人工关节硅酸二钙涂层离子溶液促成骨能力及其机理的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分硅酸二钙离子溶液促进成骨细胞增殖活性的研究
     目的试图阐明等离子喷涂于钛基的硅酸二钙涂层的溶解能力及在不同溶液中的主要离子变化,以及这些离子溶解物对成骨细胞增殖能力的影响。方法将等离子喷涂硅酸二钙涂层的金属钛片浸泡于200ml DMEM培养基及双蒸水中,37℃下静置72h后弃钛片,以ICP检测溶液中Si、Ca、P离子浓度。将制备的条件DMEM培养基及正常DMEM培养基分别培养MG63细胞,定期观察细胞形态学特征,于第3、6、9、12天四个时间点分别以MTT法检测细胞增殖情况;以流式细胞仪分析各时间点的细胞周期情况。结果经浸泡等离子喷涂于金属钛基的硅酸二钙涂层后的DMEM培养基及双蒸水中Si离子均明显升高,与正常培养基相比差异显著(条件DMEM vs DMEM p<0.05,双蒸水(浸泡后) vs DMEM p<0.01);Ca及P离子浓度在两种DMEM培养基中无明显差异。培养于条件DMEM及正常DMEM中的MG63细胞形态未见明显差异。第3天实验组MTT值明显高于对照组,其差异显著(p<0.01)。此后三个时间点两组间MTT值差异均无统计学意义,第9、12天时实验组MTT值甚至略低于对照组。细胞周期分析结果显示在培养第3天时实验组S期细胞所占比例显著高于对照组;而实验组G0/G1期细胞百分比则明显低于对照组;两组间G2/M期细胞所占比例无统计学差异,但实验组略高于对照组。第6,9,12天时实验组S期细胞百分比仍然高于对照组,但无统计学差异。同样,第6,9,12天时两组细胞间G0/G1期及G2/M期细胞所占的百分比之间也没有显著性的差异。结论等离子喷涂硅酸二钙涂层浸泡于DMEM培养基72h后,溶液中硅离子浓度明显增高。硅酸二钙离子溶液条件培养基有促进MG63细胞早期增殖的能力,而对晚期增殖无明显促进作用。其促成骨细胞增殖的能力可能与条件培养基中较高的硅离子浓度有关,并可能是与上调S期及G2/M期细胞比例并同时降低G0/G1期细胞的比例有关的。
     第二部分硅酸二钙离子溶液促进成骨细胞分化能力的研究
     目的探讨等离子喷涂硅酸二钙涂层离子溶液对MG63成骨样细胞分化能力的影响。方法人成骨肉瘤来源的具有成骨活性的MG63细胞分别培养于正常DMEM及条件DMEM培养基中,分别于第3、6、9、12天四个时间点收集标本,检测ALP活性;以定量RT-PCR法检测转录因子Runx2及成骨细胞分化标志物Ⅰ型胶原、碱性磷酸酶及骨钙素的基因表达情况。结果对照组ALP活性随培养时间的增加呈现出逐渐增加的趋势,但增加辐度较低;实验组ALP活性从第3天起即明显高于对照组,此后随培养时间增加而逐渐增加,第6天时两组间差异更加明显,第9天时仍然明显高于对照组,第12天时较第9天略有降低,但仍然明显高于对照组。Runx2的基因表达于第3,6天两个时间点在两组之间无明显差异,但第9,12天时,实验组的表达量明显高于对照组(p<0.05)。对照组细胞ALP mRNA的表达在整个培养过程中无明显变化,实验组从第3天起即明显高于对照组,但差异不明显(p>0.05)。从第6天起实验组ALP基因表达量明显高于对照组,并随培养时间增加而明显增加,其表达量在其后所有时间点均显著高于对照组(p<0.05)。Ⅰ型胶原和骨钙'素的表达变化的趋势相似,在对照组各个时间点均无明显差别,但实验组基因表达呈现逐渐增高的趋势,然后于第12天时略降低。与对照组相比,第9、12天时Ⅰ型胶原与骨钙素的基因表达量均显著高于对照组(p<0.05)。结论硅酸二钙离子溶解物除了能促进MG63细胞早期分化外,还具有促进其晚期分化的能力,这与其它同样具有CaO-SiO_2成分并能释放硅离子的生物活性材料对成骨细胞增殖分化的影响是一致的,表明硅酸二钙也是一种良好的生物活性材料。
     第三部分硅酸二钙离子溶液促进成骨细胞钙矿沉积的研究
     目的通过形态学观察和钙矿沉积定性、定量检测,试图阐明等离子喷涂硅酸二钙涂层离子溶液促进成骨细胞矿化的能力。方法MG63细胞按前述方法培养于24孔细胞培养板中,分别于第3、6、9、12天四个时间点中止培养,以茜素红S染色方法进行染色,了解钙矿沉积情况,观察是否有钙化结节的形成,并定量检测各时间点钙矿沉积量。结果实验组第3天时已经有明显的茜素红着色,而对照组细胞只有非常微弱的茜素红着色。随着培养时间的增加,第6天时对照组细胞可以见到较为明显的茜素红S着色,但实验组细胞着色强度明显强于对照组,并明显强于实验组第3天时。第9天时对照组细胞着色强度较第6天增强,但实验组明显强于同组第6天时,亦明显强于对照组第9天时的着色强度。第12天时对照组茜素红着色程度较同组第9天有较明显的增加,但与实验组相比其着色程度仍较弱,而实验组着色非常明显,并且在部分区域有着色较浓的片状聚集。实验组在培养的第12天偶尔可发现一些着色极浓的灶状茜素红S浓集,这很可能就是钙化结节形成的中心;而在对照组则没有这样的现象可以观察到。钙矿沉积定量检测结果显示:在本实验12天的培养过程中,对照组及实验组的钙矿沉积量均随培养时间的增加而逐渐增加。对照组第3天时即有少量钙矿沉积,以后稳步上升;实验组钙矿沉积也同样随培养的时间增加而逐渐增加。但在实验组第3天时钙矿沉积量即明显大于对照组,其差异显著(p<0.05),此后实验组钙矿沉积量增加大于对照组,到第9、12天时两组间差异更加明显(p<0.01)。结论硅酸二钙离子溶解物条件DMEM培养基除了有促进培养的MG63成骨细胞增殖分化的能力外,还能够促进其钙矿沉积的发生,其能力明显强于正常DMEM培养基培养的MG63细胞。这可能主要与条件培养基中较高的硅离子浓度有关。
     第四部分硅酸二钙离子溶液促进成骨能力机理的研究
     目的探讨等离子喷涂硅酸二钙涂层离子溶液促进MG63细胞增殖、分化及钙化的可能分子机理。方法MG63细胞按前法培养,于相应时间点收集标本。分别以ELISA法检测BMP2、PGE2浓度;以生化方法检测NO浓度;以定量RT-PCR检测BMP2及其信号传导通路蛋白Smad1、6、7基因水平的表达情况。结果实验组和对照组BMP2基因及蛋白水平的表达均随着培养时间的增加而增加,虽然其表达量在所有时间点均无显著差异(p>0.05),但实验组各时间点的表达量均大于对照组。BMP信号传导协同性Smad1通路蛋白的基因表达在对照组各个时间点没有明显的变化,但实验组第9天和第12天却有显著的升高,在两个时间点上与对照组相比均有显著差异(p<0.05)。两种抑制性Smad蛋白即Smad6和Smad7的基因表达在实验组和对照组中均没有明显的变化。相应地,对照组NO含量随着培养时间的增加无明显变化,而实验组NO含量随培养时间增加而逐渐增加,在第12天时开始降低,在各时间点均高于对照组相应时间点,且在第6,9,12天三个时间点与对照组相比差异具有统计学意义。PGE2的含量在两组中均随培养时间呈逐渐下降的趁势,但实验组PGE2的浓度明显高于对照组,于后三个时间点其差异明显。结论硅酸二钙离子溶解物能够上调BMP2基因及蛋白水平的表达,同时也能上调BMP2信号传导通路蛋白中辅助性Smad1的表达而调节成骨细胞的代谢功能,而对两种抑制性Smad即Smad6、7的表达无明显的影响。此外,硅酸二钙对成骨细胞代谢的影响还可能与PGE2及NO的表达增加有关。
PartⅠStudy of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferatoin
     Objective To explore the dissolving properties of plasma sprayed dicalcilum silicate coating on Ti plates and accordingly the concentrations of the main ions in different dissolutions,as well as the influences of ionic dissolution products of dicalcium on proliferation of MG63 cells.Method 10 pieces of Ti plates with plasma sprayed dicalcium silicate coating were soaked in 200ml DMEM and double dilluted H_2O, respectively,at 37℃for 72h in static conditions,then ICP-OES was employed to detect the concentrations of Si,Ca and P.MG63 cells were cultured in DMEM and conditioned DMEM respectively.Cell mophorlogy was observed under microscopes,cell cycles were analyzed by flow cytometry,and MTT assay was used to detect cell proliferation on days 3, 6,9 and 12.Results Si concentrations in DMEM and double dilluted H_2O after soaking with dicalcium silicate coating were increased,markedly when compared with normal DMEM;no differences of Ca and P ionic concentrations were observed between normal DMEM and dicalcium silicate conditioned DMEM.No differences in cell morphorlogy were existed between the cells of the two groups.MTT value of experimental group was significantly higher than that of control group on day 3.With the progression of culture time,no differences statistically significant were observed between the two groups,and MTT values on days 9 and 12 in the experimental group were even a little lower than those of the control group.Flowcytometric analysis showed that the percentage of MG63 cells in S phase of the experimental group was obviously higher than that of the control group.At the same time,cells in G0/G1 phase of the experimental group was significantly lower than that of the control group.While cells in G2/M phase of the experimental group was a little higher than that of the control group with no statistically significant difference.No differences in different phases between the two groups could be observed thereafter. Conclusions Plasma sprayed dicalcium silicate coating on Ti plates lead to increase in Si ion concentration after soaked in DMEM for 72h.Dicalcium silicate conditioned DMEM was able to promote the early but not the late proliferation of MG63 cells,which may be intimately related to the high concentration of Si ion.And the ability of C2S conditioned culture medium to promote osteoblastic proliferation was intimately related to the upregulated percentage of cells in S and G2/M phases as well as the downregulated percentage in G0/G1 phase.
