离子固溶对阿利特介稳结构及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸三钙(C3S)的固溶体阿利特是硅酸盐水泥熟料的最主要矿物,决定着熟料强度高低。深入研究离子固溶对阿利特结构及水化硬化性能的影响,对提高硅酸盐水泥强度具有重要意义。本文采用XRD结合Rietveld方法、热释光、微量热仪、FTIR、DSC、ICP-OES及SAED等,以合成阿利特单矿为研究对象,研究了Na~+、Mg~(2+)等离子尤其多离子复合效应对阿利特结构及性能的影响及关系。
     从离子的化学结构出发,归纳并提出结构差异因子D,发现离子取代位置依D值由Ca至Si递变性变化,稳定C3S多晶态范围呈类“几”字形规律;基于此,提出了离子稳定C3S高温型由离子固溶所致晶格扭曲畸变,阻碍原子位移相变所致,且进一步的实验验证了此规律和机制。
     对Na~+、Al~(3+)等离子单掺的研究发现,C3S晶格常数随离子固溶量线性变化。高掺量Mg和Ba可分别稳定M3和T3型;Al高掺量时取代Si比例增加并稳定T3型。碱金属和Al~(3+)离子异价置换形成空位缺陷,显著提高C3S早期水化活性。
     Na~+、Mg~(2+)等七种典型离子复合掺杂主要稳定阿利特为M3型,Mg~(2+)和Al~(3+),尤其P5+对高温型稳定能力最强。不含Mg或Al阿利特以T3型为主;P2O5≥0.5%(质量分数,下同)时,以R型为主。阿利特晶格常数随离子固溶量线性变化,并在晶型相界点、固溶极限或固溶机理改变处存在拐点,符合Vegard固溶体定律。Al约1/3取代Ca,2/3取代Si;Fe2O3<0.4%时,Fe取代Ca,>0.4%时,取代Ca和Si。无论取代Ca还是Si,固溶离子均不影响[SiO4]四面体配位价键结构。随阿利特结构对称性提高,[SiO4]四面体对称性提高,自T3型开始,基本达正四面体对称结构。阿利特结构介稳性与晶型及固溶离子种类及含量有关。
     多离子复合掺杂阿利特活性较纯C3S高,但主水化反应延缓。异价置换离子形成缺陷复杂,对阿利特缺陷特征影响大,对水化动力学过程影响更显著,且缺陷类型比浓度的影响更重要。Fe及P尤其是Fe对水化影响最大,Fe使早期活性显著降低,诱导期延长,水化延缓。在晶型相界处,阿利特原始热释光强度突变,同晶型阿利特原始热释光强度与水化放热活性呈相关性,并主要体现在化学反应控制过程,这与以俘获电子形式亚稳储藏能量向化学能的转化有关。
     阿利特晶型及活性受煅烧温度及冷却速率影响。经700和800℃热处理M3型阿利特转变为T3型。靠近分解温度煅烧的阿利特活性高,尤其1350℃热处理呈现高活性和热释光性,与1350℃稍高于分解温度,且十分接近泰曼温度有关。
     MgO≥1%时,阿利特易磨性显著降低,强度下降;若不考虑离子固溶的影响,本研究涉及的R型阿利特强度最高,三斜T2、T3以及单斜M3型强度相近。
Tricalcium silicate (C3S) solid solutions known as alites are the principle phaseof clinker, responsible for strength development. Therefore, it is important to study theeffects of substituents on the metastable structure and hydraulic properties of alite. Inthis dissertation, the effects of foreign ions doping such as Na~+、Mg~(2+)etc. especiallytheir combined doping on the crystal structure and property were studied throughsynthetic alites by XRD with the Rietveld method, petrographic analysis,thermoluminescence, isothermal calorimetry, FTIR, DSC, ICP-OES, and SAED.
     Based on ions’ chemical structure, a quantity called structure difference factor D(referred to Ca~(2+)) was defined. The substitution position changed gradually from Ca toSi with the increase of D. The stabilization range of high temperature polymorphs ofC3S exhibited “几” font with D. Based on this result, it is believed that thestabilization of high temperature polymorphs of C3S was due to the distortion in thestructure caused by ionic substitution, which could block atomic displacement and goagainst phase transformation. The ion-stabilization law and mechanism were provedby the further experiments.
