硅酸盐矿物及其水化产物若干问题的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥的水化及微结构演变过程对于水泥基材料的性能有着重要影响。近200年来,材料学家对这一课题进行了深入研究并取得了许多有意义的成果。然而由于水泥水化过程太过复杂,至今人们对水化机理的了解仍不十分透彻,对水化产物微观尺度结构特性也缺乏深入的认识。本文以分子模拟为主要研究手段,对水泥水化过程中的一些问题进行了理论探讨,如CaO与H2O的作用机制、C3S的掺杂改性、C-S-H凝胶的微观结构、水化反应的影响因素等。此外,所有计算得到的结果均通过与试验数据的比对以验证所选算法和模型的有效性,这一新型的研究手段对今后按工程需求设计水泥基材料具有很大的潜在价值。
     作为水泥熟料中的重要化学成分之一,CaO与H2O分子的相互作用情况对于我们了解更为复杂的水泥单矿的水化反应具有重要的参考意义。通过量子力学的第一性原理计算,可以发现CaO(100)完美晶面较体相发生了明显表面极化,从而具有更高的反应活性并能够自发地吸附H2O分子并与之化学成键。当覆盖度为1/4ML和1ML时,H2O分子在CaO(100)完美表面最稳定的吸附位点是桥位,而在1/2ML覆盖度下穴位则成了最稳定的吸附位点。
     高岭上以其优异的吸附性能被广泛应用于水泥基材料领域,通过巨正则蒙特卡罗法,系统研究了不同条件下(温度,压强及铝硅比)高岭上体系对水分子吸附特性的演变规律。在其它条件相同的情况下,压强的增加,可以明显促进高岭土对水分子的吸附,而温度的升高则不利于吸附量的提升。经铝离子掺杂改性后,高岭土体系的活性提高明显,而为平衡体系电价所引入的阳离子会造成高岭土体系内微孔尺寸的改变。
     对于水泥水化过程中的主要反应物(C3S)和产物(C-S-H凝胶),首先以测试手段获得的结构参数为基础构建起合理的模型,通过分子动力学模拟和蒙特卡罗模拟较为成功地制备出无定形态的C-S-H凝胶。以所得结构为基础,分别考察了CuO掺杂C3S和苯乙烯—丙烯酸酯改性C-S-H凝胶的过程。为降低熟料C3S烧成温度而引入的CuO,并不会改变整个晶胞的结构而只是引起微小的局部变化。当CuO的掺量较低时,其仅仅通过溶解的方式进入晶格,不涉及任何化学变化,而当掺量达到3%时,CuO便可能会与C3S发生固溶并生成新的物相。通过分子动力学模拟和蒙特卡罗模拟制得的C-S-H凝胶体系,具有明显的短程有序而长程无序的非晶态结构特性,并且不同钙硅比下的最终结构趋于一致化。此时体系中的Si原子与O原子以4配位的形式存在,这意味着硅氧四面体仍为基本的结构单元,它们彼此之间通过共用的桥氧原子形成链状结构。为改性C-S-H凝胶而引入的苯乙烯—丙烯酸酯有机分子能够较好地与原有体系相溶,并使得体系的可压缩性明显增大,而体积模量和剪切模量明显下降。
     最后,以连续水化介质模型为基础,系统研究了水泥熟料品质及水灰比对水泥水化过程和微结构演变的影响规律。通过将水泥颗粒简单视为不同粒径的球体,可以将复杂的水化过程等效为球形颗粒与水反应后的向外扩展过程。通过有效的计算模拟,便可以将水泥水化过程及微观结构演变过程以直观的方式进行呈现。在所建立的普硅、低碱和高碱水泥模型中,我们可以清晰地观察到不同水化龄期(3小时、6小时、3天、7天及28天)的微观结构分布情况,各水化产物和孔隙的分布与实际情况吻合较好。此外,研究体系的水化度和孔隙率均随水灰比的增加而增大,但弹性模量呈下降趋势。无论在普硅、低碱还是高碱水泥体系里,模拟得到的弹性模量均大致相同,而水灰比和孔隙率的数值则差别较大。
     通过本论文的研究内容,可以增进对水泥水化过程及产物结构特性微观层面上的理解,同时也进一步丰富了分子模拟的应用领域。在目前水泥基材料的分子模拟研究仍较为缺乏的情况下,这一领域在未来必将有更大的发展空间。
The hydration process and microstructure development of cement have significant influence on the properties of cement-based materials. In the recent200years, experts of material got many valuable achievements through the research of this topic. However, the hydration process of cement is such complex that the hydration mechanisms couldn't be totally understood and the microstructural characteristics couldn't be obtained. Using molecular simulation as main method, some issues of cement hydration process were discussed in this paper, such as the mechanisms of the reaction of CaO and H2O, the doping modification of C3S, the microstructure of C-S-H gel, the factor which effects the hydration process etc.Besides, the validity of chosen algorithm and model were verified through the comparison of experimental data with calculated result, this new research method which has great potential value for designing the cement-based material according to engineering requirements.