     PartⅡStudy of ionic dissolution products of dicalcium silicate coating on osteoblastic differentiation
     Objective To explore the influences of ionic dissolution products of dicalcium silicate coating on differentiation of MG63 cells.Method MG63 osteoblast-like cells were cultured in normal DMEM and conditioned DMEM,respcetively. After 3,6,9,12 days' cultivation,respectively,samples were collected for detection of the ALP activity and gene expression of core binding factorα1(Runx2) and 3 markers of osteoblastic differentiation,e.g typeⅠcollagen,ALP and osteocalcin.Results From day 3 on,ALP activity in the experimental group was higher than that of the control group. With the progression of culture time,ALP activity increased in both of the two groups but was higher in the experimental group.Statistically significant differences were observed on timepoints of days 3,6 and 9.On day 12,although ALP activity was still higher in the experimental group than those in control group,the difference was already not significant. Although there were no significant differences at days 3 and 6,mRNA levels of Runx2 were higher in the experimental group on days 9 and 12.ALP mRNA expression in the control group in the culture course showed no signifant differences,but its expression markedly upregulated(p<0.05) in the experimental group from day 3 on and increased persistently till the end of the study.When considering the mRNA levels of typeⅠcollagen and osteocalcin,the changes were similar in these two markers,which showed no significant changes in the control group but increased from 3 day on and was markedly higher on day 9 in the experimental group,then decreased slightly on day 12 but was still markedly higher than that of the control group.Conclusions Ionic dissoluiton products of dicalcium silicate coating was able to promote late differentiation as well as early proliferation of MG63 osteoblast-like cells,which indicated that dicalcium silicate may be also a favorable bioactive biomaterial.
     PartⅢStudy of the ionic dissolution products of dicalcium silicate coating on osteoblastic mineralisation
     Objective To explore the influences of ionic dissolution products of dicalcium silicate coating on osteoblastic mineralisation.Method MG63 cells were cultured in 24 wells plates accordingly and samples were collected and detected on days 3, 6,9 and 12,respectively.Alizarin Red S was used for staining of mineralisation for morphorlogic observation,and calcium mineral deposition was detected by a quantifying AR-S assay.Results AR-S staining showed that on day 3,cells in the experimental group already exhibited obvious staining,while those in the control group was very faint. On day 6,faint staining in the control group could be observed,while cells of the experimental group showed of much obvious staining compared to that in the control group,and also was stronger than that on day 3 in the same group.On day 9,cells of the control group increased a little when compared to that on day 6,while increased markedly in the experimental group during the same period.Although AR-S staining increased a lot when comparing cells in the control group on day 12 to day 9,the staining was still a little faint.While there was much stronger AR-S staining in the experimental group,and some portions with dense staining were also could be observed on day 12.Importantly,some very dense accumulation of AR-S staining which have formed focuses could be randomly observed in the experimental group that mostly like to represented the centre of nodule on day 12.What is more,calcium mineral content quantification showed that little mineral depostion was formed in the control group,while more mineral formation could be found in the experimental group on day 3.Then the mineral contents increased in both groups, but much more mineral deposition have formed in the experimental group when compared to those of the control group from day 6 to 12.Differences between the two groups on the 4 timepoints were all statistically significant.Conclusion Except for the ability of promoting proliferation and differentiation,ionic dissolution products of dicalcium silicate coating was also able to promote mineralisation of MG63 osteoblast-like cells,which may be mainly because of the high Si concentration in the conditioned DMEM.
     PartⅣStudy of the mechanisms of osteogenic capacity of ionic dissolution products of dicalcium silicate coating
     Objective To explore the possible mechanisms of ionic dissolution products of dicalcium silicate coating in promoting osteogenic capacity in vitro.Method MG63 cells was cultured accordingly and samples were collected on the predetermined timepoints respectively.ELISA assay was used to detect BMP2 and PGE2 expression,biochemistry method was used for the detection of NO production,and quantitative RT-PCR was used to detect the gene expression of BMP2 and its' signal transducers Smadl、6、7,respectively. Results BMP2 protein and mRNA expression were all increased in the two groups, which were higher on all of the time points in the experimental group although were not significant between the two groups.Gene expression of Smadl,which is a Co-Smad for BMPs signal tranduction increased markedly on day 9 and day 12 in the experimental group when compared with that of the control group(p<0.05).And no obvious changes of the two inhibitary Smads,Smad6 and 7 existed in the two groups on all of the 4 time points.Accordingly,NO production in the control group exhibited no obvious change with the progression of culture time,but was increased with the progression of culture time in the experimental group and begin to decrease on day 12,with significant differences exist on days 6,9 and 12 between the two groups.PGE2 contents in the two groups were all decreased with the progression of culture time,but which were higher in the experimental group,especially on the late 3 timepoints.Conclusion Ionic dissolution products of dicalcium silicate coating may promote the osteogenic capacity of MG63 osteoblast-like cells via upregulate expression of BMP2 and Smadl,while have no influences on the gene expression of Smad6 and Smad7.What is more,NO and PGE2 are also likely contributed to the positive effects of ionic dissolution products of dicalcium silicate coating in promoting osteoblastic metabolism.
引文
[1]Morscher E,et al.Endoprosthetics,Springer,Berlin,1995.
    [2]Howie D W,et al.Implant-Bone Interface,Springer,London,1990.
    [3]Buser D,Nydegger T,Oxland T,et al.Interface shear strength of titanium implants with a sandblasted and acid-etched surface:a biomechanical study in the maxilla of miniature pigs.J Bioed Mater Res 1999;45:75-83.
    [4]Webster TJ,in Ying JY(Ed.),Advances in chemical engineering.Academy Press,New York,2001,P:125.
    [5]Hench LL,West JK.Biological applications of bioactive glasses.Life Chemistry Reports 1996;13:187-241.
    [6]Xuanyong Liu,et al.Surface modification of titanium,titanium alloys,and related materials for biomedical applications Materials Science and Engineering 2004;47:49-121.
    [7]Junying Sun,et al.The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro.J Tissue Eng Regen Meal.2007;1:281-286.
    [8]Sun JY,et al.Macroporouspoly(3-hydroxybutyrate-co-3-hydroxyvalerate)matrices for cartilage tissue engineering.European Polymer Journal 2005;41:2443-2449.
    [9]Lee JM,Lee CW.Comparison of Hydroxyapatite-Coated and Non-Hydroxyapatite-Coated Noncemented Total Hip Arthroplasty in Same Patients.J Arthroplasty 2007;22:1019-1023.
