made overlain crust become dome. Extensional faulting could be easily happened in the center of the dome, which led to the formation of rift basins, in which silicates deposited, such as Shizhu inter-platform basin of the Maokou period.③In the latest Maokou period, when the basalt wast close to eruption, the crust of Sichuan basin rose rapidly because of the upwelling of magma, which resulted in the domes being above the sea level. Therefore, a parallel unconformity developed between the Middle and Upper Permian named the Dongwu Movement.④In the early of Wujiaping period (PSQ8LST), Emei basalt erupted out of the ground comprehensively. In the center of the dome, eruption was continental and abundant basaltic cleavages were developed in the basalt. Eruptions occurred in the surrounding sea too, and the pillow structures were found in the basal. Because magma effused out of ground on a large scale, basement of adjacent area subsided to fill up the magma chamber. Shizhu inter-platform basin was developed under this background and led to the accumulation of the Wujiaping Formation's silicates.⑤Volcanism finished in Changxing period. Sichuan basin overall was extensional and subsided. Most part of the basin evolved to depositional area. "Kaijiang-Liangping" inter-platform basin with argillaceous limestones began to form along with "Shizhu" inter-platform basin.
引文
1. Adachi M,Yamamoto K, Suigiski R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity [J]. Sedimentary Geology. 1986,47(1/2): 125-148.
    2. Andrew J. McCarthy, Basir Jasin, Neville S. Haile. Middle Jurassic radiolarian chert, Indarung, Padang District, and its implications for the tectonic evolution of western Sumatra, Indonesia [J]. Journal of Asian Earth Sciences, 2001,19:31-44.
    3. Aninda Mazumdar, D. M. Banerjee. Siliceous sponge spicules in the Early Cambrian chert-phosphorite member of the lower Tal Formation, Krol Belt, Lesser Himalaya [J]. Geology, 1998, v. 26, no. 10, p. 899-902.
    4. Arthur Sailer, Brian Ball, Steve Robertson, Bruce McPherson, et al. Reservoir characteristics of Debonian cherts and their control on oil recovery: Dollarhide field, west Texas [J]. AAPG Bulletin, 2001, v. 85, no. 1, pp, 35-50.
    5. B Orberger, N Rividi, A Hofmann. Origin of black cherts from the Marble Bar. Drill Core # 1 (Pilbara, W-Australia) [J]. Goldschmidt Conference Abstracts, 2006, A461.
    6. Barrett T J. Stratinraphy and sedimentology of Jurassic bedded chert overlying ophiolites in the north Apennines, Italy [J]. Sedimentology, 1982,29: 289-317.
    7. Behl R J and Smith B, Silicification of deep sea sediments of the west Pacific, Pigafetta and East Mariana Basins, ODP leg 129 [J]. Proc ODP Sci Results, 1992,129: 81-117.
    8. Benoit Beauchamp, Aymon Baud. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2002,184:37-63.
    9. Blatt H, Middleton G V, Murray R C.Origin of Sedimentary rocks.New Jersey: Prentice-Hall [J]. 1980,570-586.
    10. Bohacs K M, et al. Lake-basin type, soure potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework [A] Gierlowski E H, Kordesch,Kelts K R. Lake Basin Through Space and Time [C].AAPG Studies in Geology 46,2000:3-34.
    11. Bonatti E, Zerbi M, Kay R, et al. Metalliferous deposits from the Apennine ophiolites Mesozoic equivalents of modern deposits from the Apennine ophiolites Mesozoic equivalents of modem deposits from oceanic spreading centers [J]. Geol Soc Am Bull, 1976, 87: 83-94.
    12. Bostrom K, Rydell H, Joensuu O. Langbank: An exhalative sedimentary deposi [J]t. Econ Geol.1979, 74 (5):1002-1011.
    13. Bruce M. Simonson, A D T. Goode. First discovery of ferruginous chert arenites in the early Precambrian Hamersley Group of Western Australia [J]. Geology, 1989, v. 17, p. 269-272.
    14. Byrne R H, Kim K H Rare earth elements in seawater [J]. Geochim Cosmochim Acta, 1990, 54: 2654-2656.
    15. C M Rice, N H Trewin, L I Anderson, Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system [J]. Journal of the Geological Society, London, 2002, v.159, pp.203-214.
    16. CR Scotese & J Golonka, 《Palaeogeographic Atlas》 [M], Mobil Exploration & Producation Services, 1992.
    17. C.R.Scotese etal, The Tectonic development of South-Central Asia and the palaeogeographic setting of its hydrocarbon resources [J]. AAPG 1990 Annal convention, official program P.164-165.
    18. Calvert S E. Sedimenary geochemistry of silicon [A]. In: Aston S R, ed. Silicon Geochemistry and Biogeochemistry [C], 1983. 143-1701.
    19. Charles D. Blome, K.. M. Reed. Acid processing of pre-Tertiary radiolarian cherts and its impact on faunal content and biozonal correlation [J]. Geology, 1993, v. 21, p. 177-180.
    20. Chaudhuri S and Cullers R L, The distribution of REE in deeply buried GULF coast sediments [J]. Chem Geol, 1979, 24:327-338.
    21. Chen Hongde, et.al.Permian Sequence Stratigraphy of the Sichuan-Yunnan-Guizhou-Guangxi, Region [J], Scientia Geologica Sinica.1997, 6(3).
    22. Christopher H House, J William Schopf, Kevin D. Mckeegan, et al. Carbon isotopic composition of individual Precambrian microfossils [J]. Geology, 2000, v. 28, no.8, p. 707-710.