     The effects of single doping with Na~+, Al~(3+)etc. on the structure and property ofC3S were investigated. It was found that the lattice parameters of C3S were relatedlinearly to the amount of substituent ions. Mg~(2+)and Ba~(2+)favoured the stabilization ofM3and T3-type alite respectively at high concentration. Al~(3+)replaced Ca~(2+)as well asSi4+, but the substitution for Si4+increased with higher Al~(3+)concentration and resultedin the stabilization of T3-type alite. The initial reaction of C3S with Al~(3+)and alkaliswere dramatically increased compared with pure C3S, due to the vacancy defectcaused by heterovalent substitution.
     Furthermore, the effects of combined doping with seven typical foreign ionssuch as Na~+, Mg~(2+)etc. on the structure and property of alite were studied. Thecombined doping with typical concentrations of various ions mainly promotedM3-type alite stabilization. Mg~(2+)and Al~(3+)had the most significant influence on thestabilization of the higher-temperature forms of alite, and the absence of either Mg orAl resulted in the stabilization of T3-type alite. Alite with P2O5≥0.5%(mass fraction,the same below) mainly resulted in the stabilization of R-type alite. The latticeparameters of alites changed linearly with the amount of substituent ions. But forparticular concentration at the solid solubility limit, phase transformation boundary, orwhere substitution patterns changed, inflection point appeared in the curve, followingthe Vegard’s law. About one third of Al could replace Ca, and two thirds of Al couldreplace Si. A small amount of Fe2O3(less than0.4%) mainly replaced Ca, andreplaced Si as well in higher concentration. The valence bond structure of [SiO4]tetrahedron was basically not affected by ion substitution whether for Ca or Si. The structure character of [SiO4] tetrahedron depended on the structural symmetry of alite.As the structural symmetry of ion-stabilized alite increased (T1→T2→T3→M3→R),the higher symmetry of [SiO4] tetrahedron was attained.[SiO4] tetrahedron in T3polymorph got to symmetrical structure of regular tetrahedron. The structuralmetastability of alite directly correlated with the polymorphic form of alite and thekind and amount of incorporated foreign ions.
     The activity of alites with multiple foreign ions doping was increased comparedwith pure C3S, but the main reaction was retarded. Heterovalent substitutions had themost significant influence on the crystal defects due to their complex substitution,which resulted in significant effects on the hydration kinetics of alite. The hydrationbehavior of alite did not depend much on the concentrations of defects as the types ofdefects. Fe and P, especially Fe had the most significant influence on the hydrationkinetics. The initial reaction of alite with Fe doping was decreased, the inductionperiod was prolonged, and the main hydration was slowed down. There was an abruptchange in the original thermoluminescence(TL) intensity of alite around the phasetransformation boundary. The hydration reactivity of alites of the same polymorphicform was related with their intensity of the original TL, and this correlation wasmainly reflected in the chemical-controled stage. The metastable energy stored astraped electrons transforming into chemical energy has been believed to account forthis phenomenon.
     The alite polymorphsim and activity were directly affected by the calciningtemperature and cooling rate. T3form was stabilized for M3-type alites heat treated at700°C and800°C. The hydration activity of both pure C3S and typical alite wasincreased after heat treatment, especially for samples treated near the decompositiontemperature. Both pure C3S and alite treated at1350°C showed high activity andintense TL, most probably because1350°C was slightly higher than thedecomposition temperature, and very close to the Tammann temperature.
     The grindability of alite was decreased with MgO≥1%and resulted in asignificant decrease in the compressive strength. In the experimental research scope,the strengths of R polymorph had the highest strength, and the compressive strengthsof T2, T3and M3were similar regardless of substituent ion’s content.
引文
[1]沈威,黄文熙,闵盘荣.水泥土艺学[M].武汉:武汉理工大学学出版社,2005:16–19.
    [2]管宗甫,陈益民,秦守婉.杂质离子对硅酸盐水泥熟料烧成影响的研究进展[J].硅酸盐学报,2004,31(8):795–500.
    [3] Ichikawa M, Kanaya M. Effect of minor components and heating rates on the fine texturesof alite in Portland cement clinker[J]. Cem Concr Res,1997,27(7):1123–1129.