    [10]Murty AN,Freeman MAR.Hydroxyapatite-Coated Femoral Components in Total Knee Arthroplasty.J Arthroplasty.2003;18:844-851.
    [11]Chang JK,Chen CH,Huang KY,et al.Eight-Year Results of Hydroxyapatite-Coated Hip Arthroplasty.J Arthroplasty.2006;21:541-546.
    [12]Laquerriere P,Grandjean-Laquerriere A,Addadi-Rebbah S,et al.MMP-2,MMP-9and their inhibitors TIMP-2 and TIMP-1 production by human monocytes in vitro in presence of differents hydroxyapatite:importance of particle physical characteristics.Biomaterials 2004;25:2515-24.
    [13]Hench LL.Bioceramics:From concept to clinic,J Am Ceram Soc.1991,74:1487-1510.
    [14]刘宣勇,丁传贤.等离子喷涂生物涂层材料.硅酸盐学报 2007;8:30-38.
    [15]Sachse A,Wagner A,Keller M,et al.Osteointegratin of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2(BMP-2) in aged sheep.Bone 2005;37:699-710.
    [16]Rammelt S,Illert T,Bierbaum S,et al.Coating of titanium implants with collagen,RGD peptide and chondroitin sulfate.Biomater 2006;27:5561-5571.
    [17]Feng B,Weng J,Yang BC,et al.Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.Biomater 2004;25:3421-3428.
    [18]Liu XY,Ding CX,Wang ZY.Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomater 2001;22: 2007-2012.
    [19] Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res 2001;55:603-612.
    [20] Oliva A, Salerno A, Locardi B, et al. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomater 1998; 19:1019-1025.
    [21] Liu XY, Tao SY, Ding CX. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomater 2002;23:963-968.
    [22] Xie YT, Liu XY, et al. Bioactive titanium-particle-containing dicalcium silicate coating. Surface & Coatings Technology 2005;200: 1950 - 1953.
    [23] Liu XY, et al. Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid. J Chinese ceramic society, 2007;35:30-39.
    [24] Xie YT, Liu XY,et al. Improved stability of plasma-sprayed dicalcium silicate/zirconia composite coating. Chu Thin Solid Films 2006; 515: 1214-1218.
    [25]Linkhart TA, Mohan S, Baylink DJ, et al. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 1996;19:1S-12S.
    [26] Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fractrue healing as a post-natal developmental rpcess: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003;88:873-884.
    [27]Tsuji K, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006;38:1424-1429.
    [28] Harris SE, Bonewald LF, Harris MA, et al. Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontion, alkoline Phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 1994;9:855-863.
    [29] Roberts CJ, Birkenmeier TM, McQuillan JJ, et al. Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem 1988;263:4586-4592.
    [30]Nesti LJ, Caterson EJ, Wang M, et al. TGF-β1 calcium signaling increases a5 integrin expression in osteoblasts. J Orthop Res 2002; 20: 1042-1049.
    [31] Shah AK, Lazatin J, Hickok NJ, et al. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone 1999;24:499-506.
    [32]Larsson J, Karlsson S. The role of Smad signaling in hematopoiesis. Oncogene 2005;245676-5692.
    [33]Miyazono K. TGF-β signaling by Smad proteins. Cytokine Growth Factor Rev 2000; 11:15-22.
    [34] Moses HL, Serra R. Regulation of differentiation by TGF-beta. Curr Opin Genet Dev 1996;6:581-586.
    [35]Zhang YW, Yasui N, Ito K, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interattion in cleidocranial dysplasia. Proc Natl Acad Sci U.S.A 2000;97:10549-10554.
    [36]Itoh S, Landstrom M, Hermansson A, et al. Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J Biol Chem 1998;273:195-201.
    [37]Karsenty G. The genetic transformation of bone biology. Genes Dev 1999; 13:3037-3051.
    [38]O'shaughnessy MC, Polak JM, Afzal F, et al. Nitric oxide mediates 17β-estradiol- stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 2000;277:604-610.
    [39]Mancini L, Noradi-Bidhendi N, Becherini L, et al. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophysi Res Commun 2000;274:477-481.
    [40]Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG. The role of prostaglandin in the regulation of bone metabolism. Clin Orthop 1995;313:36-46.
    [41] Flanagan AM, Chambers TJ, Stimulation of bone nodule formation in vitro by prostaglandins E1 and E2. Endocrinology 1992;130:443-448.
    [42] Wittenberg JM, wittengerg RH, Osborn JR Prostaglandin release from rat femurs after implantation of hydroxyapatite and aluminum oxide ceramics. Prostaglandins Leukot Essent Fatty Acids 1995;53:413-417.
    [43] Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W. The effect of nitirc oxide on the production of prostaglandin E2 by hydroxyapatite-stimulated a human osteoblast (HOS) cell line. Biomed Pharmaco 2006;60:147-151.
    [44]Corbett JA, Kwon G, Turk J, Mcdaniel ML. IL-1β induces the coexpression of both nitric oxide synthase and cyclooxygenase by islet of Langerhans: activation of cyclooxygenase by nitric oxide. Biochem 1993;32:13767-13770.
    [45] Perkins DJ, Kniss DA. Blockage of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 1999;65:413-417.
    [46] Rochet N, Loubat A, Laugier JP, et al. Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone 2003;32:602-610.
    [47]Lossdorfer S, Schwartz Z, Lohmann CH, et al. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomater 2004;25:2547-2555.
    [48] Suzuki A, Palmer G, Bonjour JP, et al. Stimulation of sodium-dependent phosphate transport and signaling mechanisms induced by basic fibroblast growth factor in MC3T3-E1 osteoblast-like cells. J Bone Miner Res 2000;15:95-102.
    [49]Junying Sun, Li Wei, Xuanyong Liu, et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomaterialia (2008), doi:10.1016/j.actbio.2008.10.011
    [1] Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117-141.
    [2] Hamadouche M, Meunier A, Greenspan DC, et al. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J Biomed Mater Res 2001;54:560-566.
    [3] Hench LL, Stanly HT, Clark AE, et al. Dental applications of bioglass implants. In: Bonfield W, Hastings GW, Tanner KE, editors. Bioceramics vol. 4.
    [4] Xynos ID, Hukkanen MVJ, Batten JJ, et al. Bioglass? 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 2000;67:321-329.
    [5] Price N, Bendall SP, Frondoza C, Jinnah RH, Hungerford DS. Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface. J Biomed Mater Res 1997;37:394-400.
    [6] Oonishi H, Hench LL, Wilson J, et al. Quantitative comparison of bone growth behavior in granules of Bioglass~(?), A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 2000;51:37-46.
    [7] Liu XY, Tao SY, Ding CX. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomater 2002;23:963-968.
    [8] Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Engin R 2004;47:49-121.
    
    [9] Morscher E, et al. Endoprosthetics,Springer,berlin,1995.
    [10] Howie DW, et al. Implant-Bone Interface,Springer,london,1990.
    [11]Bobyn JD, Pilliar RM, Cameron HU, et al. Clin Orthop. 1980;150:263.
    
    [12] Sun JY, et al. The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med. 2007; 1:281-286.
    [13] Sun JY, et al. Macroporouspoly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering.J Europ Polymer 2005;41:2443-2449.
    [14]Hench LL.Bioceramics:From concept to clinic.J Am Ceram Soc 1991,74:1487-1510.
    [15]刘宣勇,丁传贤.等离子喷涂生物涂层材料.硅酸盐学报 2007;8:30-38.
    [16]Liu XY,Ding CX.Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid.Biomater.2001;22:2007-2012.
    [17]Xie YT,Liu XY,et al.Bioconductivity and mechanical properties of plasmasprayed dicalcium silicate/zirconia composite coating.Mater Sci Engin 2005;25:509-515.
    [18]Xie YT,Liu XY,et al.Bioactive titanium-particle-containing dicalcium silicate coating.Sur Coat Tech 2005;200:1950-1953.
    [19]Liu XY,et al.Apatite formed on the surface of plasma sprayed wollastonite coating immersed in simulated body fluid.J Chinese ceram soc.2007;35:30-39.
    [20]Xie YT,Liu XY,et al.Improved stability of plasma-sprayed dicalcium silicate/zirconia composite coating.Chu Thin Solid Films 2006;515:1214-1218.
    [21]Gough GE,Jones JR,Hench LL.Nodule formation and nineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold.Biomater 2004;25:2039-2046.
    [22]Christodoulou I,Buttery LDK,Tai GP,et al.Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products.J Biomed Mater Res Part B:Appl Biomater 2006;77B:431-446.