    23. Clavert S E. Sedimentary geochemistry of silicon [A]. Aston S R, ed. Silicon geochemistry and biogeochemistry [C]. 1983.143-170.
    24. Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxyfen from oxide and silicates for isotopic analysis [J]. Geochim.Cosmochim.Acta.1963, 27:43-52.
    25. Clayton R N. High temperature isotope effects in the early solar system [A]. In: Valley, et al, eds. Reviews in Mineralogy[C]. Houston: Pergamon Press, 1986. 129-1391.
    26. Condie K. C, Another rlook at rare earth elements in seawater [J]. Geochim Cosmochim Acta. 1991,55:2527-2531.
    27. Cross A T, Lessenger M A. Sediment Volume Partitioning: Rationale for Stratigraphic Model Evaluation and High-Resolution Stratigraphic Correlation[C]. Accepted for Publication in Norwegian Petroleums-Forening Conference Volume [A], July, 1996:1-24.
    28. Daizhao Chen, Hairuo Qing, Xin Yan, He Li. hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183: 203-216.
    29. David L. Kidder, Stephanie A. Munna. Silica-replaced oolites, bedded shelf cherts and Paleozoic changes in the silica cycle [J]. Sedimentary Geology, 2003, 162: 159-166.
    30. David M. Scotford, Matthew D. Knecht. Bent chert tubes in the Phosphoria Formation of Wyoming: Pressure solution strain markers [J]. Geology, 1990, v. 18, p. 846-849.
    31. Douthitt C B. The geochemistry of the stable isotopes of silicon [J]. Geochim Cosmochim Acta, 1982,46(8): 1449-14581.
    32. E.C. Perry, L. Lefticariu. The oxygen isotopic composition of Precambrian cherts [J]. Goldschmidt Conference Abstracts, 2006, A483.
    33. Edmond J M, Damm K V. Hotspring at the Seafloor [J], Science. 1983, (8): 37-50.
    34. Edmond J M. Ridge crease hydrothermal activity and balance of the major and minor elements in the ocean: The Galapogas data [J]. Earth planet, sci.lett.1979, 46:1-1813.
    35. Fisher J H, 1976, Structural history of the Michigan Basin; middle Ordovician through Silurian time [A]. Geological Society of America, vol.8, no.4, North-Central Section 10th annual meeting [C], 8 (4), 477.
    36. Fisher J H. Structural history of the Michigan Basin; middle Ordovician through Silurian time. Geological Society of America [A], North-Central Section 10th annual meeting [C], 1976, 8(4), 477.
    37. Fleet A J. Hydrothermal and hydrogenous ferromanganese deposits [A]. In: P A Rona et al. Hydrothermal Process at Sea Floor Spreading Centres [C]. Amsterdam: Elsevier Science Publishers B V 1983, 537-570.
    38. Galloway W E, Hobday D K.Terrigenous clastic depositional systems (2and Edition) [M]. Springer-Verlag Berlin Heidberg New York, 1996.
    39. Galloway W E. Genetic stratigraphic sequence in basin analysis (1): architecture and genetics of flooding surface bounded by depositional unites [J]. AAPG Bulletin, 1988,73(1):125-142.
    40. Gary H Girty, Dale L Ridge et al. Provenance and Depositional Setting of Paleozoic Chert and Argilite Sierra NEVADA, California [J]. Journal of Sedimentary Research, 1996,66(1): 107-118.
    41. Gerhard Bohrmann, Andrea Abelmann, Rainer Gersonde, et al. Pure siliceous ooze, a diagenetic environment for early chert formation [J]. Geology, 1994, v. 22, p. 207-210.
    42. H. A. Armstrong, A.W. Owen, J.D. Floyd. Rare earth geochemistry of Arening cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: implications for origin and significance to the Caledonian Orogeny [J]. Journal of the Geological Society, Lodon, 1999,v. 156, pp. 549-560.
    43. Hiroshi Shimizu, Masayo Amano, Akimasa Masuda. La-Ce and Sm-Nd systematics of siliceous sedimentary rocks: A clue to marine environment in their deposition [J]. Geology, 1991, v.19, no. 4, p. 369-371.
    44. Hoefs J. Stable isotope geochemistry [M]. Third edition. New York: Springer-Verlag, 1997.
    45. Holland H D. Gangue minerals in hydrothermal system [A]. Barners H L, ed Geochemistry of hydrothermal ore deposits [C]. 1967.382-436.
    46. J M Barton, Jr; D B Wenner; D K Hallbauer. Oxygen isotopic study of the nature and provenance of large quartz and chert clasts in gold-bearing conglomerates of South Africa [J]. Geology, 1992, v.20, p. 1123-1126.
    47. James P. Rogers and Mark W. Longman. An introduction to chert reservoirs of North America [J]. AAPG Bulletin, 2001, v.85, No. 1, pp. 1-5.
    48. Jennifer K. Schubert, David L. Kidder, Douglas H. Erwin. Silica-replaced fossils through the Phanerozoic [J]. Geology, 1997, v.25, no.11, p. 1031-1034.
    49. Juan Manuel, Garcia-Ruiz. Carbonate precipitation into alkaline silica-rich environments [J]. Geology, 1998, v. 26, no.9, p. 843-846.
    50. K. Sashida, S. Salyapongse. Permian radiolarian faunas from Thailand and their paleogeographic significance [J]. Journal of Asian Earth Sciences, 2002, 20: 691-701.
    51. K. Sugitani, K. Mimura, A. Allwood, K. Yamamoto. Rare earth element geochemistry of carbonaceous black chert of 3.4 Ga Strelley Pool Chert at Mt. Goldsworthy and Mt. Grant, Pilbara Craton: Implications for environment of deposition and habitat of microbes on early Earth [A]. Goldschmidt Conference Abstracts [C], 2006, A622.
