L沸石的特种合成路线的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L沸石是1965年Union Carbide Corporation研制开发的一种人工合成沸石。L沸石具有一维孔道结构,孔径为0.71nm,其拓扑结构属于LTL,六方晶系,动力学直径为0.81nm,为微孔沸石。由于其独特的结构,L沸石具有良好的热和水热稳定性,并具有芳构化和异构化性能,是很好的催化基质,在吸附和催化等方面表现出优良性能,在催化反应中有较广泛的应用,如催化重整、加氢环化、催化裂化、加氢裂化、加氢异构化和芳烃氯化等石油加工过程中。而目前合成L沸石的方法还有很多不足之处:如原料利用率低、晶化时间太长、能量消耗大,特别是存在产物硅铝比低的问题,直接影响其催化性能,也影响诸如低碳烷烃芳构化等一些重要的催化过程的开发。因此开发低成本、高效率的L沸石的合成方法成为一个必要的选择。基于此目的,本实验设计和实践了以下四种特种合成路线,开展了前期探索工作。
     首先,在氟体系条件下,以氟化物(氟硅酸铵、氟化铵、氟化钾)为矿化剂合成L沸石,从氟源、硅源、氟硅比、晶化时间、晶化温度和加料顺序等几个方面系统考察了各个因素对晶化过程和合成样品的影响,并通过XRD、FT-IR、SEM等表征手段对其物相结构、晶体形貌等理化性质进行了系统的研究。实验结果表明:三种氟化物的引入都可以顺利合成L沸石,比较得知氟硅酸铵为最佳。以氟硅酸铵为矿化剂,合成的L沸石相对结晶度大于95%,晶形规整,骨架硅铝比(SiO2/Al2O3摩尔比)达到9~10,平均粒径在1μm左右,具有发达的微孔和介孔结构。
     其次,在有机胺(六亚甲基亚胺和三聚氰胺)条件下,以硅溶胶、偏铝酸钠等作为硅铝原料合成L沸石,对两种有机胺在合成中的影响做了考察,并通过XRD、FT-IR、TG-DTA、SEM等表征手段对其物相结构、晶体形貌等理化性质进行了系统的研究。实验结果表明:在以三聚氰胺为模板剂的条件下合成的L沸石相对结晶度大于95%,晶形规整,骨架硅铝比(SiO2/Al2O3摩尔比)达到9-10,平均粒径小于1μm。
     然后,在100℃条件下,以溴化六甲双铵为模板剂,以硅溶胶、偏铝酸钠等为硅铝原料合成L沸石,并通过XRD、FT-IR、SEM等表征手段对产物进行了物化性能表征。实验结果表明:合成样品的相对结晶度达到了90%以上,晶形规整,FT-IR谱图与文献吻合。
     最后,以硅铝微球为硅源,以硝酸镁为促进剂采用类固相合成方法合成L沸石,对硝酸镁作为促进剂在合成中的影响进行了考察,并通过XRD、FT-IR、SEM等表征手段对产物进行了物化性能表征。实验结果表明:在类固相法合成过程中加入适量的导向剂,不但能提高产品的结晶度,抑制杂晶生成也能提高反应速率,缩短晶化时间。
     上述研究结果表明,作者设计和率先实践的以上几种新的特种合成路线都可以成功合成出L沸石,且产品硅铝比明显提高,能耗降低,由此可以看到,本项探索研究将为L沸石合成路线的技术进步提供前期实验基础和设计选项。
Zeolite L is one kind of artificial zeolites developed by Union Carbide Corporation in 1965. Zeolite L is a microporous molecular sieve which has one-dimensional pore structure, 0.71nm aperture, LTL type topology, hexagonal crystalline structure, 0.81nm kinetic diameter. Due to its unique structure, zeolite L shows good thermal and hydrothermal stability, which has been used in aromatization and isomerization. It shows very good performance in adsorption and catalysis, so it has very extensive applications in catalytic reaction, such as catalytic reforming, hydrogenation cyclization, catalytic cracking, hydrocracking, hydroisomerization , arene chloration and other petroleum process. But the synthetic methods of zeolite L at present still have many inadequacies, such as long crystallization time, large energy consumption, in particular the existence of a product with low SiO2/Al2O3 ratio, which have a direct impact on the performance and the development of catalystic process such as low-carbon alkane aromatization etc. So it is necessary to exploite a new high efficient synthesis method for zeolite L. For this purpose, the following special synthetic routes were designed and practiced.