    [23]Xynos ID,Edgar AJ,Buttery LDK,et al.Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass~(?) 45S5dissolution.J Biomed Mater Res 2001;55:151-157.
    [24]Reffitt DM,Ogston N,Jugdaohsingh R,et al.Orthosilicic acid stimulates collagen 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.
    [25]Hench LL,Xynos ID,Polak JM.Bioactive glasses for in situ tissue regeneration.J Biomater Sci Polym Ed 2004;15:543-562.
    [26]Porter AE,Patel N,Skepper JN,et al.Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substitued hydroxyapatite bioceramics.Biomater 2003;24:4609-4620.
    [27]So K,Fujibayashi S,Neo M,et al.Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by addition of glass.Biomater 2006;27:4738-4744.
    [28]Patel N,Best SM,Bonfield W,et al.A comparative study on the in vivo behavior of hydroxyapatite and silicon substitued hydroxyapatite granules.J Mater Sci Mater Med 2002;13:1199-1206.
    [29]Hott M,de Pollak C,Modrowski D,et al.Short-term effcts of organic silicon on trabecular bone in mature ovariectomized rats.Calcified Tissue International 1993;53:174-179.
    [30]Carlisle EM.Silicon:a requirement in bone formation independent of vitamin D1.Calcified Tissue International 1981;33:27-34.
    [31]胡野,凌志强,单小云.细胞凋亡的分子医学.军事医学科学出版社,2002
    [32]El-Naggar AK.Concurrent flow cytometric analysis of DNA and RNA.Methods in Molecular Biology 2004;263:371-84.
    [1] Wang CY, Duan YR, Markovic B, et al. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomater 2004;25:2507-2514.
    [2] Bosetti M, Zanardi L, Hench L, et al. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res 2003;64A:189-195.
    [3] Loty C, Sautier JM, Tan MT, et al. Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bon tissue formation. J Bone Miner Res 2001;16:231-239.
    [4] Lossdorfer S, Schwartz Z, Lohmann CH, et al. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomater 2004;25:2547-2555.
    [5] Wang CY, Duan YR, Markovic B, et al. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomater 2004;25:2949-2956.
    [6] Schaffner P, Dard MM. Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 2003;60:119-132.
    [7] Aubin J, Turksen K, Heersche NM. Osteoblastic cell lineage. In: Noda M (ed) Cellular and molecular biology of bone. Academic Press Inc. San Diego, CA, 1993 p2.
    [8] Wuthier RE, Register TC. Role of alkaline Phosphatase, a polyfunctional enzyme, in mineralising tissues. In: Butler WT (ed) The chemistry and biology of mineralised tissues. Ebso Media, Birmingham, AL, 1985 p113.
    [9] Owen TA, et al. Progressive development of the rat osteoblast phenotype in vitro: riciprocal relationships in expression of genes associated with osteoblast prolifereation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990; 143:420-430.
    [10]Hauschka PV, Lian JB, Cole DEC, et al. Osteocalcin and matrix GLA protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:990-1047.
    [11]Romberg RW, Werness PG, Riggs BL, et al. Inhibition of hydroxyapatite cyrstal growth by bone-specific and other calcium-binding proteins. Biochemistry 1986;25:1176-1180.
    [12]Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteodeficiency mice. Nature 1996;382:448-452.
    [13]Lomri A, Marie PJ, Tran PV, et al. Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 1988;9:165-175.
    [14]Aronow MA, Gerstenfeld LC, Owen TA, et al. Factors that promote progressive developmetn of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol 1990;143:213-221.
    [15]Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117-141.
    [16]Oliva A, Salerno A, Locardi B, et al. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomater 1998; 19:1019-1025.
    [17] Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res 2004;68A:640-650.
    [18]Xynos ID, Hukkanen MVJ, Batten JJ, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implacations and applications for bone tissue engineering. Calcif Tissue Int 2000;67:321-329.
    [19] Stein GS, Lian JB, van Wijnen AJ, et al. Runx2 control of organization, assembly and activity of the regulatory mcahinery for skeletal gene expression. Oncogene 2004;23:4315-4329.
    [20]Ducy P, Zhang R, GeoffroyV, et al. Osf2 / Cbfal: a transcriptional activator of osteoblast diferentiation. Cell 1997;89:747-754.
    [21] Choi JY, Pratap J, Javed A, et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci. USA 2001;98:8650-8655.
    
    [22] Pratap J, Galindo M, Zaidi SK, et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblsts. Cancer Res 2003;63:5357-5362.
    [23]Boanini E, Torricelli P, Gazzano M, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomater 2006;27:4428-4433.
    [1]Beresford JN,Graves SE,Smoothy CA.Formation of mineralised nodules by bone-derived cells in vitro:a model of bone formation? Am J Med Genet 1993;45:163-178.
    [2]Gough JE,Jones JR,Hench LLo Nodule formation and nineralisation of human primary osteoblasts cultured on a porous bioactive glass sccffold.Biomater 2004;25:2039-2046.
    [3]Xynos ID,Hukkanen MVJ,Batten JJ,et al.Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro:implications and applications for bone tissue engineering.
    [4]Hench LL.Bioceramics:From concept to clinic.J Am Ceram Soc 1991,74:1487-1510.
    [5]刘宣勇,丁传贤.等离子喷涂生物涂层材料.硅酸盐学报2007;8:30-38
    [6]Asselmeier M,Caspari R,Bottenfield S.A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus.Am J sports Med 1993;21:170-175.
    [7]Kwong LM,Jasty M,Harris WH.High failure rate of bulk femoral head allografls in total hip acetabular reconstructions at 10 years.J Arthroplasty 1993;8341-346.
    [8]Shinar AA,Harris WH.Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip atthroplasty.Sixteen-year-average follow-up.J Bone Joint Surg 1997;79A:159-168.
    [9]Hench LL.Biomaterials.Science 1980;208:826-831.
    [10]Hench LL,Wilson JW.Surface-active biomaterials.Science 1984;226:630-636.
    [11]Hench LL,Xynos ID,Polak JM.Bioactive glasses for in situ tissue regeneration.J Biomater Sci 2004;15:543-562.
    [12]Hench LL,West JK.Biological applications of bioactive glasses.Life Chemistry Reports 1996;13:187-241.
    [13]Hench LL, Paschall HA. Direct bonding of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res Symp 1973;4:25-42.
    [14]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117-141.
    [15]Pajamaki KJJ, Lindholm TS, Andersson OH, et al. Bioactive glass and glass ceramic coated hip endoprothesis: experimental study in rabbit. J Mater Sci Mater Med 1995;6:14-18.
    [16] Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater 1992;3:123-129.
    [17]Fetner AE, Hartigan MS, Low SB. Compend Contin Educ Dent 1994;15:932.
    [18]Oonishi H, Hench LL, Wilson J, et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 1999;44:31-43.
    [19]Teofilo JM, Brentegani LG, Lamano-carvalho TL. Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass. Archiv Oral Biol 2004;49:755-762.
    [20] Vogel M, Voigt C, Gross UM, et al. In vivo comparison of bioactive glass particles in rabbits. Biomater 2001;22:357-362.
    [21]Oliva A, Salerno A, Locardi B, et al. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomater 1998;19:1019-1025.
    [22]Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.
    [23]Pabbruwe MB, Standard OC, Sorrell CC, et al. Effect of silicon doping on bone formation within alumina porous domains. J Biomed Mater Res A 2004;71:250-257.
    [24] Seaborn CD, Nielsen FH. Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver. Biol Trace Elem Res 2002;89:251-261.
    [25] Reiser KM, Last JA. Collagen crosslinking in lungs of rats with experimental silicosis. Collagen Relat Res 1986;6:313-323.
    [26] Carlisle EM. Silicon: a possible factor in bone calcification. Science 1970;167:279-280.
    [27]LeVier RR. Distribution of silicon in the adult rat and rhesus monkey. Bioinorg Chem 1975;4:109-115.
    [28]Najda J, Gminski J, Drozdz M, et al. The action of excessive, inorganic silicon (Si) on the mineral metabolism of calcium (Ca) and magnesium (Mg). Biol Trace Elem Res 1993;37:107-114.
    [29] Seaborn CD, Nielsen FH. Effects of germanium and silicon on bone mineralization. Biol Trace Elem Res 1994;42:151-164.
    [30]Vitale-Brovarone C, Verne E, Robiglio L, et al. Development of glass-ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia 2007;3:199-208.