    52. Kenichiro Sugitani, Koshi Yamamoto, Hideki Wada, et al. Geochemistry of Archean carbonaceous cherts deposited at immature island-arc setting in the Pilbara Block, Western Australia [J]. Sedimentary Geology, 2002, 151: 45-66.
    53. Kenneth J. Tobin. A survey of Paleozoic microbial fossils in chert [J]. Sedimentary Geology, 2004, 168:97-107.
    54. Kevin T. Pickering, Susan M. Agar, Yujiro Ogawa. Genesis and deformation of mud injections containing chaotic basalt-limestone-chert associations: examples from the Southwest Japan forearc [J]. Geology, 1998, v. 16, p. 881-885.
    55. Klinkhammer G, Elderfield H and Hudson A. Rare earth elements in seawater near hydrothermal Vents [J]. Nature.1983, 305:185-188.
    56. Knauth P L, Epstein S. Hydrogen and oxygen isotope rations in nodular and bedded cherts .Geoch [J].Cosmoch. Acta. 1976, 40(9): 1095-1108.
    57. Kolodny Y and Epstein S. Stable isotope geochemistry of deep sea cherts [J]. Geoch. Cosmoch. Acta. 1976, 40( 10): 1195-1209.
    58. Krauskof K B. Factors controlling the concentration of thirteen rare metals in sea-waters [J]. Geochemistry and Cosmochemistry Acta, 1956,9(1): 32.
    59. Lynn E. Johnson, Patricia Fryer, Brian Taylor et al. New evidence for crustal accretion in the outer Mariana fore arc: Cretaceous radiolarian cherts and mid-ocean ridge basalt-like lavas [J]. Geology, 1991, v. 19, p. 811-814.
    60. MarchigV, GundlachH., Moller P., et al. Some geochemistry indictors for discrimination between diagenetic and hydrothermai metalliferous sediments [J]. Marine Geoiogy.1982, 50(3): 241-256.
    61. Masao Kametaka, Masamichi Takebe, Hiromi Nagai, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert [J]. Sedimentary Geology, 2005, 174: 197-222.
    62. Matsuda T, Isozaki Y. Well-documented travel history of Mesozoic bedded chert from remote ocean to subduction zone [J]. Tectonics, 1991; 10:475-99.
    63. Miall A D. Sequence stratigraphy and their chronostratigraphical correlation [J]. Jour sediment petrol, 1991, 61 (4): 497-505.
    64. Miall A D. Sequence stratigrphy and chronostratigraphy, problems of definition and precision of correlation and their implications for global eustasy [J]. Geosci Can, 1994, 21(1): 1-26.
    65. Miall A D.Stratigraphic sequences and their chronstratigraphic correlation [J].Jour Sediment Petrol, 1992, 61(4): 497-505.
    66. Miall A. D. The geology of stratigraphy sequences [M], Springer-Verlag, 1997.
    67. Mitchum R M, Van Wagoner J C. High frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high frequency eustatic cycles [J]. Sediment Geol,1991, 70(2):131-160
    68. N. S. Haile, A. J. Barber & D. J. Carter. Mesozoic cherts on crystalline schists in Sulawesi and Timor [J]. The Geological Society, 1979, v.136, p.65-70.
    69. Nora Noffke, Robert Hazen, Noah, Nhleko. Earth's earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa) [J]. Geology, 2003, v.31, no. 8, p. 673-676.
    70. Ohmoto H. and Goldhaber M B. sulfur and carbon isotopes. In: Geochemistry of Hydrothermal deposits (ed H L Barnes) [M], 3rd Edition, John Wiley and Sans, New York. 1997,517-614.
    71. Ohmoto H. and Rye R O. Isotopes of sulfur and carbon. In: Geochemistry of Hydrothermal Ore Deposits (ed H L Barnes) [M]. 2nd Edition, John Wiley and Sons, New York. 1979, 509-567.
    72. Ohmoto H. Systematics of sulfur and carbon isotope in hydrothermal ore deposits [J]. Econ Geol. 1972,67:551-578.
    73. P. J. Noble, S. C. Finney. Recognition of fine-scale imbricate thrusts in lower Paleozoic orogenic belts—An example from the Roberts Mountains allochthon, Nevada [J]. Geology, 1999,v.27, no.6, p. 543-546.
    74. Peter K E,et al.A new geochmical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope,Kalimantan,Indonesia[J].AAPG Bulletin,2000,84( 1): 12-44.
    75. Posamentier H W and Vail P R. Eustatic controls on clastic deposition II -Sequence and System tract models [A].In Wilgus C K, eds: Sea-level changes:an intergrated approach, Society of Economic Paleontolgists and Mineralogists [C], Special Publication. 1988, 42: 125-154.
    76. Posamentier H W, Jervey, M T, Vail, P R.Eustatic controls on clastic deposition I-conceptual framework [J]. SEPM Special Publication, 1988, 42:69-125.
    77. Posamentier H W, Allen G P, and James D P, High resolution sequence stratigraphy- the East Coulee Delta, Alberta [J]. Journal of Sedimentary Petrology, 1992a, Vol.62, no.2, 310-317.
    78. Ray Kenny, L. Paul Knauth. Continental paleoclimates from δD and δ~(18)O of secondary silica in paleokarst chert lags [J]. Geology, 1992, v. 20, p. 219-222.
    79. Renold J H Verhoogen J. Natural variations in the isotopic constitution of silicon [J]. Geoch. Cosmoch.Acta.1953, 3(5): 224-234.
    80. Richard A.Davis, JR., Depositional Systems [M], Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1983.
    81. Richard W Murray et al. Inter-oceanic variation in the Rare Earth, major and trace elements depositional chemistry of chert: perspectives gained from the DSDP and ODP record [J]. Geochemica etc Cosmochimica Acta, 1992,58: 1897-1913.
    82. Richard W Murray, David L Jones, Marilyn R. Buchholtz ten Brink. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet [J]. Geology, 1992, 20: 271-274.