     Firstly, zeolite L was synthesized by fluoride((NH4)2SiF6, NH4F, KF) as mineralizing agent in fluorine system, and the factors that would influenced significantly on the process of crystallization and properties of products were discussed systemically, such as fluorine source, silicon source, n(F-)/n(SiO2) ratio, crystallization time, crystallization temperature and charging sequence. The crystal structure and crystal morphology of zeolite L synthesized were characterized by XRD, SEM and FT-IR. The results showed that zeolite L can be was synthesized successfully by three kinds fluoride, and the relative crystallinitiy of zeolite L sythesized by(NH4)2SiF6 was more than 95%, its morphology was regular,the average crystal partical size was about 1μm, the framework SiO2/Al2O3 (mole ratio) of zeolite L was 9~10.
     Secondly, the influence of Hexahydro-1H-azepine and Melamine in synthesized zeolite L progress was discussed systematically. The crystal structure and crystal morphology of zeolite L synthesized were characterized by XRD, SEM, FT-IR and TG-DTA. The results showed that Melamine’s activity was more obviously, and the relative crystallinitiy of zeolite L sythesized by Melamine was more than 95%, morphology was regular,the average crystal partical size was less than 1μm, the framework SiO2/Al2O3 (mole ratio) of zeolite L was 9~10.
     Thirdly, zeolite L was synthesized at low temperature 100℃. The crystal structure and crystal morphology of zeolite L were characterized by XRD, SEM and FT-IR. The results showed that the relative crystallinity of as-sythesized zeolite L was more than 90%, morphology was regular.
     Finally, zeolite L was synthesized by dry-gel method. The influence of Mg(NO3)2 on the process of crystallization and properties of products was discussed systematically. The crystal structure and crystal morphology of zeolite L synthesized were characterized by XRD, SEM and FT-IR. The results showed that by adding Mg(NO3)2 the relative crystallinity was improved and crystallization time was shorten.
     In summary, zeolite L can be synthesized successfully by these four methods, and SiO2/Al2O3 ratio of the products was increased, and the energy consumption was decreased.
引文
[1] IUPAC, International union of pure and apply chemistry[S].1978,31,578.
    [2] A.Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem.Rev,1997,97:2373.
    [3] A.Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem.Rev,1995,95:559-614.
    [4] Flanigen E M. Molecular sieve zeolite technology-the first twenty-five years[M]. Proc. of the fifth Intl. Conf. on Zeolites, Heyden. Rees L.V.C.(Ed).1980:760-780.
    [5] Wu C G,Bein T. Conducting polyaniline filaments in a mesoporous channel Host[J]. Science,1994,264:17.
    [6]徐如人,庞文琴,屠昆岗,沸石的结构与合成[M].吉林:吉林大学出版社, 1987:1~200.
    [7] Chen N Y. Shape selectivity catalysts in industrial application[M]. New York : Makel Dekker , 1989:1.
    [8] Wolfang F , Hoelderich. Novel and promising application of molecular sieves in the organic synthesis and there contribution to environment protection[J].Mater Res Soc. Symposium Proceedings.233 :27.
    [9] Wolfang F, Hoelderich. Zeolites : catalysts for the synthesis of organic compounds[J].Stud Surf Sci Catal.49 :69.
    [10] Kessler H,Patarin J,Schott-Darie C,Guth J L. Synthesis of high-silica zeolites and phosphate-based materials in the presence of fluoride[J]. Stud. Surf. Sci.Catal,1994, 85:75~113,in Kessler H.“Verified Synthesis of Zeolite Materials”2nd ED,2001:25-27.
    [11] Barrer R M, Denny P J. Hydrothermal chemistry of the silicates part 1X: nitrogenous aluminosicates[J]. J. Chem. Soc. 1961,971-982.
    [12] Kerr G T, Kokotailo G. Sodium zeolite zk-4, a new synthetic crystalline aluminosicates[J]. J. AM. Chem. Soc,1961, 83:4675-4678.