    [31]McGee-Russel SM. Histochemical methods for calcium. J Histochem Cytochem 1958;6:22-42.
    [32]Puchtleer H, Meloan SN, Terry MS. On the history and mechanism of alizarin and alizarin red S stains for calcium. J Histochem Cytochem 1969; 17:110-124.
    [33] Stanford CM, Jacobson PA, David Eanes E, et al. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Bio Chem. 1995;270:9420-9428.
    [1]朱宪彝,等.代谢性骨病.天津:天津科学技术出版社,1989:1-4.
    [2]Mohan S,Baylink DJ.Bone growth factor.Clin Orthop 1991;263:30-48.
    [3]Goldring MB,Goldring SR.Skeletal tissue response to cytokines.Clin Orthop 1990;258:245-277.
    [4]Lossd(o|¨)rfer S,Schwartz Z,Lohmann CH,et al.Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content.Biomater 2004;25:2547-2555.
    [5]Lutolf MP,Hubbell JA.Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat Biotechnol 2005;23:47-55.
    [6]Kleinman HK,Philp D,Hoffman ME Role of the extracellular matrix in morphogenesis.Curr Opin Biotechnol 2003;14:526-532.
    [7]Chen C,Jiang X.Mieroengineering the environment of mammalian cells in cultrue.MRS Bull 2005;30:194-201.
    [8]Urist MR.Bone:fromation by autoinduction.Science 1965;150:893-899.
    [9]Cho TJ,Gerstenfeld LC,Einhorn TA.Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing.J Bone Miner Res 2002;17:513-520.
    [10]Gerstenfeld LC,Cullinane DM,Barnes GL,et al.Fracture healing as a post-natal developmental process:molecular,spatial,and temporal aspects of its regulation.J Cell Biochem 2003;88:873-884.
    [11]Bouletreau PJ,et al.Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing.Plast Reconstr Surg 2002;109:2384-2397.
    [12]Spinella-Jaegle S,Roman-Roman S,Faucheu C,et al.Opposite effects of bone morphogenetic protein-2 and Transforming growth factor-β1 on osteoblast differentiation. Bone 2001;29:323-330.
    [13]Balint E, Lapointe D, drissi H, et al. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem 2003;89:401-426.
    [14]Bunyaratavej P, Hullingeer TG, Somerman MJ. Bone morphogenetic proteins secreted by breast cancer cells upregulate bone sialoprotein expression in preosteoblast cells. Exp Cell Res 2000;260:324-333.
    [15]Massague J. Weis-Garcia F. Serine/threonine kinase receptors: Mediators of transforming growth factor beta family signals. Cancer Surv 1996; 27: 41-64.
    [16] Wang FS, Kuo YR, Wang CJ, et al. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1α activation and vascular endothelial growth factor-A expression in human osteoblasts. Bone 2004;35:l 14-123.
    [17]Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J13:2105-2124; 1999.
    [18] Wrana JL. Regulation of Smad activity. Cell 2000; 100:189-192.
    [19]Miyazono K. TGF-β signaling by Smad proteins. Cytokine Growth factor Reviews. 2000; 11:15-22.
    [20] Grasso-Knight G, D'Angelo M, Volk SW , etal. Smad-Runx interactions during chondrocyte maturation. J Bone Jomt Surg Am 2001;83A:S15—S22.
    [21]Nishimura R, Hata K, Harris SE, et al. Core-bindingfactor α1(Cbfa1) induces osteoblastic diferentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone 2002;31:303—312.
    [22] Choi JY, Prata J, Javed A, et al. Subnuclear targeting of Runx / Cbfa factorsis essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci USA 2001;98:8650-8655.
    [23]Zhang YW, Yasui N, Ito K, et al. A RUNX2 / PEBP2 αA/ CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidoeranial dysplasia. Proc Natl Acad Sci USA 2000;97:10549-10554.
    [24]Keeting PE, Oursler MJ, Wiegand KE, et al. Zeolite A increases proliferation, differentiation, and transforming factor (3 production in normal adult osteoblast-like cells in vitro. J Bone Miner Res 1992;7:1281-1289.
    [25] Gao TJ, Aro HT, Ylanen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomater 2001;22:1475-1483.
    [26] Gough GE, Jones JR, Hench LL. Nodule formation and nineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomater 2004;25:2039-2046.
    [27] Christodoulou I, Buttery LDK, Tai GP, et al. Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res Part B: Appl Biomater 2006;77B:431-446.
    [28] Bergeron E, Marquis ME, Chretien I, et al. Differentiation of preosteoblasts using a devivery system with BMPs and bioactive glass microspheres. J Mater Sci: Mater Med 2007;18:255-263.
    [29] Sachse A, Wagner A, Keller M, et al. Osteointegratin of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep. Bone 2005;37:699-710.
    [30]Hay E, Lemonnier J, Fromigue 0, et al. bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 2001;276:29028-29036.
    [31]Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 2002;27:S40-48.
    [32]Sugiatno E, Rani Samsudin A, Fikri Ibrahim M, et al. The effect of nitric oxide on the production of prostaglandin E2 by hydroxyapatite-stimulated a human osteoblast (HOS) cell line. Biomedicine Pharmacotherapy 2006;60:147-151.
    [33]Mancini L, Noradi-Bidhendi N, Becherini L, et al. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophysi Res Commun 2000;274:477-481.
    [34]O'shaughnessy MC, Polak JM, Afzal F, et al. Nitric oxide mediates 17β-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 2000;277:604-610.
    [35] Chen RM, Chen TL, Chiu WT, et al. Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 2005;23:462-468.
    [36]Otsuka E, Hirano K, Matsushita S, et al. Effects of nitric oxide from exogenous nitric oxide donors on osteoblasttic metabolism. Euro J Pharmaco 1998;349:345-350.
    [37] Armour KE, Armour KJ, Gallagher ME, et al. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 2001;142:760-766.
    [38]Wimalawansa SJ. Nitroglycerin therapy is as efficacious as standard estrogen replacement therapy (Permarin) in prevention of oophorectomy-induced bone loss: a human pilot clinical study. J Bone Miner Res 2000; 15:2240-2244.
    [39]Hukkanen M, Platts LAM, Lawes T, et al. Effect of nitric oxide donor nitroglycerin on bone mineral density in a rat model of estrogen deficiency-induced osteopenia. Bone 2003;32:142-149.
    [40]Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG. The role of prostaglandin in the regulation of bone metabolism. Clin Orthop 1995;313:36-46.
    [41]Okada Y, Lorenzo JA, Freeman AM, Tomita M, Morham SG, Raisz LG, PilbeamCC. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J clin Invest 2000;105:823-832.
    
    [42] Flanagan AM, Chambers TJ, Stimulation of bone nodule formation in vitro by prostaglandin E1 and E2. Endocrinology 1992; 130:443-448.
    [43]Jee WS, Ma YF. The in vivo anabolic actions of prostaglandins in bone. Bone 1997;21:297-304.
    [44] Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O'Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J clin Invest 2002;109:1405-1415.
    [45] Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W. The effect of nitirc oxide on the production of prostaglandin E2 by hydroxyapatite-stimulated a human osteoblast (HOS) cell line. Biomed Pharmaco 2006;60:147-151.
    [46]Koyama A, Otsuka E, Inonue A, Hirose S, Hagiwara H. Nitric oxide accelerates the ascorbic acid-induced osteblastic differentiation of mouse stromal ST2 cells by stimulating the production of prostaglandin E2. Eur J Pharmacol 2000;391:225-231.
    [47]Corbett JA, Kwon G, Turk J, Mcdaniel ML. IL-1β induces the coexpression of both nitric oxide synthase and cyclooxygenase by islet of Langerhans: activation of cyclooxygenase by nitric oxide. Biochem 1993;32:13767-13770.
    [48] Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci UAS 1993;90:7240-7244.
    [49] Perkins DJ, Kniss DA. Blockage of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 1999;65:413-417.
    [50] Wittenberg JM, wittengerg RH, Osborn JF. Prostaglandin release from rat femurs after implantation of hydroxyapatite and aluminum oxide ceramics. Prostaglandins Leukot Essent Fatty Acids 1995;53:413-417.
    [51]Jiranek WA, Machado M, Jasty M, Jevsevar D, Wolfe HJ, Goldring SR, Goldberg MJ, Harris WH. Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical technique and in situ hybridization. J bone Jt Surg Am 1993;75:863-879.