    83. Richard W Murray, et al. Rare earth elements in Japan Sea Sediments and diagenetic behavior of Ce/Ce*: Results from ODP leg 127 [J]. Geochim. Cosmochim. Acta, 1991, 55: 2453-2466.
    84. Richard W Murray, Marilyn R. Buchholtz ten Brink, David L. Jones, et al. Rare earth element as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18:268-271.
    85. Richard W Murray. Chemical criteria to identify the depositional environment of chert general principles and applications [J]. Sediment Geol, 1994,90: 213-232.
    86. Richard W Murray. Interoceanic variation in the rare earth, major, and trace element depositional chemisty of chert: Perspectives gained from the DSDP and ODP record [J]. Geochim Cosmochim Acta, 1992, 56: 1897-1913.
    87. Robin W. Renaut, R. Bernhart Owen. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley [J]. Geology, 1988, v. 16, p. 699-702.
    88. Rona P A, Bostrom K, Epstein S. Hydrothermal quartz vug from the Mid-Atlantic Ridge [J]. Geology. 1980, 8:569-572.
    89. Rona PA. Criteria for recognition of hydrothermal mineral deposits in ocean crust [J]. Econ. Geol. 1978, 73(2): 135-160.
    90. Rona P A. et al. Hydrothermal processes at seafloor spreading centers [M], Plemum Press, New York, PP. 1983, 1-796.
    91. Ronald K. Matheney, L. Paul Knauth. New isotopic temperature estimates for early silica diagenesis in bedded cherts [J]. Geology, 1993, v. 21, p. 519-522.
    92. Schlager S O, Arthur M A, Jenkyns H C, et al. The Cenomanian-Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine ~(13)C excursion [A]. ln:BrooksJ, Fleet A J, eds. Marine petroleum Source Rocks [C].Geol Soc Spec pub. 1987, 371-399.
    93. Scholle P A, Arthur M A. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool [J]. Bull Am Ass Petrol Geol. 1980, 64: 67-87.
    94. Shanley. K W and McCabe,P J.AIIuvial architecture in a sequence stratigraphic framework — a case history from the upper Cretaceous of southern Utah,U.S.A [A]. In: Flint, S S and Bryant, I D (eds) The geological modeling of hydrocarbon reserveioirs and outcrop analogues [A]. International Association of Sedimentologists, Special Publication, 1993, 15: 21-56.
    95. Sharp Z D, Durkiewicz T, Migaszewski Z M Atudore V N. Antiphase hydrogen and oxygen isotope periodicity in chert nodules [J]. Geochim. Cosmochim. Acta, 2002,66(6): 2865-2873.
    96. Shimizu H, Masuda A. Cerium in chert as an indication of marine environment of its formation [J]. Nature, 1977, 266:346-8.
    97. Sloss L L, Ingersoll R. Tectonics of sedimentary basins [M]. Oxford: Blackwell Science, 1995. 120-32.
    98. Sloss L L. Forty years of sequence stratigraphy [J]. Geological Society of American Bulletin. 1988, 100(25): 1661-1667.
    99. Sloss, L. L., Krumbein, W. C., and Dapples, E. C. Integrated facies analysis. In Sedimentary facies in geologic history (C. R. Longwell, Ed.) [A], Geological Society of America Memoir 39 [C], 1949,91-124.
    100. Steinberg M, Nounnot Courtois C. and Tlig S, Geochemical contribution to the understanding of bedded chert [A]. In Siliceous Deposits in the Pacific Region [C], 1983, 193-210.
    101. Sugisaki R, Yamamoto K, Adachi M. Triassic bedded cherts in central Japan are not pelagic [J]. Nature, 1982,298:644-7.
    102. Sun Dongying, Xia Wenchen. Identification of the Guadalupian-Lopingian boundary in the Permian in a bedded chert sequence, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 236: 272-289.
    103. Takanori Kunimaru, Hiroshi Shimizu, Kazuya Takahashi, Sadayo Yabuki. Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan: REE abundances, major element compositions and Sr isotopic ratios [J]. Sedimentary Geology, 1998, 119: 195-217.
    104. Tatiana J. Tolmacheva, Taniel Danelian, Leonid E. Popov. Evidence for 15 m.y. of continuous deep-sea biogenic siliceous sedimentation in early Paleozoic oceans [J]. Geology, 2001, v.29, no. 8, p. 755-758.
    105. Tor Grenne, John F. Slack. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits [J]. Geology, 2003,v. 31, no.4, p. 319-322.
    106. Vail P R, Audemard F, Bowman S A et al. The stratigraphic signatures of tectonics, eustasy and sedimentology an overview [A], In: Einsele G, Richen W. Seilacher A eds. Cycles and Events in Stratigraphy [C]. Berlin Heidberg: Springer-verlag, 1991, 617-659.
    107. Vail P R, Mitchum R M and Thompson S III.Global cycles of relative changes of sea level [A]. AAPG Memoir 26 [C], 1977: 83-97.
    108. Vail P R. Mitchum R M Jr. Thompson S. Seismic stratigrphy and global changes of sea level, Part 4: relative changes of sea level from coastal onlap [A]. In: Payton C E, ed. Seismic Stratigraphy Application to Hydrocarbon Exploraiton [C]. AAPG Mem, 1997,26:83-98
    109. Van Wagoner J C, Pasamentier H W, Mithum R MJr. Overview of sequence stratigraphy of foreland basin deposits: terminology, summary of paper, and glossary of sequence stratigraphy [A]. In: van Wagoner, eds. Sequence stratigraphy of Foreland Basin Deposits, Outcrop and Subsurface Examples from the Cretaceous of North America [C]. AAPG Mem,
    ??1998,46: 10-54.
    