    [4] Bensted J, Barnes P. Structure and performance of cements[M]. London: Taylor&Francise–Library,2008:41–41.
    [5] Gotti E, Marchi M, Costa U. Influence of alkalis and sulphates on the mineralogicalcomposition of clinker[A]. ICCC12th[C]. Montreal Canada,2007.
    [6] Katyal N K, Ahluwalia S C, Parkash R. Effect of barium on the formation of tricalciumsilicate [J]. Cem Concr Res,1999,29:1857–1862.
    [7] Costoya M, Bishnoi S, Gallucci E, et al. Synthesis and hydration of tricalcium silicate
    [A].ICCC12th[C]. Montreal Canada,2007.
    [8] Marchi M, Costa U, Artioli G. Influence of SO3and MgO on clinker mineralogicalcomposition:an "in–situ" HTXRD Study [A]. ICCC12th[C]. Montreal Canada,2007.
    [9] Stephan D, Dikoundou S N, Raudaschl–Sieber G. Influence of combined doping oftricalcium silicate with MgO, Al2O3and Fe2O3: synthesis, grindability, X–ray diffractionand29Si NMR[J]. Mater Struct,2008,41:1729–1740.
    [10] Altun I A. Effect of CaF2and MgO on sintering of cement clinker[J]. Cem Concr Res,1999,29(11):1847–1850.
    [11] Tenório J A S, Pereira S S R, Ferreira A V, et al. CCT diagrams of tricalcium silicate: PartI.Influence of the Fe2O3content [J]. Mater Res Bull,2005,40(3):433–438.
    [12] Tenório J A S, Pereira S S R, Barros A M, et al. CCT diagrams of tricalcium silicate. PartII:Influence of the Al2O3content [J]. Mater Res Bull,2007,42(6):1099-1103..
    [13] Katyal N K, Parkash R, Ahluwalia S C, et al. Influence of titania on the formation oftricalcium silicate [J]. Cem Concr Res,1999,29(3):355–359.
    [14] Liu X C, Li B L, Qi T, et al. Effect of TiO2on mineral formation and properties ofalite–sulphoaluminate cement[J]. Mater Res Innovations,2009,13(2):92–97.
    [15] Kasselouri V, Ftikos Ch. The effect of V2O5on the C3S and C3A formation[J]. Cem ConcrRes,1995,25(4):721–726.
    [16] Kasselouri V, Ftikos Ch. The effect of MoO3on the C3S and C3A formation[J]. Cem ConcrRes,1997,27(6):917–723.
    [17]王培铭,李好新,吴建国.不同氧化铜掺量下硅酸三钙矿物的形成[J](Eng).硅酸盐学报,2007,35(10):1353–1359.
    [18] Kakali G, Parissakis G, Bouras D. A study on the burnability and the phase formation ofPC clinker containing Cu oxide [J]. Cem Concr Res,1996,26(10):1473–1478.
    [19] Ma S, Shen X, Gong X, et al. Influence of CuO on the formation and coexistence of3CaO·SiO2and3CaO·3Al2O3·CaSO4minerals [J]. Cem Concr Res,2006,36(9):1784–1787.
    [20] Barros A M, Soares J A, Ten′orio, Effect of Cr2O3in the formation of clinker of Portlandcement[A]. Memorias5Congreso Brasileiro de Cimento in CD–109[C].1999:50.
    [21] Katal N K, Ahluwalia S C, Parkash R. Effect of Cr2O3on the formation of C3S in3CaO:1SiO2:xCr2O3system [J]. Cem Concr Res,2000,30:1361–1365.
    [22] Bhatty J L, Role of minor elements in cement manufacture and use [A]. in: PortlandCement Association. Research and Development Bulletin RD109T[C]. Skokie, Illinois,USA,1995.
    [23] Stephan D, Maleki H, Kn fel D, et al. Influence of Cr, Ni, and Zn on the properties of pureclinker phases: Part I. C3S [J]. Cem Concr Res,1999,29(4):545–552.
    [24] Andrade F R D, Maringolo V, Kihara Y. Incorporation of V, Zn and Pb into the crystallinephases of Portland clinker[J]. Cem Concr Res,2003,33(1):63–71.
    [25] Stephan D, Mallmann R, Kn fel D, et al. High intakes of Cr, Ni and Zn in clinker: Part I.Influence on burning process and formation of phases[J]. Cem Concr Res1999,29:1949–1957.