    [52] Perry MJ, Mortuza FY, Ponsford FM, Elson CJ, Atkins RM, Learmonth ID. Properties of tissue from around cemented joint implants with erosive and /or linear osteolysis. Bone 1997;20:521-526.
    [53]Chatelet JC, Setiey L. Longe term bone behavior in total primary hip arthroplasty with a fully hydroxyapatite-coated femoral stem: a continuous series of 120 cases with twelve years follow-up. Rev Chir Orthop Reparatrice Appar Mot 2004;90:628-635.
    [1] Buser D, Nydegger T, Oxland T, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Bioed Mater Res 1999;45:75-83
    [2] Webster TJ, in Ying JY (Ed.), Advances in chemical engineering. Academy Press, New York, 2001,P:125
    [3] Asselmeier M, Caspari R, Bottenfield S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J sports Med 1993;21:170-175.
    [4] Kwong LM, Jasty M, Harris WH. High failure rate of bulk femoral head allografts in total hip acetabular reconstructions at 10 years. J Arthroplasty 1993;8341-346.
    [5] Shinar AA, Harris WH. Bulk structural autogenous grafts and allografts for reconstruction of the acetabulum in total hip arthroplasty. Sixteen-year-average follow-up. J Bone Joint Surg 1997;79A:159-168.
    [6] Hench LL. Biomaterials. Science 1980;208:826-831
    
    [7] Hench LL, Wilson JW. Surface-active biomaterials. Science 1984;226:630-636
    [8] Wang CY, Duan YR, Markovic B, et al. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomater 2004;25:2507-2514
    [9] Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci 2004;15:543-562
    [10] Hench LL, West JK. Biological applications of bioactive glasses. Life Chemistry Reports 1996;13:187-241.
    [11]Bosetti M, Zanardi L, Hench L, et al. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res 2003;64A: 189-195
    [12] Hench LL, Paschall HA. Direct bonding of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res Symp 1973;4:25-42
    [13]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;2:117-141
    [14]Pajamaki KJJ, Lindholm TS, Andersson OH, et al. Bioactive glass and glass ceramic coated hip endoprothesis: experimental study in rabbit. J Mater Sci Mater Med 1995;6:14-18
    [15] Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater 1992;3:123-129
    [16]Fetner AE, Hartigan MS, Low SB. Compend Contin Educ Dent 1994; 15:932.
    [17]Oonishi H, Hench LL, Wilson J, et al. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 1999;44:31-43
    [18]Teofilo JM, Brentegani LQ Lamano-carvalho TL. Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass. Archiv Oral Biol 2004;49:755-762
    [19]Vogel M, Voigt C, Gross UM, et al. In vivo comparison of bioactive glass particles in rabbits. Biomater 2001;22:357-362
    [20]Hamadouche M, Meunier A, Greenspan DC, et al. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J Biomed Mater Res 2001;54:560-566
    [21] Hench LL, Stanly HT, Clark AE, Hall M, Wilson J. Dental applications of bioglass implants. In: Bonfield W, Hastings GW, Tanner KE, editors. Bioceramics vol. 4
    [22] Hench LL. Bioceramics: from concept to clinic. Jamer Ceram Soc 1991;74:1487-1510.
    [23]Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass~(?) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 2000;67:321-329.
    [24] Price N, Bendall SP, Frondoza C, Jinnah RH, Hungerford DS. Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface. J Biomed Mater Res 1997;37:394-400
    [25]Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S. Quantitative comparison of bone growth behavior in granules of Bioglass~(?), A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 2000;51:37-46.
    [26]Kokubo T, Cho SB, Nakanishi K, et al. Dependence of bonelike apatite formation on structure of silica gel. In: Andersson, Happonen, YliUrpo, editors. Bioceramics 7. New York: butterworth-Heinemann; 1994. p 49-54
    [27] Li PJ, Ohtsuki C, Kokubo T, et al. Apatite formation induced by silica gel in a simulated body fluid. J Appl Biomater 1991;2:231-239
    [28] Greenspan DC, Zhong JP, LaTorre GP. The evaluation of surface strcture of bioactive glasses in vitro. In: Wilson, Hench, Greenspan, editors. Bioceramics 8. New York: Elsevier Science; 1995. p 477-482
    [29] Saravanapavan P, Jones JR, Pryce RS, et al. Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O) J Biomed Mater Res 2003;66A: 110-119
    [30] Silver IA, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomater 2001;22:175-185
    [31]Loty C, Sautier JM, Tan MT, et al. Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bon tissue formation. J Bone Miner Res 2001;16:231-239
    [32] Gao TJ, Aro HT, Ylanen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomater 2001 ;22:1475-1483
    [33]Lossdorfer S, Schwartz Z, Lohmann CH, et al. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomater 2004;25:2547-2555
    [34] Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and so-gel-derived 58S bioactive glasses. J Biomed Mater Res (Appl Biomater) 2001; 58:734-740
    [35] So K, Fujibayashi S, Neo M, et al. Accelerated degradation and improved bone-binding ability of hydroxyapatite ceramics by the addition of glass. Biomater 2006;27:4738-4744
    [36] Vidueau JJ, Dupuis V. Phosphates and biomaterials. Eur J Solid State Inorg Chem 1991;28:303-343
    [37]Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. American Press, San Diego, 1990
    [38]Pereira MM, Clark AE, Hench LL. Calcium-phosphate formation on sol-gel derived bioactive glasses in vitro. J Biomed Mater Res 1994;28:693-698.
    [39] Greenspan DC, Zhong JP, Chen ZF, LaTorre GP. The evaluation of degradability of melt and sol-gel derived Bioglass~(?) in vitro. Sedel and Rey C, eds, Bioceramics 1997;10:391-394.
    [40] Greenspan DC, Zhong JP, Wheele DL. Bioactivity and biodegradability: melt vs. sol-gel derived glasses in vitro and in vivo. LeGeros RZ and Legeros JP, eds, bioceramics 1998; 11:348-354.
    [41]Pereira MM, Hench LL. Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J Sol-Gel Sci Technol 1996;7:59-68.
    [42] Martinez A, Izquierdo-Barba I, Vallet-Regi M. Bioactivity of a CaO-SiO2 binary glass system. Chem Mater 2000;12:3080-3088.
    [43]Ebisawa Y, Kokubo T, Ohura K, Yamamuro T. Bioactivity of CaO-SiO2 based glasses in vitro evaluation. J Mater Sci: Mater Med 1990; 1:239-244.
    [44] Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa Y, Kotoura Y, Oka M. Bone-bonding ability of P2O5-free CaO-SiO2 glasses. J Biomed Mater Res 1991;25:357-365.
    [45] Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 1991;2:231-239.
    [46]Pereira MM, Clark AE, Hench LL. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceramics Soc 1995;78:2463-2468.
    [47]Bielby R, Saravanapavan P, Polak J, Hench LL. Study of osteoblast differentiation and proliferation on the surface of binary bioactive gel-glasses, in: Proceedings of the 14~(th) International Symposium on Ceramics in Medicine, Palm Springs, USA, 2001
    
    [48]Peitl O, Zanotto ED, Hench LL. Highly bioactive P_2O_5-Na_2O-CaO-SiO_2 glass- ceramics. J non-Crystal Solid 2001;292:115-126.