     To understand more intricated hydration of cements clinker minerals, the interaction process of CaO, one of the most important ingredients of cement clinker, and H2O is an important implication. Calculating through first principle of quantum mechanical, we found the perfect surface of CaO(100) polarized observably compared to bulk phase, and then this surface got higher reactivity which made it adsorb H2O molecule spontaneously and form chemical bonds. At the coverage of1/4ML and1ML, the most stable adsorption site is bridge site, while the coverage is1/2ML, hole site becomes the most stable adsorption site.
     Kaolin was applied to cement material widely because of its outstanding adsorptivity. The water adsorptivity evolution pattern of kaolin system was studied by Monte Carlo method. When other conditions keep the same, the increasing pressure will improve the adsorption of water, while the increasing temperature will prevent adsorption. Under the admixture effects of aluminium ion, the activity of kaolin system was enhanced obviously, while the introduced positive ion to counter-balance electrovalence will change the aperture of kaolin.
     The reasonable model of main reactant (C3S) and product(C-S-H gel) was established based on the structure parameters which were gained through testing, then the amorphous C-S-H gel was gained through molecular dynamics simulation and Monte Carlo simulation. Based on the obtained model, the admixture effects of CuO to C3S and styrol-acrylate to C-S-H gel were investigated respectively. The introduction of CuO will lower the firing temperature of C3S clinker, but will not change the overall crystal structure only leading to slight structural change. When the content of CuO is low, it enters into the crystal lattice just through solution, which never involves any chemical reaction. When the propotion of CuO is higher than3%, solid solution will happen between CuO and C3S. In this way, new phase may form. The C-S-H gel system gained through molecular dynamics simulation and Monte Carlo simulation has short-range order and long-range disorder, which belongs to amorphous structure characteristic. The final structures under different Ca/Si ratios tend to be similar. In that situation, the coordination number of atom Si and O is4, so silicon-oxygen tetrahedron is still the basic unit, and chain structure is constructed by the bridge oxygen. The styrol-acrylate, which was admixed in C-S-H gel to modify its property, dissolved preferably and enhanced the compressibility of the original system significantly, while decreased the bulk modulus and shear modulus.
     Based on continuous hydration medium model, the effects of some external factors, such as the quality of cement clinker and water/cement ratio, on hydration process and microstructure development were discussed finally. Assuming the cement particles are spheres which have different radius, the complicated hydration could be equivalented to a process in which the spherical particles diffuse outward. The hydration of cement and the development of microstructure could be displayed visually through effective simulation. We could observe the microstructure distribution at different hydration period (3h,6h,3d,7d,28d) of different established models, including Portland cement, low alkali cement and highalkali cement, in which the hydration products and the distribution of pore size fitted well with the realistic process. In addition, the degree of hydration and porosity increased with the increasing water/cement ratio, while the modulus of elasticity showed downward trend. We found that the moduli of elasticity are almost the same, while the water/cement ration and porosity are obviously different in all studied systems.
     The research of this thesis will enhance the understanding of hydration kinetic of cement and microstructure characteristic of hydration products, meanwhile it will also extend the applied range of molecular simulation. At present, the molecular simulation has not been widely used in cement-based materials yet, so the application of the technique in this area will have great potential value in future.
引文
[1]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physic Review B,1964,36: 864-871.
    [2]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physic Review A,1965,140:1133-1138.
    [3]Foresman J B, Frisch A. Exploring chemistry with electronic structure methods[M].2nd Edition Gaussian Inc., Pittsburgh, PA,1996.
    [4]Xie T and Biernacki J J. The origins and evolution of cement hydration models[J]. Computers and Concrete, in press.
    [5]Kondo R, Kodama M. On the hydration kinetics of cement[J]. Semento Gijutsu Nenpo,1967, 21:77-828 (in Japanese).