    110. Van Wagoner, J C.Overview of sequence stratigraphy of foreland basin depositions: Terminology, summary of papers, and glossary of sequence stratigraphy [A]. AAPG Memoir 64[C]:1995
    
    111. Wapies D W, Cunningham R. Shipboard organic geochemistry, Leg DSDP [A]. In: Poag W de Graciausky P C, et al eds. Initial Reports Deep Sea Drilling Project [C].1985, 80: 949-968.
    
    112. Wheeler H E. Time Stratigraphy [J]. AAPG, 1958. Vol.42: 1047-1063.
    
    113. Wilgus C. K., Hastings B.S., Kendall C. G. St. C et al. Sea level changes- an integrated approach [M]. SEPM (Society of Economic Paleontologists and Mineralogists), Tulsa, Oklahoma, Special Publication 42, 1988, 1-407.
    
    114. Yamamoto K.Geochemical characteristics and deposition environment of cherts and associated rocks in the Franciscan and Shimena terranes [J]. Sediment Geology. 1987, 52: 65-108.
    
    115. Yasuhiro Kato, Kentaro Nakamura. Origin and global tectonic significance of Early Archean cherts from the Marble Bar Greenstone belt, Pilbara Craton, Western Australia [J]. Precambrian Research, 2003, 125: 191-243.
    
    116. Yasuhiro Kato, Kyoko Nakao, Yukio Isozaki, et al. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change [J]. Chemical Geology, 2002, 182: 15-34.
    
    117. Yongzhang Zhou et al. Hydrothermal origin of late proterozoic bedded chert at Gusui, Guangdong, China: petrological and geochemical evidence [J]. Sedmentalogy, 1994, (41): 605-619.
    
    118. Yuansheng Du, Jie Zhu, Songzhu Gu. Sedimentary geochemistry of Cambrian-Ordovician cherts in North Qilian orogenic belts and its implication for archipelagic ocean [A]. Goldschmidt Conference Abstracts [C], 2006, A148.
    
    119. Zdzislaw M. Migaszewski, Agnieszka Galuszka, Tomasz Durakiewicz, Ewa Starnawska. Middle Oxfordian-Lower Kimmeridgian chert nodules in the Holy Cross Mountains, South-central Poland [J]. Sedimentary Geology, 2006, 187: 11-28.
    
    120.蔡雄飞,章泽军,顾延生,等.当代地层学在国土地质大调查中的作用[J].中国地质, 2001,28(6):6-9.
    
    121.陈洪德,侯明才,许效松,田景春.加里东期华南的盆地演化与层序格架[J].成都理工 大学学报(自然科学版),2006年01期.
    
    122.陈洪德,侯中健,田景春,等.鄂尔多斯地区晚古生代沉积层序地层学与盆地构造演化 研究[J].矿物岩石:2001,21(003):16-22.
    
    123.陈洪德,刘文均,郑荣才,等.层序地层学理论和研究方法[M].成都:四川科学技术出 版社,1994.
    
    124.陈洪德,彭军,田景春,等.上扬子克拉通南缘中泥盆统-石炭系高频层序及复合海平 面变化[J].沉积学报,2000,Vol.18,No.2.
    
    125.陈洪德,覃建雄.石江盆地层序充填动力学初探[J].沉积学报,2000,18(2):165-171.
    
    126.陈洪德,覃建雄,王成善.中国南方二叠纪层序岩相古地理特征及演化[J].沉积学报, 1999,Vol.17,No.4.
    
    127.陈洪德,田景春,刘文均,等.中国南方海相震旦系-中三叠统层序划分与对比[J].成 都理工学院学报,2002,Vol.29,No.4.
    
    128.陈洪德,王成善,刘文均,等.华南二叠纪层序地层与盆地演化[J].沉积学报,1999, Vol.17,No.4.
    
    129.陈洪德,曾允孚.广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因讨论[J].矿物岩 石,1989,9(4):22-29.
    
    130.陈洪德,等.中国南方海相震旦系-中三叠同构造-层序岩相古地理研究及编图[R].成 都理工大学沉积地质研究所,2002.
    
    131.陈建强,胡树庭,杨欣德.山东淄博地区奥陶系层序地层划分和层序界面的识别标志[J]. 现代地质,2001,15(3):247-254.
    
    132.陈建强,王训练,于炳松,等.层序地层与地层界线优化[J].地层学杂志,2001,25(4): 241-246.
    
    133.陈子炓,沈安江.川东-鄂西地区二叠纪生物礁成因类型及潜伏礁预测[J].中国区域地 质,2000,19(3):288-296.
    
    134.程裕淇.中国区域地质概论[M].北京:地质出版社,1994.
    
    135.池秋鄂.层序地层学原理及其在油气勘探开发中的应用[M].北京:石油工业出版社, 1999.
    
    136.崔春龙.硅质岩研究中的若干问题[J].矿物岩石,2001,21(3):100-104.
    
    137.崔春龙,曾允孚.滇西昌宁-孟连带硅质岩的阴极发光特征及其地质意义[J].矿物岩石, 1999,(3).
    
    138.丁林,钟大赍.滇西昌宁-孟连带古特提斯洋硅质岩的稀土元素和铈异常特征[J].中国 科学(B),1995,25(1):93-101.
    
    139.丁悌平.硅同素地球化学研究进展[J].矿物岩石地球化学通讯,1990,3:99-101.
    
    140.丁悌平,蒋少涌,万德芳.硅同位素地球化学[M].北京:地质出版社,1994.
    
    141.丁悌平,万德芳,李金城,等.硅同位素测量方法及其地质应用[J].矿床地质,1988,7 (4):90-95.
    
    142.范嘉松,郭丽.川东上二叠统礁相及其储集层特征[J].海相油气地质,2000,5(1-2): 152.
    
    143.范嘉松,吴亚光.川东二叠纪生物礁的再认识[J].石油与天然气地质,2002,23(1): 12-18.
    
    144.范嘉松,吴亚生.广西-贵州和川东二叠纪生物礁的钙藻化石及其古生态环境[J].微体 古生物学报,2002,19(4):337-347.
    
    145.冯彩霞.扬子地块周边∈、P硅岩建造中硒的富集机理对比研究——以渔塘坝、紫阳富 硒区为例:[D].贵阳:中国科学院地球化学研究所,2004.
    
    146.冯彩霞,刘家军.砖质岩的研究现状及其成矿意义[J].世界地质,2001,2(20):119-123.
    
    147.冯彩霞,刘家军,刘燊,等.渔塘坝硒矿硅质岩的地球化学特征及成因[J].沉积学报, 2002,20(4):727-732.
    
    148.冯少南.东吴运动的新认识[J].现代地质,1991,5(4):378-383.
    
    149.冯增昭,杨玉卿,金振奎,等.中国南方二叠纪岩相古地理[J].沉积学报,1996, 14(2):1-10.
    
    150.关士聪,等.中国海陆变迁海域沉积相与油气[M].北京:科学出版社,1984.
    
    151.郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化,北京:地质出版社,1996.
    
    152.侯方浩,等.西南地区上古生界海相碳酸盐岩沉积相模式及其在油气勘探中的应用[M], 成都:成都科技大学出版社,1991.
    