    [49] Zhong JP, Greenspan DC. Processing and properties of sol-gel bioactive glasses. J Biomed Mater Res 2000;53:694-701
    [50] Hench LL, Wheeler DL, Greenspan DC. Molecullar control of bioactivity in sol-gel glasses. J Sol-Gel Sci Tech 1998; 13:245-250
    [51] Santos EM, Radin S, Ducheyne P. Sol-gel derived carrier for the controlled releaase of proteins. Biomaterials 1999;20:1695-1700
    [52] Santos EM, Radin S, Shenker BJ, Shapiro IM, Ducheyne P. Si-C-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro. J Biomed Mater Res 1997;41: 87-94
    [53] Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 2002;61:301-311
    [54]Bosetti M, Zanardi L, Hench LL, et al. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res 2003;64A: 189-195
    [55]Xynos ID, Edgar AJ, Buttery LDK, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteolbasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophysi Res Commun 2000;276:461-465
    [56] Gao TJ, Aro HT, Ylanen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomater 2001;22:1475-1483
    [57]Rouahi M, Champion E, Hardouin P, et al. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomater 2006;27:2829-2844
    [58]Xynos ID, Edgar AJ, Buttery LDK, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001;55:151-157
    [59]Christodoulou I, Buttery LDK, Tai GP. Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S Bioactive gel-glass ionic disslution products. J Biomed Mater Res Part B: Appl Biomater 2006;77B:431-446
    [60]Asselin A, Hattar S, Oboeuf M, et al. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses. Biomater 2004; 25:5621-5630
    [61]Hench LL, Xynos ID, Buttery LD, Polak JM. Bioactive materials to control cell cycle. J mater Res Innovations 2001;3:313-323
    [62]Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D, et al. The effect of the physical characteristics of hydroxyapatite particles on human monocytes IL-18 production in vitro. Biomater 2004;25:5921-5927
    [63] Rochet N, Loubat A, Laugier JP, et al. Modification of gene expression induced in human osteogenic and osteosarcoma cells by culture on a biphasic calcium phosphate bone substitute. Bone 2003;32:602-610
    [64]Fujita T, Meguro T, Izumo N, et al. Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5. Jpn J Pharmacol 2001;86:86-96
    [65] Shukunami C, Ishizeki K, Atsumi T, et al. Cellular hypertrophy and calcification of embryonal carcinomaderived chondrogenic cell line ATDC5 in vitro. J Bone Miner Res 1997;12:1174-1188
    [66]Bonen DK, Schmid TM. Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 1991;115:1171- 1178
    [67] Bellows CG, Heersche JN, A ubin JE. Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner 1992; 17:15-29
    [68]Kanatani M, Sugimoto T, Kano J, et al. IGF-I mediates the stimulatory effect of high phosphate concentration on osteoblastic cell prolifeartion. J Cell Physiol 2002;190:306-312
    [69]Palmer G, Guicheux J, Bonjour JP, et al. Transfroming growth factor-beta stimulates inorganic phosphate transport and expression of the type III phosphate transporter Glvr-1 in chondrogenic ATDC5 cells. Endocrinology 2000;141:2236- 2243
    [70] Suzuki A, Palmer G, Bonjour JP, et al. Stimulation of sodium-dependent phosphate transport and signaling mechanisms induced by basic fibroblast growth factor in MC3T3-E1 osteoblast-like cells. J Bone Miner Res 2000;15:95-102
    [71]Geyer G, Schott C, Schwarzkopf A. Effect of alloplastic bone substitutes on bacterial growth. HNO 1999;47:25-33
    [72] Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass against supra- and subgingival bacteria. Biomater 2001;22:1683-1687
    [73] Allan I, Newman H, Wilson M. Particulate Bioglass reduces the viability of bacterial biofilms formed on its surface in an in vitro model. Clin Oral Impl Res 2002;13:53-58
    [74] Bellantone M, Coleman NJ, Hench LL. Bacteriostatic action of a novel four-component bioactive glass.J Biomed Mater Res 2000;51:484
    [75]Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;347-354
    [76] Juin P, Pelletier M, Oliver L, Tremblais K, Gregoire M, Meflah K, Vallette FM. Induction of a caspase-3-like activity by calcium in normal Cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biolog Chem 1998;273(28): 17559-17564
    [77] Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomater 2004;25:2039-2046
    [78] Mansfield K, Rajpurohit R, Shapiro IM. Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseas chondrocytes. J Cell Physiol 1999;179:276-286
    [79] Mansfield K, Teixeira CC, Adams CS, Shapiro IM. Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone 2001;28:1-8
    [80] Adams CS. The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med 2002;13(6):465-473
    [81]Ratner BD, Johnston AB, Lenk TS. Biomaterials surfaces. J Biomed Mater Res 1987;21(A1):59-90
    [82]Zreiqat H, Standard OC, Gengenbach T, et al. The role of surface characteristics in the initial adhesion of human bone-derived cells on ceramics. Cell Mater 1996;6:45-56
    [83] Green J. Cytosolic pH regulation in osteoblasts. Miner Electrolyte Metab 1994; 20:16-30
    [84] El Ghannam A, Ducheyne P, Shapiro IM. Bioactive material template for in vitro synthesis of bone. J Biomed Mater Res 1995;29:359-370
    [85] El Ghannam A, Ducheyne P, Shapiro IM. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomater 1997;18:295-303
    [86] Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res 2004;68A:640-650
    [87] Melville AJ, Harrison J, Gross KA, Forsythe JS, Trounson AO, Mollard R. Mouse embryonic stem cell colonisation of carbonated apatite surfaces. Biomater 2006;27:615-622
    [88]Kowalczynska HM, Nowak-Wyrzykowska M, Dobkowski J, Kolos R, Kaminski J, Makowska-Cynka A, Marciniak E. Adsorption characteeristics of human plasma fibronection in relationship to cell adhesion. J Biomed Mater Res 2002;61:260- 269
    [89] Brugge PJ, Jansen JA. Initial interaction of rat bone marrow cells with non-coated and calcium phosphate coated titanium substrates. Biomater 2002;23:3269-3277
    [90] Schneider GB, Zaharias R, Seabold K, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies, J Biomed Mater Res 2004:69A:462-468
    [91]Wieland M, Chehroudi B, Textor M, Brunette DM. Use of Ti-coated replicas to investigate the effects on fibroblast shape of surfaces with varying roughness and constant chemical composition. J Biomed Mater Res 2002;60:434-444
    [92] Lu HH, Pollack SR, Ducheyne P. 45S5 bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin. J Biomed Mater Res 2001;54:454-461
    [93]Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 2001;107:785-790
    [94]Borsari V, Giavaresi G, Fini M, et al. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomater 2005;26:4948-4955
    [95]Linez-Bataillon P, Monchau F, Bigerelle M, et al. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6A14V substrates. Biomol Eng 2002;19:123-128
    [96] Okumura A, Goto M, Yoshinari M. et al. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomater 2001 ;22: 2263-2271
    [97]Maitz MF, Poon RWY, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomater 2005;26:5465-5473
    [98] Hing KA, Revell PA, Smith N, et al. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomater 2006;27:5014-5026
    [99]Hattar S, Asselin A, Greenspan D, Oboeuf M, Berdal A, Sautier JM. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomater 2005;26:839-848
    [100] Wang CY, Duan YR, Markovic B, et al. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomater 2004;25:2949-2956
    [101] Itoh S, Nakamura S, Nakamura M, et al. Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomater 2006;27;5572-5579
    [102] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014-1017
    
    [103] Langer R, Vacanti JR Tissue engineering. Science 1993;260:920-925
    [104] Nerem RM, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue Eng 1995; 1:3-13
    [105] Kellomaki M, Niiranen H, Puumanen K, et al. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomater 2000;21:2495-2505
    [106] Piskin E. Biomaterials in different forms for tissue engineering: an overview. Mater Sci Forum 1997;250:l-14
    [107] Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 2001 ;55:304-312
    [108] Maquet V, Jerome R. Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater Sci Froum 1997;250:15-42
    [109] Schugens C, Maquet V, Grandfils C, et al. Biodegradable and macroporous polylactide implants for cell transplantation: I. Preparation of macroporous polylactide supports by solid-liqueid phase separation. Polymer 1996;37:1027-1038
    [110] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 2001;55:141-150
    [111] Boccaccini AR, Roether JA, Hench LL, et al. A composites approach to tissue engineering. Ceram Eng Sci Proc 2002;23:805-816
    [112] Roether JA, Boccaccini AR, Hench LL, et al. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass for tissue engineering appplications. Biomater 2002;23:3871-3878
    [113] Maquet V, Boccaccini AR, Pravata L. et al. Preparation, characterisation and in vitro degradation of bioresorbable and bioactive composites based on bioglass-filled polylatide foams. J Biomed Mater Res 2003;66A:335-346
    [114] Lu HH, El-Amin SF, Scott KD, et al. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res 2003;64A:465-474
    [115] Verrier S, Blaker JJ, Maquet V, et al. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomater 2004;25:3013-3021