    [6]Pommersheim J M, Clifton J R. Mathematical modeling of tricalcium silicate hydration[J]. Cement and Concrete Research,1979,9:765-770.
    [7]Pommersheim J M, Clifton J R, Frohnsdorff G. Mathematical modeling of tricalcium silicate hydration. Ⅱ. Hydration sub-models and the effect of model parameters[J]. Cement and Concrete Research,1982,12:765-772.
    [8]Williamson R B. Solidification of Portland cement[J]. Progress in Materials Science,1972, 15:189-286.
    [9]Jennings H M, Johnson S K. Simulation of microstructure development during the hydration of a cement compound[J]. Journal of the American Ceramic Society,1986,69(11):790-795.
    [10]Taplin J H. On the hydration kinetics of hydraulic cements[C]. Proceedings of the 5th International Symposium on Chemistry of Cement, Tokyo,1968,337-348.
    [11]Brown P W. Effects of particle size distribution on the kinetics of hydration of tricalcium silicate[J]. Journal of the American Ceramic Society,1989,72:1829-1832.
    [12]Bezjak A. Kinetic analysis of cement hydration including various mechanistic concepts. I. Theoretical development[J]. Cement and Concrete Research,1983,13:305-318.
    [13]Knudsen T. The dispersion model for hydration of Portland cement. I. General concepts[J]. Cement and Concrete Research,1984,14:622-630.
    [14]Bezjak A. An extension of the dispersion model for the hydration of Portland cement[J]. Cement and Concrete Research,1986,16:260-264.
    [15]Bezjak A. Nuclei growth model in kinetic analysis of cement hydration[J]. Cement and Concrete Research,1986,16:605-609.
    [16]Parrot L J, Killoh D C. Prediction of cement hydration[J]. Proceeding of the British Ceramic Society,1984,35:41-53.
    [17]Tomosawa F. Development of a kinetic model for hydration of cement [A]. Proceedings of the 10th ICCC[C], Gothenburg, Sweden:1997.
    [18]Leone R, Odriozola G, Mussio L. Coupled aggregation and sedimentation processes: Three-dimensional off-lattice simulations[J]. The European Physical Journal E:Soft Matter and Biological Physics,2002,7(2):153-161.
    [19]Meakin P. Off lattice simulations of cluster-cluster aggregateion in dimensions 2-6[J]. Physic Letter A,1985,107:269-272.
    [20]Bishnoi S, Scrivener K L. μic:a new platform for modelling the hydration of cements[J]. Cement and Concrete Research,2009,39:266-274.
    [21]Breugel K V. Numerical simulation of hydration and microstructural development in hardening cement paste (Ⅰ):theory[J]. Cement and Concrete Research,1995,25:319-331.
    [22]Bentz D P. Three-dimensional computer simulation of Portland cement hydration and microstructure development[J]. Journal of the American Ceramic Society,1997,80(1):3-21.
    [23]Breugel K V. Numerical simulation of hydration and microstructural development in hardening cement paste (Ⅱ):applications[J]. Cement and Concrete Research,1995,25: 522-530.
    [24]Koenders E A B, Breugel K V. Numerical modelling of autogeneous shrinkage of hardening cement paste[J]. Cement and Concrete Research,1997,27:1489-1499.
    [25]Ye G, Breugel K V, Fraaij A L A. Three-dimensional microstructure analysis of numerically simulated cementitious materials[J]. Cement and Concrete Research,2003,33:215-222.
    [26]Bentz D P, Garboczi E J. A digitized simulation model for microstructural development[J]. Ceramic Transactions,1991,16:211-226.
    [27]Garboczi E J, Bentz D P. Computer simulation of the diffusivity of cement-based materials[J]. Journal of Materials Science,1992,27:2083-2092.
    [28]Bullard J W, Garboczi E J. A model investigation of the influence of particle shape on Portland cement hydration[J]. Cement and Concrete Research,2006,36:1007-1015.
    [29]Garboczi E J, Bullard J W. Shape analysis of a reference cement[J]. Cement and Concrete Research,2004,34:1933-1937.
    [30]Bentz D P. Quantitative comparison of real and CEMHYD3D simulated cement paste microstructures[J]. Cement and Concrete Research,2004,34:3-7.
    [31]Bentz D P, Jensen O M, Coats A M, et al. Influence of silica fume on diffusivity in cement-based materials:Ⅰ. Experimental and computer modeling studies on cement pastes[J]. Cement and Concrete Research,2000,30:953-962.