    [26] Stephan D, Mallmann R, Kn fel D. et al. High intakes of Cr, Niand Zn in clinker: Part II.Influence on the hydration properties[J]. Cem Concr Res,1999,29:1959–1967.
    [27] Barros A M, Espinosa D C R, Tenorio J A S. Effect of Cr2O3and NiO additions on thephase transformations at high temperature in Portland cement [J]. Cem Concr Res,2004,34(10):1795–1801.
    [28] Opoczky L, Fodor M, Tamás D.F, et al. Chemical and environmental aspects of heavymetals in cement in connection with the use of wastes [A]. ICCC11th[C]. Durban, SouthAfrica,2003:2156–2165.
    [29]陈益民,许仲梓.高性能水泥制备和应用的科学基础[M].北京,化学工业出版社,2008:9–13.
    [30] Dominguezb O, Torres–Castillo A, Flores–Velez L.M, et al. Characterization usingthermomechanical and differential thermal analysis of the sinterization of Portland clinkerdoped with CaF2[J]. Materials Characterization,2010,61:459–466.
    [31]沈威,黄文熙,闵盘荣.水泥土艺学[M].武汉:武汉理工大学学出版社,2005:73–77.
    [32] Emanuelson A, Hansen S, Viggh E. A comparative study of ordinary and mineralizedPortland cement clinker from two different production units: Part I: Composition andhydration of the clinkers [J]. Cem Concr Res,2003,33(10):1613–1621.
    [33] Plang–ngern S, Rattanussorn M. The Effect of sulfur to alkali ratio on clinkerproperties[A]. ICCC12th[C]. Montreal Canada,2007.12.
    [34] Staněk T, Sulovsky P. The influence of phosphorous pentoxide on the phase compositionand formation of Portland clinker[J]. Materials Characterization,2009,60:749–755.
    [35] Diouri A, Boukhari A. Stable Ca3SiO5solid solution containing manganese andphosphorus [J]. Cem Concr Res,1997,27(8):1203–1212.
    [36] de Noirfontaine M N, Tusseau–Nenez S, Signes-Frehel M, etal. Effect of phosphorusimpurity on tricalcium silicate T1: from synthesis to structural characterization[J]. J AmCeram Soc,2009,92(10):2337–2344.
    [37] H. F. W. Taylor. Cement chemistry(2nd Edition)[M]. London:Thornas Telford Publishing,1997,4–111.
    [38] Kolovos K G, Tsivilis S, Kakali G. Study of clinker dopped with P and S compounds[J]. JTherm Anal Calorim,2004,77:759–766.
    [39] Chung–King Hsu. The preparation of biphasic porous calcium phosphate by the mixture ofCa (H2PO4)2· H2O and CaCO3[J]. Mater. Chem. Phys,2003,80:409.
    [40] Kolovos K, Tsivilis S, Kakali G. The effect of foreign ions on the reactivity of theCaO–SiO2–Al2O3–Fe2O3system. Part I: Anions[J]. Cem Concr Res,2001,31(3):425–429.
    [41] Kolovos K, Tsivilis S, Kakali G. The Effect of Foreign Ions on the Reactivity of theCaO–SiO2–Al2O3–Fe2O3system. Part II: Cations[J]. Cem Concr Res,2001,32(3):463–469.
    [42] Kakali1G, Kolovos K, Tsivilis S. Incorporation of minor elements in clinker: their effecton the reactivity of the raw mix and the microstructure of clinker[A]. ICCC11th[C].Durban, South Africa,2003:1993–2001.
    [43] Kolovos K, Tsivilis S, Kakali G. SEM examination of clinkers containing foreignelements[J]. Cement&Concrete Composites,2005,27:163–170.
    [44]马保国,柯凯,李相国等. V2O5掺杂对硅酸盐水泥熟料烧成及矿物结构的影响[J].硅酸盐学报,2007,35(5):588–592.
    [45] Kacimi L, Simon–Masseron A, Ghomari A, et al. Influence of NaF, KF and CaF2additionon the clinker burning temperature and its properties [J]. Comptes Rendus Chimie,2006,9(1):154–163.
    [46] Huang C, Zhang M F, Zhang M X, et al. Effect of minor elements on silicate cementclinker[J]. Journal of Wuhan University of Technology,2005,20(3):116–119.