    153.侯明才,陈洪德,田景春.层序充填动力学-层序地层研究的新方向[J].地层学杂志. 2003,27(4):258-264
    
    154.胡光灿,谢姚祥.中国四川东部高陡构造石炭系气田[M].北京:地质出版社,1997.
    
    155.胡宗全.层序地层研究的新思路-构造-层序地层研究[J].现代地质,2004,18(4): 549-554.
    
    156.黄思静,石和,张萌,等.上扬子石炭-二叠纪海相碳酸盐的锶同位素演化与全球海平 面变化[J].沉积学报,2001,19(4):481-487.
    
    157.黄先平,王世谦.四川盆地油气资源评价[R].成都:中国石油西南油气田分公司勘探开 发研究院,2002.
    
    158.姜在兴.沉积学[M.北京:石油工业出版社,2003.
    
    159.解习农,李思田.伊通地堑层序地层分析及充填史研究[J].中国地质大学学报,1993, 18(1):20-24.
    
    160.金以钟,王远生.四川盆地晚古生代到中二叠世古构造演化特征及找气意义[A].罗志立 主编:龙门山造山带的崛起和四川盆地的形成与演化[C],成都:成都科技大学出版社, 1994.
    
    161.雷卞军,强子同,文应初.川东及邻区上二叠统生物礁的白云岩化[J].地质论评,1994, 40(6):534-543.
    
    162.黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7.
    
    163.李登华,唐跃,殷积峰,等.川东黄龙场构造上二叠统长兴组生物礁特征与潜伏礁预测 [J].中国地质,2006,33(2):427-435.
    
    164.李红亮,汪华,史习杰审.四川盆地川东地区上二叠统礁白云石的类型及其特征[J].天 然气勘探与开发,1999,22(3):25-28.
    
    165.李胜祥,陈肇博,陈祖伊,等.层序地层学在陆相沉积盆地内砂岩型铀矿找矿中的应用 前景[J].铀矿地质,2001,17(4):204-208.
    
    166.李思田.层序地层学分析与海平面变化研究-进展与争论[J].地质科技情报,1992,11(4): 23-29.
    
    167.李思田.论沉积盆地分析领域的追踪与创新[J].沉积学报,1992,10(3):10-15.
    
    168.李思田,杨士恭.论沉积盆地的等时地层格架和基本建造单元[J].沉积学报,1992, 10(4):11-22.
    
    169.李文汉.层序地层学基础和关键定义[J].岩相古地理,1989,9(6):32-41.
    
    170.李祥辉,王成善,陈洪德,田景春.中国南方二叠纪层序地层时空格架及充填特征[J]. 沉积学报,1999,Vol.17,No.4.
    
    171.梁华,罗蓉.利用地震资料研究川东上二叠统生物礁分布规律[J].天然气工业,1999, 19(5):91-92.
    
    172.刘宝珺.沉积岩石学[M].北京:地质出版社,1986.
    
    173.刘宝珺,余光明.岩相古地理学教程[M].成都:地质矿产部岩相古地理工作协作组,1990.
    
    174.刘宝珺,曾允孚.岩相古地理基础和工作方法[M].北京:地质出版社,1985.
    
    175.刘宝珺,等.中国南方震旦纪-三叠纪岩相古地理图集[M].北京:科学出版社,1994.
    
    176.刘本培.地史学教程[M].北京:地质出版社,1986,267-269,1-40.
    
    177.刘鸿允.中国全国断代古地理图集[M].北京:科学出版社,1955.
    
    178.刘划一,王一刚,杨雨,等.川东上二叠统生物礁气藏多元信息综合预测方法研究[J]. 天然气工业,1999,19(4):13-18.
    
    179.刘家军,郑明华.硅质岩的新成因-热水沉积作用[J].四川地质学报,1991,11(4): 251-254.
    
    180.刘家军,郑明华.拉尔玛层控金矿床中硒富集体的发现及其意义[J].地球科学进展, 1993,8(6):89.
    
    181.刘家军,郑明华.热水沉积硅岩的地球化学[J].四川地质学报,1993,13(2):110-118.
    
    182.刘岫峰.沉积岩实验室研究方法[M].地质出版社,1991,1-299.
    
    183.卢武长.稳定同位素地球化学[M].成都:成都地质学院出版发行组,1986.
    
    184.罗志立.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响[J].四川地质 学报,1981,2(1):20-39.
    
    185.罗志立,金以钟,朱夔玉,赵锡奎.试论上扬子地台的峨嵋地裂运动[J].地质论评,1988, 34(1):11-24.
    
    186.罗志立.龙门山造山带的崛起和四川盆地的形成与演化[M].成都:成都科技大学出版 社,1994.
    
    187.马力,陈焕疆,甘克文,等.中国南方大地构造和海相油气地质[M].北京:地质出版 社,2004.
    
    188.马永生.中国海相油气田勘探实例之六:四川盆地普光大气田的发现与勘探[J].海相油 气地质,2006,11(2):35-40.
    
    189.马永生,蔡勋育,李国雄.四川盆地普光大型气藏基本特征及成藏富集规律[J].地质学 报,2005,79(6):858-865.
    
    190.马永生,刘波,梅冥相,等译.碳酸盐岩层序地层学[M].北京:海洋出版社,2003.
    
    191.马永生,牟传龙,郭旭升,等.四川盆地东北部长兴期沉积特征与沉积格局[J].地质论 评,2006,52(1):25-29.
    
    192.马永生主译.碳酸盐岩微相-分析、解释及应用[M].北京:地质出版社,2006.
    
    193.梅冥相,马永生,梅仕龙,等.华北寒武系层序地层格架及碳酸盐台地演化[J].现代地 质,1997,11(3):275-282.
    
    194.梅冥相,徐德斌.沉积地层旋回性记录中几个理论问题的认识-兼论“露头层序地层”的 工作方法[J].现代地质,1996,10(3):85-92.
    
    195.彭军,陈景山,郑荣才.百色盆地百岗组高分辨率层序分析及研究意义[J].地球学报, 2002,23(02):153-158.
    