    [32]Torrents J M, Mason T O, Garboczi E J. Impedance spectra of fiber-reinforced cement-based composites:a modeling approach[J]. Cement and Concrete Research,2000,30:585-592.
    [33]Snyder K A, Bullard J W. Effect of continued hydration on the transport properties of cracks through Portland cement pastes in a saturated environment:a microstructural model study[R]. NISTIR 7265, Maryland:NIST,2005.
    [34]Haecker C J, Garboczi E J, Bullard J W, et al. Modeling the linear elastic properties of Portland cement paste[J]. Cement and Concrete Research,2005,35:1948-1960.
    [35]Bentz D P. An argument for using coarse cements in high performance concretes[J]. Cement and Concrete Research,1999,29:615-618.
    [36]Bentz D P, Garboczi E J, Haecker C J, et al. Effects of cement particle size distribution on performance properties of cement-based materials[J]. Cement and Concrete Research,1999, 29:1663-1671.
    [37]Bentz D P, Jensen O M, Hansen K K, et al. Influence of cement particle size distribution on early age autogenous strains and stresses in cement-based materials[J]. Journal of the American Ceramic Society,2000,84:129-135.
    [38]Bullard J W. Approximate rate constants for nonideal diffusion and their application in a stochastic model[J]. The Journal of Physical Chemistry A,2007,111:2084-2092.
    [39]Bullard J W. A three-dimensional microstructural model of reactions and transport in aqueous mineral systems[J]. Modelling and Simulation in Materials Science and Engineer, 2007,15(7):711-738.
    [40]Garrault S, A. Nonat. Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations[J]. Langmuir,2001,17:8131-8138.
    [41]Bullard J W, Flatt R J. New insights into the effect of calcium hydroxide precipitation on the kinetics of tricalcium silicate hydration[J]. Journal of the American Ceramic Society,2010, 93:1894-1903.
    [42]Churakov S V. Hydrogen bond connectivity in jennite from ab initio simulations[J]. Cement and Concrete Research,2008,38:1359-1364.
    [43]Bonaccorsi E, Merlino S, Taylor H F W. The crystal structure of jennite, Ca9Si6O18 (OH)6·8H2O[J]. Cement and Concrete Research,2004,34:1481-1488.
    [44]Hamid S A. The crystal structure of the 11A natural tobermorite, Ca2.25[Si3O7.5(OH)1.5]-H2O [J]. Zeitschrift fur Kristallographie,1981,154:189-198.
    [45]Merlino S, Bonaccorsi E, Armbruster T. The real structure of tobermorite 11A:normal and anomalous forms, OD character and polytypic modifications[J]. European Journal Minerology,2001,13:577-590.
    [46]Manzano H, Ayuela A, Dolado J S. On the formation of cementitious C-S-H nanoparticles[J]. Journal of Computer-Aided Materials Design,2007,14:45-51.
    [47]Johnson B, Nonat A, Labbez C, et al. Controlling the cohesion of cement paste[J]. Langmuir, 2005,21:9211-9221.
    [48]Ayuela A, Dolado J S, Campillo I, et al. Silicate chain formation in the nanostructure of cement-based materials[J]. The Journal of Chemical Physics,2007,127(16):164710
    [49]Dolado J S, Griebel M, Hamaekers J. A molecular dynamics study of calcium silicate hydrate (C-S-H) gels[J]. Journal of the American Ceramic Society,2007,90:3938-3942.
    [50]Pellenq R J M, Kushima A, Shahsavari R, Van Vliet K J, Buehler M J, Yip S, Ulm F J. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences,2009,106:16102-16107.
    [51]Thomas J J, Jennings H M, Allen A J. Relationships between composition and density of tobermorite, jennite, and nanoscale CaO-SiO2-H2O[J]. The Journal of Chemical Physics C, 2010,114(17):7594-7601.
    [52]Lasaga A C, Gibbs G V. Ab initio quantum mechanical calculations of water-rock interactions:adsorption and hydrolysis reactions[J]. American Journal of Science,1990,290: 263-295.
    [53]Lasaga A C. Kinetic Theory in Earth Sciences, Princeton Series in Geochem[B]. Princeton University Press, Princeton, N.J.,1998.
    [54]Gilmer G H. Computer models of crystal growth[J]. Science,1978,208:355-363.
    [55]Gilmer G H. Computer simulations of crystal growth[J]. Journal of Crystal Growth,1977,42: 3-10.