    [13] Grose R. M. , Flanigen E. Crystalline silica [P].US: 4061724,1977.
    [14] Wilson S. T. , Lok B. M. , Flanigen E. M.Crystalline metallophosphate compositions[P]. US: 4310440,1982.
    [15] Wilson S. T. , Lok B. M. , Messina C. A. , Cannan T. R. , etc.[J]. J. A m. Chem. S oc. 1982, 104:1146. [16 ]Wilson S. T. , Lok B. M. , Messina C. A. , etc. Presented at the 184th meeting of the american Chem ical Society [R]. Kansas City :MO,1982.
    [17]Whittam T. V.Zeolites[P].Eur. Pat. Appl: 0054386, 1982.
    [18] Kadak J. A. Synthesis of molecular sieves using beta-diketones as organic templates [P].US: 4323481, 1982.
    [19] Idemitsu Kosan Co. , L td. [P]. Jpn Kokal Tokkyo Kono J P: 8207816, 1982.
    [20] Taramasso M.,Perego G.,NatariB.Aluminosilicates having a zeolite structure[P].Fr:2478063, 1981.
    [21] Onodera T. , Sakai T. , Yamasak i Y. , etc. Process for selective dealkylation of alkyl-substituted aromatic hydrocarbons [P].US: 4320242, 1982.
    [22] Flanigen E. M. , Bennet t J. M. , Grose R. M. , etc.[J]. N atu re, 1978, 271:512.
    [23] Bu X, Feng P, Stucky G D. Large-cage zeolites structures with multidimensional 12-ringchannels[J]. Science,1997,278:2080.
    [24] Bibby D M, Dale M P. Synthesis of silica-sodalite from non-aqueous systems[J]. Nature,1985,317:157-158.
    [25] Morris R E, Weigel S J. The synthesis of molecular sieves from non-aqueous solvents[J]. Chemical Society Reviews,1997,26(4):309-317.
    [26] Xu W Y, Li J Q, Li W Y, et al. Nonaqueous synthesis of ZSM-35 and ZSM-5[J]. Zeolites,1989,9(6):468-473.
    [27]徐文旸,董晋湘,李建权等. Et3N-EDT-H2O蒸汽相合成ZSM-35沸石的研究[J].石油学报(石油加工),1992,8(3):37-42.
    [28] Davis M E, Lobo R F. Zeolite and molecular sieve synthesis[J]. Chem Mater,1992,4:756-768.
    [29] Matsukata M, Osaki T, Ogura M, et al. Crystallization behavior of zeolite beta during steam-assited crystallization of dry gel[J]. Microporous and Mesoporous Materials,2002, 56(1):1-10.
    [30]窦涛.沸石合成中的固体化学及沸石新材料[D].太原:中国科学院山西煤炭化学研究所,1998.
    [31]陈连璋.沸石分子筛催化剂[M].大连:大连理工大学出版社,1990:63.
    [32]中科院大连化物所分子筛组.沸石分子筛[M].大连:科学出版社,1978:118.
    [33]王中华.氟化铵对高温水热超稳Y型分子筛的改性研究[J].石油化工,1993.23(2):84~95.
    [34] Kerr G T, Shioman G F.[J] J. Phys. Chem. 1968,72:3071: J. Phy.Chem.1968,72:2594.
    [35] Skeels G W, Breck D W. Zeolite chermistry v substitution of silicon for aluminum in zeolire via reation with aqueous fluorosilicate[J]. Proc.6th International Zeolite Conf.(Butter months),1984:87-96.
    [36] McNicol B D, Pott G T, Loos K R et al. Spectroscopic studies of zeolite synthesis[C]. Evidence for a Solidstate Mechanism. Adv. Chem. Series 121“Molecular Series”,Meier W. N. Uytterhoeven J. B. (Eds.),1973:152-161.
    [37] Grieken R V, Sotelo J L, Menendez J M, et al. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5[J].Microporous and Mesoporous Materials,2000,39(1-2):135-147.
    [38] Serrano D P, Uguina M A, Ovejiro G, etc. Evidence of solid-solid transformations during the TS-1 crystallization from amorphous wetness impregnated SiO2-TiO2 xerogels[J].Microporous Materials, 1996, 7(6):309-321.