    [47] Guan Z, Chen Y, Qin S, et al. Effect of phosphor on the formation of alite–Rich Portlandclinker [A].ICCC12th[C]. Montreal Canada,2007.40.
    [48]马保国,穆松,蹇守卫等.磷-氟-钢渣复合添加剂对水泥熟料烧成的影响[J].硅酸盐学报,2007,35(3):275–280.
    [49] Raina K, Janakiraman L K, Use of mineralizer in black meal process for improvedclinkerization and conservation of energy[J]. Cem Concr Res.1998,28(8):1093–1099.
    [50] Kamali A, Benchanaa M, Mokhlisse A. The effect of chemical composition on theburnability of cement raw meal[J]. Ann Chir Plast Esth,1998,23(1):147–150.
    [51] Kacimi L, Simon–Masseron A, Ghomari A, et al. Reduction of clinkerization temperatureby using phosphogypsum [J]. J Hazard Mater,2006,137(1):129–137.
    [52] Shih P H, Chang J E, Lu H C, et al. Reuse of heavy metal–containing sludges in cementproduction [J]. Cem Concr Res,2005,35(11):2110–2115.
    [53] Ract P G, Espinosa D C R, Tenorio J A S. Determination of Cu and Ni incorporationratiosin Portland cement clinker [J]. Waste Management,2003,23(3):281–285.
    [54] Kakali G., Tsivilis S, Kolovos K, et al. Use of secondary mineralizing raw materials incement production. A case study of a wolframite–stibnite ore[J]. Cem. Concr. Compos,2005,27:155–161.
    [55] Hewlett P C. Lea’S Chnmistry of Cement and Concrete (Fourth Edition)[M]. ElsevierScience&Technology Books,2004:108–111.
    [56] Bigare M, Guinier A, Mazieres C, et al. Polymorphism of tricalcium silicate and its solidsolutions[J]. J Am Ceram Soc,1967,50(11):609–619.
    [57] Miyabe H,Roy D M. A reexamination of the polymorphism of Ca3SiO5[J]. J Am CeramSoc,1964,47(7):318-319.
    [58] Yamawchi G, Miyabe H. Precise determination of the3CaO SiO2cells and interpretationof their X–Ray diffraction patterns[J]. J Am Ceram Soc.1960,43(4):219–224.
    [59] Regourd M. Determination of microcystal lattices: Application to different forms oftricalcium silicate[J]. Bull Soc Mineral Crist,1964,87(2):241–72.
    [60] Maki I, Chromy S. Microscopic study on the polymorphism of Ca3SiO5[J]. Cem Concr Res,1978,8(4):407–414.
    [61] Dunstetter F, de Noirfontaine M N, Courtial M. Polymorphism of tricalcium silicate, themajor compound of Portland cement clinker:1. Structural data: review and unified analysis[J]. Cem Concr Res,2006,36:39–53.
    [62] Nishi F, Takechi Y. The rhombohedral structure of tricalcium silicate at1200℃[J]. ZKristallogr,1984,168:197–212.
    [63] Nishi F, Takechi Y, Maki I. Tricalcium silicate Ca3O(SiO4): The monoclinicsuperstructure[J]. Z Kristallogr,1985,172,297–314.
    [64] Delatorre A G, Bruque S, Campo J. The superstructure of C3S from synchrotron andneutron powder diffraction and its role in quantitative phase analyses[J].Cem Concr Res,2002,32:1347–1356.
    [65] Jeffery J W, The crystal structure of tricalcium silicate[J]. Acta Crystallographica,1952,5:26–35.
    [66]管宗甫,陈益民,秦守婉,等.掺杂阳离子在水泥熟料矿物阿利特中的固溶[J].硅酸盐学报,2007,35(4):461–466.
    [67]曹锡章,宋天佑,王杏乔.无机化学(第三版)[M].北京:高等教育出版社,1994:114–131.
    [68]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004:31–32.
    [69] Tran T T, Herfort D, Jakobsen H J, et al. Site Preferences of Fluoride Guest Ions in theCalcium Silicate Phases of Portland Cement from29Si{19F} CP–REDOR NMRSpectroscopy[J]. J Am Chem Soc,2009,131(40):14170–14171.