    [56]Gilmer G H. Growth on imperfect crystal faces. I. Monte Carlo growth rates[J]. Journal of Crystal Growth,1976,35:15-28.
    [57]Tenoutasse N. The hydration mechanism of C3A and C3S in the presence of calcium chloride and calcium sulphate[C]. Proceedings of the Fifth International Symposium on the Chemistry of Cement, Tokyo, Japan,1968,372-378.
    [58]Segall M D, Lindan P, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP Code[J]. Journal of Physics:Condensed Matter.2002,14:2717-2744.
    [59]Born M, Huang K. Dynamical theory of crystal lattice[M]. Oxford:Oxford University Press, 1954.
    [60]Hartree D. Calcaulations of atomic structure[M]. Wiley,1957.
    [61]Fock V."Self-consistent field" with interexchange for sodium[J]. Zeitschrift fur Physik,1930, 62:795-805.
    [62]Hohenberg P, Fermi E. A new method for calculating wave functions in crystals[J]. Physical Review A,1940,57:1169-1176.
    [63]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Chemistry A,1964,136: 864-871.
    [64]Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Physical Review,1966,145(2):561-567.
    [65]Kohn W. Density functional theory:Fundamentals and applications. Highlights of Condensed Matter Theory,1985, North Holland
    [66]Levy M. Universal variational functionals of electron densities, first-order density matrices and natural spin-orbitals and solution of the v-representability problem[J]. Proceedings of the National Academy of Sciencesthe the United States of America,1979,76:6062-6065.
    [67]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effect[J]. The Journal of Physical Chemistry A,1965,140:1133-1138.
    [68]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Chemistry B,1992,46:6671-6687.
    [69]Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Chemistry B,1996,54: 16533-16539.
    [70]Filatov M, Thiel M. A new gradient-corrected exchange-correlation density functional[J]. Molecular Physics,1997,91(5):847-859.
    [71]Laming G J, Termath V, Handy N C. A general purpose exchange-correlation energy functional [J]. Journal of Chemistry Physical,1993,99:8765-8773.
    [72]Becke A D. Density functional calculations of molecular-bond energies[J]. The Journal of Chemical Physics,1986,84:4524-4529.
    [73]Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B,1986,33:8800-8802.
    [74]Lacks D J, Gordon R G. Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients[J]. Physical Review A,1993,47:4681-4690.
    [75]Perdew J P, Burke K, Ernzerh M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865-3868.
    [76]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986,33:8822-8824.
    [77]Lee C T, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37:785-789.
    [78]Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotential[J]. Physical Review Letters,1979,43(20):1494-1497.
    [79]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B,1990,41(11):7892-7895.
    [80]Monkhorst H J, Pack J D. Special points for Brillouin-Zone integrations[J]. Physical Review B,1976,13(12):5188-5192.
    [81]Allen M P, Tildesley D J. "Computer simulation of liquids"[M]. Clarendon Press, Oxford, England,1987.
    [82]Frenkel D, Smit B. "Understanding molecular simulation"[M]. Academic Press, San Diego, USA,1996.
    [83]Chen C L, Lee C L, Chen H L, et al. Molecular dynamics simulation of a phenylene polymer. 3. PEEK[J]. Macromolecules.1994,27(26):7872-7876.
    [84]Chen C L, Chen H L, Lee C L, et al. Molecular dynamics simulation of a phenylene polymer. 1. Poly (phenylene oxide)[J]. Macromolecules.1994,27(8):2087-2091.
    [85]Woodcock L V. Isothermal molecular dynamics calculations for liquid salts[J]. Chemical Physics Letters,1971,10(3):257-261.
    [86]Hoover W G, Ladd A J C, Moran B. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics[J]. Physical Review Letters,1982,48(26):1818-1820.
    [87]Evans D J, Hoover W G, Failor B H, et al. Nonequilibrium molecular dynamics via Gauss's principle of least constrain[J]. Physical Review A,28(1983) 1016-1021.
    [88]Evans D J. Computer "experiment" for nonlinear thermodynamics of Couette flow[J]. Journal of Chemical Physics,1983,78(6):3297-3302.
    [89]Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics,1984,81:511-519.
    [90]Berendsen H J C, Postma J P M, Van Gansteren W F, et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690.
    [91]Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics,1980,72(4):2384-2393.
    [92]Parrinello M and Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method[J]. Journal of Applied Physics,1981,52(12):7182-7190.