    196.彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J].地 质论评,1995,41(1):34-41.
    
    197.彭军,伊海生,夏文杰.湘黔桂地区晚前寒武纪层状硅质岩地球化学特征及成因[J].地 质地球化学,1999,27(4):33-39.
    
    198.彭军,伊海生,夏文杰.扬子板块东南大陆边缘上震旦统热水成因硅质岩的地球化学标 志[J].成都理工学院学报,2000,27(1):8-14.
    
    199.任纪舜.从全球看中国大地构造-中国及邻区大地构造图简要说明[M].北京:地质出 版社.1999.
    
    200.四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    
    201.四川省地质局107地质队3分队.中华人民共和国区域地质调查报告(黔江幅,1:20万) [M].1975.
    
    202.宋天锐,丁悌平.硅质岩中的硅同位素(δ~(30)Si)应用于沉积相分析的新尝试[J].科学通 报,1989:34(18):1408-1411
    
    203.孙磊,张帆,陈永刚.川东地区上二叠统层序地层分析[J].新疆石油学院学报,2000, 12(3):19-23.
    
    204.覃建雄,陈洪德,田景春,李余生.层序成因格架中的储集体分布——以西南地区二叠 系为例[J].江汉石油学院学报,1999,Vol.21,No.1.
    
    205.覃建雄,陈洪德,田景春.二叠纪海平面变化研究[J].岩相古地理,1998,Vol.18,No.5.
    
    206.覃建雄,陈洪德,田景春.西南地区二叠纪层序古地理特征及演化[J].中国区域地质, 1999,Vol.18,No.3.
    
    207.覃建雄,陈洪德,田景春.西南地区二叠系层序格架与烃源岩分布[J].石油勘探与开发, 1998,Vol.25,No.5.
    
    208.覃建雄.陈洪德,田景春等.川滇黔桂地区二叠纪不同成因盆地层序地层模型[J].沉积 学报,1999,Vol.17,No.2.
    
    209.覃建雄.西南地区二叠系层序地层及油气预测:[D],成都:成都理工大学,1996.
    
    210.覃建雄,曾允孚,陈洪德,等.西南地区二叠纪层序地层及海平面变化[J].岩相古地理, 1998,Vol.18,No.1.
    
    211.唐世荣.硅质岩研究的进展.地球科学进展[J],1994,9(6):71-75.
    
    212.田景春,陈洪德,覃建雄,等.层序底界面的物质表现形式-以中国南方海相震旦系- 中三叠统为例[J].沉积学报,2003,21(4):675-682
    
    213.田景春,陈洪德,覃建雄,等.层序-岩相古地理图及其编制[J].地球科学与环境学报, 2004,26(1):6-12.
    
    214.田树刚,章雨旭.华北地台北部奥陶纪露头层序地层[J].地球学报-中国地质科学院院 报,1997,1:87-96.
    
    215.童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992.
    
    216.童金南,崔玮霞.碳酸盐缓坡区的露头层序地层研究[J].地球科学-中国地质大学学报, 2002,27(5):565-569.
    
    217.汪泽成,刘焕杰,张林,等.鄂尔多斯盆地含油气区构造层序地层研究[J].中国矿业大 学学报,2000,29(4):432-436.
    
    218.汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社, 2002.
    
    219.王成善,陈洪德,寿建峰,等.中国南方二叠纪层序地层划分与对比[J].沉积学报,1999, Vol.17,No.4.
    
    220.王成善,李祥辉,陈洪德,覃建雄.中国南方二叠纪海平面变化及升降事件[J].沉积学 报,1999,Vol.17,No.4.
    
    221.王成善,陈洪德,寿建峰,等.中国南方海相二叠系层序地层与油气勘探[M].成都: 四川科学技术出版社,1998.
    
    222.王东安.扬子地台晚元古代以来硅岩地球化学特征及其成因[J].地质科学,1994, 29(1):41-54.
    
    223.王东安,陈瑞君.硅岩的Rb-Sr同位素组成特点及其地质意义[J].地质科学,1997,11: 103-110.
    
    224.王东坡,刘立.大陆裂谷盆地层序地层学研究[J].岩相古地理,1994,14(3):40-46.
    
    225.王鸿祯.中国古地理图集[M].北京:科学出版社,1985.
    
    226.王鸿祯,史晓颖,王训练,等.中国层序地层学研究[M].广州:广东科技出版社,2001: 33-45.
    
    227.王鸿祯.中国华南地区地壳掏造发展的轮廓[A].华南地区古大陆边缘史[C].武汉:武汉 地质学院出版社,1986.
    
    228.王剑,唐锦玉.一个露头层序地层划分模型-以桂中北泥盆纪盆地为例[J].岩相古地 理,1996,16(6):1-13
    
    229.王立亭,陆彦邦,赵时久,等.中国南方二叠纪岩相古地理与成矿作用[M].北京:地 质出版社,1994.
    
    230.王训练.露头层序地层学研究的几个基本理论问题[J].中国科学,1999,29(1):22-30.
    
    231.王训练.露头层序地层学研究中定义和识别不同级别沉积层序的标准[J].中国科学, 2003,33(11):1057-1068.
    
    232.王一刚.川东上二叠统生物礁气藏形成条件及勘探目标评价研究[R].成都:中石油西南 油气田分公司勘探开发研究院,1998.
    
    233.王一刚.四川盆地东北部长兴组-飞仙关组气藏成藏条件研究及勘探目标评价(科研报 告).成都:中石油西南油气田分公司勘探开发研究院,2000.
    
    234.王一刚,陈盛吉,徐世琦.四川盆地古生界-上元古界天然气成藏条件及勘探技术[M]. 北京:石油工业出版社,2001.
    
    235.王一刚,文应初,张帆,等.川东地区上二叠统长兴组生物礁分布规律[J].天然气工业, 1998,18(6):10-15.
    
    236.王忠东,王津义.川东地区晚二叠世长兴期生物礁分布特征[J].江汉石油学院学报, 2003,25(2):30-31.
    