    [116] von Doernberg MC, von Rechenberg B, Bohner M, et al. In vivo behavior of calcium phosphate scaffolds with fourdifferent pore sizes. Biomater 2006;27: 5186-5198
    [117] Hamadouche M, Meunier A, Greenspan DC, et al. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J Biomed Mater Res 2001;54:560-566
    [118] Hench LL. Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 1998;41:511-518
    [119] Kitsugi T, Yamamuro T, Nakamura T, et al. Aging test and dynamic fatigue test of apatite-wollastonite-containing glass ceramics and dense hydroxyapatite. J Biomed Mater Res 1987;21:467-484
    [120] Neo M, Kotani S, Nakamura T, et al. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. J Biomed Mater Res 1992;26:1419-1432
    [121] Ducheyne P, Radin S, King L. The effect of calcium-phosphate ceramic composition and structure on in vitro behaviour. I. Dissolution. J Biomed Mater Res 1993;27:25-34
    [122] Schepers E, Declercq M, Ducheyne P, et al. Bioactive glass particulate miaterial as a filler for bone lesions. J Oral Rehab 1991;18:439-452
    [123] Dalculsi G, Legeros RZ, Nery E, et al. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 1989;23:883-894
    [124] Hyakuna K, Yamamuro T, Kotoura Y, et al. Surface reaction of calcium phosphate ceramics to various solutions. J Biomed Mater Res 1990;24:471-488
    [125] Driessens FCM. The mineral in bone, dentin and tooth enamel. Bull Soc Chim Belg 1980;89:663 / Yamada MO, TohnoY, Tohno S, et al. Silicon compatible with the height of human vertebral column. Biol Trace Elem Res 2003;95(2):113-21
    [126] Porter AE, Patel N, Skepper JN, et al. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomater 2003;24:4069-4620
    [127] Teofilo JM, Brentegani LQ Lamano-Carvalho TL. Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass. Arc Oral Biol 2004;49:755-762
    [128] Vaibhav B, Nilesh P, Vikram S, et al. Bone morphogenic protein and its application in trauma cases: a current concept update. Injury 2007;xxx:xxx-xxx
    [129] Bostrom MP, Saleh KJ, Einhorn TA. Osteoinductive growth factors in preclinical fractrure and long bone defects models. Orthop clin North Am 1999;30:647-658
    [130] Reddi AH. Initiation of fractrue repair by bone morphogenetic proteins. Clin Orthop Relat Res 1998;355:66-72
    [131] Leach JK, Kaigler K, Wang Z, et al. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomater 2006;27: 3249-3255
    [132] Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 2005;11:5857-5866
    [133] Bergeron E, Marquis ME, Chretien I, et al. Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J Mater Sci Mater Med 2007;18:255-263
    [134] Komaki H, Tanaka T, Chazono M, et al. Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, tyep I collagen, and fibroblast growth factor-2. Biomater 2006;27:5118-5126
    [135] Yang R, Davies CM, Archer CW, et al. Immunohistochemistry of matrix markers in Technovit 9100 new-embedded undecalcified bone sections. Eur Cell Mater 2003 ;6:57-71
    [136] Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006; 11:43-56
    [137] Rammelt S, Schulze E, Bernhardt R. Coating of titanium implants with type I collagen. J Orthop Res 2004;22:1025-1034
    [138] Schneiders W, Reinstorf A, Pompe W, et al. Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone 2007;40:1048-1059
    [139] Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomater 2006;27:2798-2805
    [140] Boanini E, Torricelli P, Gazzano M, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomater 2006;27:4428-4433
    [141] Sarkar MR, Augat P, Shefelbine SJ, et al. Bone fromation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomater 2006;27: 1817-1823
    [142] Trojani C, Boukhechba F, Scimeca JC. Ectiopic bone fromation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with Undifferentiated bone marrow strmal cells. Biomater 2006;27:3256-3264
    [143] Kruyt MC, Dhert WJA, Cumhur Oner F, et al. Analysis of ectiopic and orthotopic bone fromation in cell-based tissue-engineeried constrcts in goats. Biomater 2007;28:1798-1805
    [144] Clarke SA, Hoskins NL, Jordan GR, et al. Healing of an ulnar defect using a proprietary TCP bone graft substitute, JAX~(TM), in association with autologous osteogenic cells and growth factors. Bone 2007;40:939-947
    [145] Lerouxel E, Weiss P, Giumelli B, et al. Injectable calcium phosphate scaffold and bone marrow graft for bone reconstrction in irradiated areas: an experimental study in rats. Biomater 2006;27:4566-4572
    [146] Canale ST (eds.) in: Campbell's operative orthopaedics. 9~(th) edition vol1 p:218, 2001
    [147] Bi YM, Van De Motter RR, Ragab AA, et al. Titanium particles stimulate bone resorption by differentiation of murine osteoclasts. J bone Joint Surg (Am) 2001;83A:501-508
    [148] Shida J, Trindade MCD, Goodman SB, et al. Induction of interleukin-6 release in human osteoblast-like cells exposed to titanium particles in vitro. Calcif Tissue Int 2000;67:151-155
    [149] Ratner BD, Hoffman AS, Schoen FJ, Lemons JE: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, New York, pp. 41-50, 1996.
    [150] Bloebaum R, Beeks K, Dorr L, et al. Osteolysis from a pressfit hydroxyapatite implant: A case study. J Arthroplasty 1993;8:195-203
    [151] Dalton JE, Cook SD. In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J Biomed Mater Res 1995;29: 239-245
    [152] Augat P, Claes L, Hanselmann KF, et al. Increase of stability in external fracture fixation by hydroxyapatite-coated bone screws. J Appl Biomater 1995;6:99-104
    [153] Sun JS, Lin FH, Hung TY, et al. The influence of hydroxyapatite particles on osteoclast cell activities. J Biomed Mater Res 1999;45:311-321
    [154] Soballe K. Hydroxyapatite ceramic coating for bone implatn fixation. Mechanical and histological studies in dogs. Acta Orthop Scand 1993;255:1-58
    [155] Sachse A, Wagner A, Keller M, et al. Osteointegratin of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep. Bone 2005;37:699-710
    [156] Rammelt S, Illert T, Bierbaum S, et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomater 2006;27:5561-5571
    [157] Wheeler DL, Montfort MJ, McLoughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res 2001;55:603-612
    [158] Feng B, Weng J, Yang BC, et al. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomater 2004;25:3421-3428
    [159] Liu XY, Ding CX, Wang ZY. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomater 2001;22:2007- 2012
    [160] Liu XY, Tao SY, Ding CX. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomater 2002;23:963-968
    [161] Oliva A, Salerno A, Locardi B, et al. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomater 1998; 19:1019-1025
    [162] Thompson JG, Puleo DA. Effects of sub-lethal metal ion concentrations on osteogenic cells derived from bone marrow stromal cells . J Appl Biomater 1995;6:249-258
    [163] T hompson JG, Puleo DA. Ti-6A1-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation time-course in vitro. Biomaterials 1996;17:1949-1954
    [164] Xie YT, Liu XY, Huang AP, et al. Improvement of surface bioactivity on titanium by water and hydrogne plasma immersion ion implantation. Biomater 2005;26:6129;6135
    [165] Matrin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401
    [166] Degasne I, Basle MF, Demais V, et al. Effects of roughness, fibronectin and vitrnectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int 1999;64:499-507
    [167] Soboyejo WO, Nemetski B, Allameh S, et al. Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Res 2002;62:56-72
    [168] Zhu XL, Chen J, Scheideler L, et al. Cellular reactions of osteoblasts to micro- and submicron-scale porous structures of titanium surfaces. Cell Tissue org 2004; 178:13-22
    [169] Rφnold HJ, Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting—tensile testing of bone attachment bu using coin-shaped implants. Biomater 2002;23:4211 -4219
    [170] Monsees TK, Barth K, Tippelt S, et al. Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-likde cells. Cell Tissu Org 2005; 180:81-95
    [171] Ward BC, Webster TJ. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Biomater 2006;27:3064- 3074
    [172] Ward BC, Webster TJ. Increased functions of osteoblasts on nanophase metals. Mater Sci Eng 2007;27:575-578
    [173] Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomater 2004;25:4175-4183
    [174] de Oliveira PT, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomater 2004;25:403-413
    [175] Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6A14V, and CoCrMo. Biomater 2004;25:4731-4739
    [176] Liu XY, Zhao XB, Fu RKY, et al. Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite. Biomater 2005;26:6143-6150
    [177] Carbon R, Marangi I, Zanardi A, et al. Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. Biomater 2006;27:3221-3229
    [178] Abrams GA, Goodman SL, Nealey PF, et al. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 2000;299:39-46
    [179] Raspanti M, Protasoni M, Manelli A, et al. The extracellular matrix of the human aortic wall: ultrastructural observations by FEG-SEM and by tapping- mode AFM. Micro 2006;37:81-86
    [180] Chen JK, Sharpiro HS, Sodek J. Developmental expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 1992;7:987-997
    [181] Chen JK, Sharpiro HS, Wrana JL, et al. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matri 1991;11:133-143
    [182] Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990; 143:420-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700