    [93]Pangali C, Rao M, Berne B J. On a novel Monte Carlo scheme for simulating water and aqueous solutions[J]. Chemical Physics Letters,1978,55(3):413-417.
    [94]Norman G E, Filinov V S. Investigations of phase transitions by a Monte Carlo method[J]. High Temp (USSR),1969,7:216-222.
    [95]Adams D J. Chemical potential of hard-sphere fluids by Monte Carlo methods[J]. Molecular Physics, 1974,28(5): 1241-1252.
    [96]Owicki J C, Scherage H A. Preferential sampling near solutes in Monte Carlo calculations on dilute solutions[J]. Chemical Physics Letters, 1977, 47(3): 600-602.
    [97]Rao M, Pangali C, Berne B J. An International Journal at the Interface between Chemistry and Physics[J]. Molecular Physics, 1979, 37(6): 1773-1798.
    [98]Rossky P J, Doll J D, Friedman H L. Brownian dynamics as smart Monte Carlo simulation[J], Journal of Chemical Physics,1978, 69(10): 4628-4633.
    [99]Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21(6): 1087-1092.
    [100]Metropolis N, Ulam S.The Monte Carlo Method[J]. Journal of the American Statistical Association, 1949, 44: 335-341.
    [101]Noguera C. Physics and chemistry at oxide surfaces[B]. Cambridge University Press, Cambridge, UK, 1996.
    [102]Hikita T, Saiki K, Koma A, et al. Electronic structure of a SrO-terminated SrTiO3 (100) surface[J]. Surface Science, 1993, 319(3): 267-271.
    [103]Zhang H J, Chen G, Li Z H. First principle study SrTiO3 (001) surface and adsorption of NO on SrTiO3 (001)[J]. Applied Surface Science, 2007, 253: 8345-8351.
    [104]Jug K, Tikhomirov V A. Influence of intrinsic defects on the properties of Zinc oxide[J]. Journal of Computational Chemistry, 2008, 29(13): 2250-2254.
    [105]Yeriskin I, Nolan M. Effect of La doping on CO adsorption at ceria surfaces[J]. Journal of Chemistry Physical, 2009, 131(24): 244702-1-6.
    [106]Henrick V E, Cox P A. The surface science of metal oxides[B]. Cambridge University Press, New York, USA, 1994.
    [107]Cho J H, Park J M, Kim K S. Influence of intermolecular hydrogen on water dissociation at the MgO (001) surface[J]. Physical Review B, 2000, 62 (15): 9981-9984.
    [108]Park J M, Cho J H, Kim K S. Atomic structure and energetics of adsorbed water on the NaCl (001) surface[J]. Physical Review B, 2004, 69: 233403-1-4.
    [109]Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Review B, 1996, 54: 16533-16539.
    [110]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13:5188-5192.
    [111]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations-a reply[J]. Physical Review B, 1977, 16: 1748-1749.
    [112]Neaton J B, Ashcroft N W. Pairing in dense lithium[J]. Nature,1999,400:15-16.
    [113]席建红,何孟常,林春野,等.Sb(Ⅲ)在蒙脱石、高岭土和针铁矿表面的吸附:PH值离子强度的影响[J].环境科学,2009,28(1):54-57.
    [114]刘章勇,张玉贞,张小英,等.改性高岭土吸附卟啉钒的热力学行为[J].中国石油大学学报,2010,34(1):144-148.
    [115]Skipper N T, Refson K, McConnell J D C. Computer simulation of interlayer water in 2:1 clays [J]. Journal of Chemical Physics,1991,94(11):7434-7445.
    [116]Odriozola G, Guevara-Rodriguez F de J. Na-montmorillonite hydrates under basin conditions:hybrid Monte Carlo and molecular dynamics simulations[J]. Langmuir,2004, 20(5):2010-2016.
    [117]方沁华,黄世萍,刘志平,等.水化镁基蒙脱石的分子动力学模拟[J].化学学报,2004,62(24):2407-2414.
    [118]Ghassemzdaeh J, Xu L F, Tsotsis T T. Sattistieal Meehnaies and Molecular Simulation of Adsoprtion in Microporous Materials:Pillared Clays and Carbon Molecular Sieve Membranes[J]. Journal of Physics and Chemistry B,2000,104:3892-3905.
    [119]Park S H, Sposito G. Monte carlo simulation of total radial distribution function for interlayer water in Li-, Na-, and K-montmorillonite hydrates[J]. Journal of Physics and Chemistry B,2000,104:4642-4648.