    237.魏国齐,陈更生,杨威,等.川北下三叠统飞仙关组“槽台”沉积体系及演化[J].沉积学 报,2004,22(2):254-260.
    
    238.魏家庸.贵州省贵阳地区的三叠纪地层格架[J].中国区域地质,1993(2):97-106
    
     239.吴根耀.构造层序地层学[J].地球科学进展[J],1996,11(3):310-310.
    
    240.吴浩岩.放射虫硅质岩对华南古地理的启示[J].古地理学报,1999,1(2):28-35.
    
    241.夏邦栋,钟立荣,方中,吕洪波.下扬子区早二叠世孤峰组层状硅质岩成因[J].地质学 报,1995,69(2):125-137.
    
    242.谢继容.川东长兴组生物礁的高分辨率层序地层研究[J].矿物岩石,2002,22(1):49-54.
    
    243.熊永柱,夏斌,林丽,等.热水沉积成矿研究现状与展望[J].矿产与地质,2005,19(3): 233-238.
    
    244.徐怀大,魏魁生,洪卫东,等译.层序地层学原理(海平面变化综合分析)[M].北京: 石油工业出版社,1993.
    
    245.徐跃通.鄂东南晚二叠世大隆组层状硅质岩成因地球化学及沉积环境[J].桂林工学院 学报,1997,17(3):204-212.
    
    246.徐跃通.广东茂名地区二叠纪层状硅质岩成因地球化学特征及其沉积环境意义[J].西 安地质学院学报,1997,19(3):27-33.
    
    247.徐跃通.江西东乡矿区沉积硅质岩的地球化学特征和成因[J].沉积学报,1997, 15(3):110-114.
    
    248.徐跃通.江西永平地区石炭纪硅质岩成因地球化学特征及沉积环境[J].大地构造与成 矿学,1996,20(1):20-28.
    
    249.许效松.层序地层序研究进展[J].岩相古地理,1994,14(1):34-39.
    
    250.许效松.层序地层在沉积学和油储勘探中研究的关键点[J].岩相古地理,1996,16 (6):55-62.
    
    251.许效松,刘宝珺,赵玉光,等.上扬子西缘二叠纪-三叠纪层序地层与盆山转换耦合[M]. 北京:地质出版社.
    
    252.杨海生,周永章,杨志军,等.华南热水成因硅质岩建造的稀土元素地球化学特征[J]. 矿物岩石地球化学通报,2003,22(1):61-64.
    
    253.杨海生,周永章,杨志军,等.热水沉积硅质岩地球化学特征及意义——以华南地区为 例[J].中山大学学报(自然科学版),2003,42(6):111-115.
    
    254.杨明慧.湘桂早海西构造层序地层与板内构造运动[J].湖南地质,1998,17(1):14-18.
    
    255.杨玉卿,冯增昭.华南下二叠统层状砖岩的形成及意义[J].岩石学报,1997, 13(1):111-120
    
    256.杨志军,周永章,张澄博,等.硅质岩组构信息研究及其意义[J].矿物岩石地球化学通 报,2003,22(3):255-258.
    
    257.伊海生,曾允孚,夏文杰.扬子地台东南大陆边缘上震旦统硅质岩的超微组构及其成因 [J].地质学报,1994,68(2):132-141.
    
    258.殷积峰,李军,谢芬,等.波形分类技术在川东生物礁气藏预测中的应用[J].石油物探, 2007,46(1):53-57.
    
    259.殷积峰,李军,谢芬,等.川东二叠系生物礁油气藏的地震勘探技术[J].石油地球物理 勘探,2007,42(1):70-75.
    
    260.丁炳松,Dong Hailiang,陈建强,等.塔里木盆地下寒武统底部层状硅质岩微量元素和 稀土元素地球化学特征及其成因意义[J].地质学报,2005,79(2):261.
    
    261.丁灿松,陈建强,李兴武,等.塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元??素和稀土元素地球化学及其沉积背景[J].沉积学报,2004,22(1):59-66.
    
    262.曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区硅质岩成因及意义[J].地质论评,2004, 50(2):153-161.
    
    263.曾祥华,付德慧,等.鄂西渝东区综合解释报告[R].中石化股份有限公司油田勘探开发 事业部南方海相油气勘探项目经理部,2000.
    
    264.曾允孚,夏文杰.沉积岩石学[M].地质出版社,1986,1-274.
    
    265.翟光明主编.中国石油地质志(卷十·四川油气区)[M].北京:石油工业出版社,1989.
    
    266.张帆,文应初,强子同,王生海.四川及邻区晚二叠吴家坪碳酸盐缓坡沉积[J].西南石 油学院学报,1993年,15(1):34-41.
    
    267.张继庆,冯纯红,杜德勋,等.四川盆地早二叠世碳酸盐沉积相及风暴沉积作用[M].重 庆:重庆出版社,1986.
    
    268.张继庆,李汝宁,官举鸣,等.四川盆地及邻区晚二叠世生物礁[M].成都:四川科学 技术出版社,1990.
    
    269.张渝昌.中国含油气盆地原型分析[M].南京:南京大学出版社,1997.
    
    270.张玉成.四川南部晚二叠世含煤地层沉积环境与聚煤规律[M].贵阳:贵州科技出版社, 1993.
    
    271.郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院 学报,2000,27(3):241-244.
    
    272.郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    
    273.周永章.丹池盆地热水成因硅质岩地球化学特征[J].沉积学报,1990,8(3):75-83.
    
    274.朱洪发,秦德余,刘翠章.论华南孤峰组和大隆组硅质岩成因、分布规律及其构造机制 [J].石油实验地质,1989,11(4):341-348.
    
    275.朱杰,杜远生,刘早学,等.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其 大地构造意义[J].中国科学D辑,2005,35(12):1131-1139.
    
    276.朱同兴,黄志英,惠兰.上扬子台地晚二叠世生物礁相地质[M].北京:地质出版社, 1999.
    
    277.邹光富,陈永明,夏彤.层序地层学在区域地质调查中的应用[J].四川地质学报,2003, 23(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700