    [39]康善娇.面向深度脱除汽油中噻吩类硫的分子筛吸附材料的制备与性能研究[D].北京:中国石油大学, 2006.
    [40] Fang W B, Li R F, Ma J H, et al. Crystallization mechanism study on ZSM-48 in the system Na2O-Al2O3-SiO2-H2N(CH2)6-NH2[J]. Microporous Materials, 1997, 8(3-4):131-140
    [41] Zhdanov S P.“Miecular Serries I”Adv. Chem. Series 101 Washington D. C.1971:20.
    [42]徐如人,刘新生.沸石的生成机理与晶体生长(Ⅸ)-KL沸石生成的液相机理[J].化学学报,1984,42(3):227~232.
    [43] Shi Q H. On the crystallization problems of molecular sieve zeolites[J]. Kexue Tansuo Xuebao,1984,3:103-109.
    [44] Gabelica Z .[J]. Appl. Catal.1980,1:201.
    [45] Iton L E. Trouw F, Rom T O etc. Small-angle neutron-scattering studier of the template-mediated crystallization of ZSM-5 typ zeolite[J]. Langmuir,1992,8:1045-1048.
    [46] Grieken R Van, Sotelo J L, Menendez J M etc. Anomalous crystallization mechanism in the synthesis of nanocrystallize ZSM-5[J]. Microp. Mesop. Mater,2003,39:135-149.
    [47]Barrer R.M., Villiger H. The crystal structure of the synthetic zeolite L[J]. Z. Kristallogr.,1969,128:352-370.
    [48] Verduijn Johannes P., Wortel Theodorus M. . Hexagonal Zeolite L[P]. EP:0220881, 1987.
    [49] Albers, Edwin W, Vaughan. Method for producing open framework zeolites[P]. US: 3947482, 1976.
    [50] Ya Wan,Craig D.Williams,Catherine V.A.Duke etc. Zeolite L synthesis using different molar gel compositions for the purpose of minimizing reagent waste[J]. Microporous and Mesoporous Materials,2001,47(1):79-84.
    [51] Occelli, Mario L. Crystalline galliosilicate with the zeolite L type structure and its use in chemical catalytic conversions[P]. US:4995963, 1991.
    [52] Verduijn Johannes P., Gellings P.E.. Zeolite L preparation[P]. US:4894214, 1990.
    [53] Verduijn Johannes P. Zeolite L preparation[P]. US:5670130, 1997.
    [54] Yong Sig Ko, Wha Seung Ahn. Crystallization of zeolite L from Na2O-K2O-Al2O3-SiO2-H2O system[J]. Powder Technology,2004, 145 (1):10-19.
    [55] Consuelo Montes de C,Aida Luz Villa de P.,M.M.Ramirez-Corredores.Synthesis and characterization of cobalt modified LTL-type zeolite[J].Applied Catalysis A:General,2000,197:151-156.
    [56]霍全,李强,徐庆虎等.稀土改性L沸石在烃类催化裂化催化剂中的应用[J].燃料化学学报,2007,25(3):302-307.
    [57]陈宜俍,史晓红,郭世岭等.离子交换对L沸石的钾含量及酸性质的影响[J].郑州大学学报,2007,28(3): 24-27.
    [58]赵俊红.重油裂化催化剂活性组分L沸石的合成、改性及表征[D].郑州:郑州大学,2006.
    [59]刘兴玉,谢传欣,赵静等.晶种在L沸石合成体系中的作用[J].石油大学学报(自然科学版),2004,28 (5) :103-107.
    [60] Himpsl,Francis L,Koermer,etc. Catalytic cracking of hydrocarbons with a mixture of zeolite L and zeolite Y[P]. US :5106485,1992.
    [61] Cody,Ian A,Hamner,etc. Surface silylated zeolite catalysts,and processes for the preparation,and use of said catalysts in the production of high octane gasoline[P]. US: 4906599,1990.
    [62] Wu An-hsiang,Drake Charles A.. Hydrocarbon hydrogenation catalyst and process[P]. US:6235954,2001.