    [70] Woermann E, Hanhn Th, Eysel W. The substitution of alkalies in tricalcium silicate[J].Cem Concr Res,1979,9:701–711.
    [71] Stephan D, Wistuba S. Crystal structure refinement and hydration behaviour of3CaO·SiO2solid solutions with MgO, Al2O3and Fe2O3[J]. J Eur Ceram Soc,2006,26:141–148.
    [72] Sinclair W, Groves G W. Transmission electron microscopy and X–Ray diffraction ofdoped tricalcium silicate[J]. J Am Ceram Soc,1984,67(5):325–331.
    [73]马素花,沈晓冬,龚学萍,等.氧化铜对硅酸三钙和硫铝酸钙矿物形成及共存的影响[J].硅酸盐学报,2005,33(11):1401–1406.
    [74] Thompsom R A, Killoh D C, Forrester J A. Crystal chemistry and reactivity of theMgO–stabilized alites [J]. J Am Ceram Soc,1975,58(1–2):54–57.
    [75] Kazuyori U, Hiromi N, Hiroyasu M. Structural modulations in monoclinic tricalciumsilicate solid solutions doped with zinc oxide [J]. J Am Ceram Soc,2002,85(2):423–429.
    [76] Delatorre A G, Devera R N, Cuberos A J M, et al. Crystal structure of lowmagnesium–content alite: Application to Rietveld quantitative phase analysis [J]. CemConcr Res,2008,38(11):1261–1269.
    [77]管宗甫,陈益民,郭随华.杂质缺陷诱导阿利特晶胞常数改变与多晶转变[J].硅酸盐学报,2006,34(1):70–75.
    [78]刘宝元,薛君玕.萤石、石膏复合矿化剂对硅酸盐水泥熟料矿物的影响[J].硅酸盐学报,1984,12(4):429–440.
    [79]张文生,陈益民,张洪滔等.易磨硅酸盐水泥熟料的研究[J].硅酸盐学报,2003,31(5):504-507.
    [80] Opoczky L, Gavel V. Effect of certain trace elements on the grindability of cementclinkers in the connection with the use of wastes [J]. International Journal of MineralProcessing,2004,74(Supplement1):129–136.
    [81] Tsivilis S, Kakali G. A study on the grindability of portland cement clinker containingtransition metal oxides[J]. Cem Concr Res,1997,27(5):673–678.
    [82] Peterson V K, Brown C M, Livingston R A. Quasielastic and inelastic neutron scatteringstudy of the hydration of monoclinic and triclinic tricalcium silicate [J]. Chem Phys,2006,326:381–389.
    [83] Stephan D, Dikoundou S N, Raudashl–Sieber G. Hydration characteristics and hydrationproducts of tricalcium silicate doped with a combination of MgO, Al2O3and Fe2O3[J].Thermochimica Acta,2008,472:64–73.
    [84]陈益民,许仲梓.高性能水泥制备和应用的科学基础[M].北京,化学工业出版社,2008:34-38.
    [85] Emanuelson A, Landa–Canovas A R, Hansen S. A comparative study of ordinary andmineralised Portland cement clinker from two different production units Part II:Characteristics of the calcium silicates [J]. Cem Concr Res,2003,33(10):1623–1630.
    [86] Volkonskii B V, Makshev S D, Shtejert N P. Action of compounds of phosphorous,titanium, manganese and chromium on the process of clinker formation and quality ofcement[J]. Tsement,1974,6:17–19.
    [87] Katyal N K, Ahluwalia S C, Parkash R. Effect of TiO2on the hydration of tricalciumsilicate[J]. Cem Concr Res,1999,29:1851–1855.
    [88] Odler Ivan, Abdul–Maula Samir. Polymorphism and hydration of ticalcium Silicate dopedwith ZnO[J]. J Am Ceram Soc,1983,66(1):1–4.
    [89] Stephan D, Kn fel D, H rdtl R. Influence of heavy metals on the properties of cement andconcrete–binding mechanisms and fixation[C]. Proceedings of the11th InternationalCongress on the Chemistry of Cement, Durban, South Africa,2003.2178–2187.
    [90] Chen Q Y, Tyrer M, Hills C D, et al. Immobilisation of heavy metal in cement–basedsolidification/stabilisation: A review[J].Waste Management,2009,29:390–403.