    [120]Greahtouse J A, Storm E W. Molecular modeling of hydrated calcium montmorillonite clay[A]. Eleventh Amrual V. M. Goldschmidt Conference[C],2001.
    [121]Greathouse J A, Sposito G. Monte carlo and molecular dynamics studies of interlayer structure in Li(H2O)3-smectites[J]. Journal of Physics and Chemistry B,1998,102: 2406-2414.
    [122]Greathouse J A, Refson K, Sposito G. Molecular dynamics simulation of water mobility in magnesium-smecitite hydrates[J]. Journal of the American Chemical Society,2000,122: 11459-11464.
    [123]Teppen B J, Yu C H. Molecular dynamics simulations of sorption of organic compounds at the clay mineral/aqueous solution interface[J]. Journal of Computational Chemistry,1998, 19:144-153.
    [124]杨南如,岳文海.无机非金属材料图谱手册[B].武汉:武汉工业大学出版社,2000.
    [125]陈正隆,徐为人,汤立达.分子模拟的理论与实践[B].北京:化学工业出版社,2007.
    [126]Doucet A, De Freitas J F G, Gordon (Eds.) N J. Sequential Monte Carlo Methods In Practice, Springer, New York,2001.
    [127]Thrun S, Fox D, Burgard W. Monte Carlo localization with mixture proposal distribution, in: Proc. AAAI-2000, Austin, TX,2000.
    [128]Connolly M L. Computation of molecular volume[J]. Journal of the American Chemical Society,1985,107:1118-1124.
    [129]Kruse J, Kanzow J, Ratzke K, et al. Free volume in polyimides:positron annihilation experiments and molecular modeling[J]. Macromolecules,2005,38:9638-9643.
    [130]丁静,胡玉坤,杨晓西,等.水在ZSM-5型分子筛中吸附的Monte Carlo模拟[J].化工学报,2008,59(9):2276-2282.
    [131]Olson D H, Haag W O, Borghard W S. Use of water as a probe of zeolitic properties: interaction of water with HZSM-5[J]. Microporous Mesoporous Materials,2000,35/36: 435-446.
    [132]Kolovos K, Tsivilis S, Kakali G. The effect of foreign ions onthe reactivity of the CaO-SiO2-A12O3-Fe2O3 system[J]. Cement and Concrete Research,2002,32(4):463-469.
    [133]Kakali G, Parissakis G, Bouras D. A study on the burnability and the phase formation of PC clinker containing Cu oxide[J]. Cement and Concrete Research,1996,26(10):1473-1478.
    [134]Kolovos K, Tsivilis S, Kakali G. The effect of foreign ions on the reactivity of the CaO-SiO2-A12O3-Fe2O3 system, part 1. anions[J]. Cement and Concrete Research,2001, 31:425-429.
    [135]侯贵华,沈晓冬,许仲梓.氧化铜对碳酸钙热分解动力学过程的影响[J].硅酸盐学报,2005,33(1):113-117.
    [136]侯贵华,沈晓冬,许仲梓.高硅酸三钙硅酸盐水泥熟料组成及性能的研究[J].硅酸盐学报,2004,32(1):85-89.
    [137]马素花,沈晓冬,龚学萍.氧化铜对硅酸三钙和硫铝酸钙矿物形成及共存的影响[J].硅酸盐学报,2005,33(11):1401-1406.
    [138]Tashiro C. The effects of several heavy metal oxides on the hydration and the microstructure of hardened mortar of C3S [A].9th International Congress on the Chemistry of Cement [C], Vol.2. New Delhi, India,1992,37-42.
    [139]Tashiro C. The effects of Cu (OH)2 on the hydration of C3A [A].9th International Congress on the Chemistry of Cement [C], Vol.2. New Delhi, India,1992,58-63.
    [140]侯贵华,沈晓冬,许仲梓.掺杂氧化铜的硅酸三钙早期水化过程的研究[C].第九届全国水泥和混凝土化学及应用技术会议论文汇编,2007,30(1):282-287.
    [141]Grudemo A. Discussion of the structure of cement hydration compounds [A]. Proceeding of the third international symposium on the chemistry of cement[C]. London:1952,247.
    [142]Taylor H F W. Proposed structure for calcium silicate hydrates gel[J]. Journal of American Ceramic Society,1986,69(6):464-467.