    [63] Bengoa J.F.,Alvarez A.M.,Cagnoli M.V.,etc. Fischer-tropsch reaction on Fe/zeolite-L system. Structure and catalytic behavior[J]. Materials Letters,2002,53 (1): 6-11.
    [64] Pechar Todd W., Kim Sangil, Vaughan Ben, etc. Fabrication and characterization of polyimide– zeolite L mixed matrix membranes for gas separations[J]. Journal of Membrane Science,2006,277 (2): 195-202.
    [65] Barrer R.M.,Villiger H. The crystal structure of the synthetic zeolite L[J]. Z. Kristallogr,1969,128:352-370.
    [66] Ya W.,Craig D.W.,Catherine V.D. etc. Zeolite L synthesis using different molar gel compositions for the purpose of minimizing reagent waste[J]. Microporous and MesoporousMaterials,2001,47(1): 79-84.
    [67] Wortel Theodorus M. Zeolite L and process for its preparation[P]. US:4701315,1987.
    [68] Verduijn Johannes P. Mertens. Zeolites and processes for their manufacture[P]. US: 6042808,2000.
    [1] Robson H. Safety considerations for zeolite synthesis[J]. Microporous and Mesoporous Materials,1998,22(7):525-526.
    [2]刘西尧等,工业催化剂分析测试表征[M].北京:烃加工出版社,1990:225-328.
    [3]安德森等.催化剂表征与测试[M].北京:烃加工出版社,1985:211-217.
    [1] Chumbhale V R, Chandwadkar A J, Rao B S. Characterization of siliceous mordenite obtained by direct synthesis or by dealumination[J]. Zeolites,1992,12(1): 63.
    [2]侯祥麟主编.中国炼油技术新发展(M).北京:北京石化出版社,1998:153.
    [3]祁晓岚,李士杰,王战等.氟离子对无胺法合成高硅丝光沸石的结构导向作用(J).催化学报,2003,24(7):535-538.
    [4] Cibsuelo Montes de C, Aida Luz Villa de P, M.M.Ramirez-Corredores.Synthesis and characterization of cobalt modified LTL-type zeolite(J).Applied Catalysis A,2000,197(8):151-156.
    [5] Raatz, Francis, Petit, et al. Decationized,dealuminated and stabilized L zeolite and use thereof [P].US:4909924,1990-03-20.
    [1] Triantafilou N D, Deutsch S E, Alcxeev O, et al. Ir/KL zeolites:Structural charaterization and catalysis of n-hecane reforming[J]. J Catal,1996,159:14-22.
    [2]郑坚,董家禄,须沁华.镧改性Pt/KL沸石芳构化催化剂的研究[J].中国稀土学报,1998,16(2):170-173.
    [3]卢维奇,李凤仪,万惠霖.Pt-Gd/KL和Pt/GdKL沸石的重整催化活性中心研究[J].中国稀土学报,1998,16(4):319-324.
    [4] Barre R M, Denny P J. Hydrothermal chemistry of the silicates part 1X: nitrogenous aluminosicates[J]. J.Chem. Soc,1961:971-982.
    [5] Kerr G T, Kokotailo G. Sodium zeolite zk-4, a new synthetic crystalline aluminosilicate[J]. J. Am. Chem. Soc,1961, 83: 4675-4678 .
    [6] Cibsuelo Montes de C, Aida Luz Villa de P, M.M.Ramirez-Corredores.Synthesis and characterization of cobalt modified LTL-type zeolite(J). Applied Catalysis A, 2000,197(8):151-156.
    [7]徐如人,庞文琴,屠文岗等.沸石的结构与合成[M].吉林:吉林大学出版社,1987:178-180.
    [1] Cibsuelo Montes de C, Aida Luz Villa de P, M.M.Ramirez-Corredores.Synthesis and characterization of cobalt modified LTL-type zeolite(J).Applied Catalysis A, 2000,197(8):151-156.
    [2]徐如人,庞文琴,屠文岗等,沸石的结构与合成[M].吉林:吉林大学出版社,1987:178-180.
    [3]Rajiv Kumar,Asim Bhaumik,Ranjeet Kaur Ahedi,et al. Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves[J]. Nature ,1996,381:298-300.
    [4]李守贵,徐如人.导向剂法合成L沸石[P]. CN:85103013A,1986-09-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700