    [91] Omotoso O E, Ivey D G, Mikula R. Quantiative X–Ray diffraction analysis ofchromium(Ⅲ) doped tricalcium silicate pastes[J]. Cem Concr Res,1996,26(9):1369–1379.
    [92] Ma X, Chen H, Wang P. Effect of CuO on the formation of clinker minerals and thehydration properties[J]. Cem Concr Res,2010,40:1681–1687.
    [93] Chen H, Ma X, Dai H. Reuse of water purification sludge as raw material in cementproduction [J]. Cem Concr Res,2010,32:436–439.
    [94] Trezza M A, Scian A N. Waste with chrome in the Portland cement clinker production [J].J Hazard Mater,2007,147(1–2):188–196.
    [95] Omotoso O E, Ivey D G, Mikula R. Characterization of chromium doped tricalciumsilicate using SEM/EDS, XRD and FTIR [J]. J Hazard Mater,1995,42(1):87–102.
    [96] Omotoso O E, Ivey D G. Hexavalent chromium in tricalcium silicate Part I QuantitativeX–ray diffraction analysis of crystalline hydration products[J]. J Mater Sci,1998,33:507–516.
    [97] Nocun–Wczelik W, Nocun M, oj G. Interaction of Pb with hydrating alite paste XPSstudies of surface products[J]. Materials Science–Poland,2009,27(4):933–945.
    [98] Golovastikov N I, Matveeva R G., Belov N V. Crystal structure of the tricalcium silicate3CaO·SiO2=C3S[J]. Sov Phys Crystallogr,1975,20(4):441–445.
    [99] De Noirfontaine M–N, Dunstetter F, Courtial M, et al. Polymorphism of tricalcium silicate,the major compound of Portland cement clinker2. Modelling alite for Rietveld analysis, anindustrial challenge[J]. Cem Concr Res,2006,36(1):54–64.
    [100] Jost K.H, Ziemer B, Seydel R. Redetermination of the structure of β–dicalcium silicate[J].Acta cryst sect B.1999,33:1696–I700
    [101] Courtial M, de Noirfontaine M N, Dunstetter F. et al. Polymorphism of tricalcium silicatein Portland cement: a fast visual identification of structure and superstructure[J]. PowderDiffr.2003:18(1):7–15.
    [102] Handke M, Jurkiewicz M E. IR and Raman spectroscopy studies of tricalcium silicatestructure[J]. Ann Chim Fr,1979,4:145–160.
    [103] Maki I, Kato K. Phase identification of alite in Portland cement clinker [J]. Cem Concr Res,1982,12(1):93–100.
    [104] Peter C. Hewlett. Lea’S Chnmistry of Cement and Concrete (Fourth Edition)[M].ElsevierScience&Technology Books,2004:243–340.
    [105] Fierens P, Verhaegen J–P. Energy storage and tricalcium silicate reactivity [J]. Cem ConcrRes,1975,5(1):89–89.
    [106] Fierens P, Verhaegen P.Structure and reactivity of Chromium–doped tricalcium silicate [J].J Am Ceram Soc,1972,55(6):309–372.
    [107] STEWART H R, BAILEY J E, Microstructural studies of the hydration products of threetricalcium silicate polymorphs[J].J Mater Sci,1983,18:3686–3694.
    [108] Butt Y M, Timoshev V V, Kaushanski V E. Properties of Tricalcium Silicate and Its SolidSolutions [J]. Proc. Conf. Silicate Ind,1968,9:59–64.
    [109] Fierens P, Tirlocq J, Verhaegen P. Luminescence et hydratation du silicate tricalcique [J].Cem Concr Res,1973,3(5):549–560.
    [110] Fierens P, Tirlocq J, Verhaegen P. Influence du mode d'excitation sur lathermoluminescence du silicate tricalcique [J]. Cem Concr Res,1973,3(3):227–232.
    [111] Maki I, Fukuda K, Yoshida H, et al. Effect of MgO and SO3on the impurity concentrationin alite in Portland cement clinker[J]. J Am Ceram Soc,1992,75(11):3163–3165.
    [112]陈云波,徐培涛,韩仲琦等.粉磨方法和粉磨细度对水泥强度的影响[J].硅酸盐学报,2002,30(supplement):53–58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700