    [143]Viehland D, Li J F, Yuan L J, et al. Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste:Short-range ordering, nanocrystallinity, and local compositional order[J]. Journal of American Ceramic Society,1996,79(7):1731-1744.
    [144]Grutzeck M W, Larosa T J, Kwan S. Characteristics of C-S-H gels[A]. Proceeding of the 10th 1CCC[C], Gothenburg, Sweden:1997.
    [145]Taylor H F W. Cement Chemistry[M].2nd edition, London:Thomas Telford,1997, 128-134.
    [146]Dolado J S, Griebel M, and Hamaekers J. A molecular dynamics study of cementitious calcium silicate hydrate (C-S-H) gels. INS Preprint No.0701,2007.
    [147]张文生,叶家元,王宏霞.水化硅酸钙结构的分子动力学模拟[J].硅酸盐学报,2007,32(21):2101-2105.
    [148]Bonaccorsi E, Merlino S, Taylor H F W. The crystal structure of jennite, Ca9Si6O18 (OH)6·8H2O[J]. Cement and Concrete Research,2004,34:1481-1488.
    [149]Wicker W. Recent results of solid state NMR investigations and their possibilities of use in cement chemistry[A]. Proceeding of the 10th ICCC[C], Gothenburg, Sweden:1997.
    [150]Manzano H, Dolado J S, Guerrero A, and Ayuela A. Mechanical properties of crystalline calcium-silicate-hydrates:comparison with cementitious C-S-H gels[J]. Journal Physica Status Solidi (a),2007,204(6):1775-1780.
    [151]叶家元,张文生,王宏霞,等.分子动力学模拟水化硅酸钙Ca4Si6014(OH)4·2H20的结构[J],2010,38(12):2346-2352.
    [152]Taylor H F W, Newbury D E. Electron microprobe study of a mature cement paste[J]. Cement and Concrete Research,1984,14(4):565-573.
    [153]Roelfstra P E, Sadouki H, Wittmann F H. Numerical Concrete[J]. Materials and Structures. 1985,18:327-335.
    [154]Breugel K. V. Simulation of hydration and formation of structure in hardening cement-based materials. (Ph.D. Thesis). The Netherlands, Delft:Delft University of Technology,1991.
    [155]Bentz D P, Garboczi E J. Percolation of phases in a three-dimensional cement paste microstructural model[J]. Cement and Concrete Research.1991,21(2):325-344.
    [156]Bentz D P, Garboczi E J. Digital-image-based computer modeling of cement-based materials[A]. Proceeding of Engineering Foundation Conference on "Digital Image Processing:Techniques and Applications in Civil Engineering" [C], Kona, Hawaii,1993: 44-51.
    [157]Bentz D P, Coveny P, Garboczi E J, et al. Cellular automaton simulations of cement hydration and microstructure development[J]. Modeling and Simulation in Materials Science and Engineering.1994,2(4):783-808.
    [158]Bentz D P. A three-dimensional cement hydration and microstructure program. I. hydration rate, heat of hydration, and chemical shrinkage[R]. NISTIR 5756, Maruland:NIST,1995.
    [159]Bentz D P, Remond S. Incorporation of fly ash into a 3-D cement hydration microstructure model[C]. NISTIR 6050, U.S. Department of Commerce, August,1997.
    [160]Stroeven P, Hu J, Koleva D A. Concrete porosimetry:Aspects of feasibility, reliability and economy[J]. Coment Concrete Composites,2010,32:291-299.
    [161]Stroeven P, Hu J, Stroeven M. On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology[J]. Computers and Concrete,2009,6(2):133-153.
    [162]Stroeven P, Le N B, Stroeven M, et al. Discrete element modeling approach to porosimetry for durability risk estimation of concrete[A].2nd International Conference on Particle-based Methods-Fundamentals and Applications[C], Barcelona, Spain:2011.
    [163]王栗然.水泥水化过程及三维细观结构的计算机模拟[D].兰州:兰州理工大学,2008.
    [164]武汉工业大学等合编.物相分析[M].武汉工业大学出版社,1994.
    [165]吴兆琦,汪瑞芬等.水泥的结构与性能[M].中国建筑工业出版社,1991.
    [166]Powers T C. The physical structure and engineering properties of concrete[J]. PCA Bulletin, 1958; 90:1-26.
    [167]Danielson U. Heat of hydration of cement as affected by water-cement ratio[A]. Proceedings of the 4th International Symposium on the Chemistry of Cement[C], Washington DC, USA,1962,519-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700