母源性有机硒和蛋氨酸补充量对后代仔鸡腿肉中硒沉积及过热味的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
母体效应是目前国内外的研究热点,引起了很多畜牧专家和食品科学家的高度重视。本实验的目的是研究母体有机硒和蛋氨酸效应是否可持续影响到将要上市的后代仔鸡。450只52周龄的狼山种母鸡(蛋肉两用型)随机分成9个处理组,每个处理组5个重复,每个重复10只鸡。种母鸡饲喂以玉米-大豆粕为基础的日粮,并补充不同水平的有机硒和蛋氨酸。每千克基础日粮中分别含有0.13,0.43,0.73 mg有机硒(0.1%,主要成分为硒代蛋氨酸)和0.32%,0.40%,0.54%的DL-蛋氨酸(99%)。经过30 d的预试期和70 d的正式饲养实验后,从每个处理组挑选大小均匀的200颗蛋,孵化。21 d后,每个处理组挑选160只健康的雏鸡,随机分成5个重复。所有仔鸡饲喂相同的日粮。13周龄时,从每个重复随机挑选2只仔母鸡,屠宰,取样。分别测定仔鸡腿肉中Se、GSH的含量和GSH-Px的活性。仔鸡腿肉80℃水浴加热20 min,4℃冷藏6 h和3 d后,分别测定TBARS、挥发性氧化产物及游离脂肪酸和磷脂脂肪酸的含量。
     母源性有机硒和蛋氨酸的补充可以持续影响到仔鸡孵化后的13周龄。高硒高蛋氨酸和低硒低蛋氨酸组仔鸡腿肉中硒含量最高(P<0.05),两组间差异不显著(P>0.05)。高硒高蛋氨酸组仔鸡腿肉中谷胱甘肽过氧化物酶(GSH-Px)活性显著低(P<0.05)。母源性有机硒补充对仔鸡腿肉中谷胱甘肽(GSH)含量影响不显著(P>0.05),但0.54%蛋氨酸组仔鸡腿肉中GSH含量显著高(P<0.05)。母源性有机硒和蛋氨酸补充显著降低了冷藏6 h和3 d的仔鸡腿肉中TBARs含量(P<0.05),有效抑制了脂质氧化的发生。当种母鸡饲料中有机硒水平为0.13 mg/kg时,蛋氨酸补充显著提高了冷藏6 h和3 d的仔鸡腿肉中TBARs含量(P<0.05)。
     母源性有机硒与蛋氨酸对过热味(WOF)发展初期主要挥发性氧化产物的含量均有互作效应(P<0.05),而有机硒和蛋氨酸的主效应均不显著(P>0.05)。种母鸡饲料有机硒和蛋氨酸的补充显著降低了WOF发展初期仔鸡腿肉中总醛、己醛、1-戊醇的相对含量(P<0.05),却提高了2,3-辛二酮和2-戊基呋喃的含量(P<0.05)。低硒低蛋氨酸组与高硒高蛋氨酸组均有效抑制了WOF的发展,两纽间差异不显著(P>0.05)。母源性有机硒和蛋氨酸对WOF发展后期挥发性氧化产物的含量影响不显著(P>0.05)。冷藏时间对各种挥发性氧化产物的含量均有极显著影响(P<0.01)。过热味后期各种氧化产物含量较初期的变化如下:总烃、总酮、辛醛、任醛、1-辛醇、2-辛烯-1-醇、1-辛烯-3-醇、2,3-辛二酮、2-戊基-呋喃的含量显著增加;而总醛、总酸、己醛、戊醛、1-戊醇的含量显著降低。
     0.54%母源性蛋氨酸组的仔鸡腿肉冷藏6h后各种游离脂肪酸的含量均显著高(P<0.05);0.73 mg/kg母源性有机硒组较0.13 mg/kg有机硒组的仔鸡腿肉冷藏6 h后游离的豆蔻酸(C14:0)、棕榈油酸(C16:1)、亚麻酸(C18:3)、二十二碳六烯酸(C22:6)的含量显著高(P<0.05);硒和蛋氨酸互作不显著(P>0.05)。母源性有机硒和蛋氨酸补充对冷藏3 d后仔鸡腿肉中各种游离脂肪酸含量、冷藏6 h和3 d后各种磷脂脂肪酸含量的影响不显著(P>0.05)。各种游离脂肪酸和磷脂脂肪酸的含量均随着过热味的发展极显著降低(P<0.01)。磷脂脂肪酸的氧化降解速率显著高于游离脂肪酸(P<0.0001)。氧化速度最快的三种脂肪酸依次为:亚麻酸、棕榈油酸和豆蔻酸。
     综上所述,本研究认为母源性有机硒和蛋氨酸的补充可以持续影响到仔鸡孵化后的13周龄。高硒高蛋氨酸组仔鸡腿肉中硒含量显著高,有效抑制WOF的产生。仔鸡腿肉中较高含量的GSH及其它蛋氨酸代谢产物有效抑制了WOF发生过程中脂质的氧化,而GSH-Px在这方面的抗氧化效果不显著。
The maternal effect is a research focus in animal science and food science field.The primary purpose of this study was to determine the extent to which the effects of dietary supplementation of female chickens with selenium(Se) and methionine(Met) continue into the next generation.450 Lang-shan breeding hens(dual-purpose type,an indigenous poultry breed of China) were obtained at 52 wk of age and randomly allotted to 1 of 9 treatments for 5 replicates of 10 birds each.The breeder hens were fed a basal corn-soybean meal diet and supplemented with Se and Met for 30-day adapting period and 70-day experiment period.Se and Met levels in the diet of breeder hens were 0.13,0.43,0.73 mg Se/kg from Sel-Plex(0.1%) and 0.32%,0.40%and 0.54%of Met from DL-methionine (99%),respectively.200 eggs with uniform weight and size per treatment were collected and incubated,After incubation for 21 d,160 healthy chicks from the same female-parental group were randomly divided into 5 replicates.All the chicks were fed with the same diet. After 13 wk,2 female progeny each replicate were slaughtered.The left thigh was collected. The Se and glutathione(GSH) concentration,glutathione peroxidase(GSH-Px) activity in progeny thigh were determined.After the progeny thigh was cooked and storaged at 4℃for 6 h and 3 d,TBARS concentration,the content of volatile oxidative compounds,free fatty acids and phospholipid fatty acids were measured.
     Dietary supplementation of breeder hens with Se and Met both at the highest levels(0.73 mg Se/kg,0.54%Met) or the lowest levels(0.13mg Se/kg,0.32%Met) resulted in the most deposition of Se in progeny thigh of 13 wk(P<0.05).GSH-Px activity of the thigh was reduced(P<0.05) in offspring originating from the high-Se(0.73 mg/kg) hens compared with those from the control group,but this effect was significant only when the diet was provided with 0.54%of Met.GSH concentration in progeny thigh was not affected by maternal dietary Se levels(P>0.05),but was elevated(P<0.05) by 0.54%of Met.When the hens were fed with 0.54%of Met,feeding 0.73 mg Se/kg of diet to breeder hens resulted in a significant reduction(P<0.05) in TBARS content of progeny thigh both at 6 h and 3 d. When breeder hens received the diet with 0.13 mg Se/kg,TBARS content of progeny thigh was elevated(P<0.05) as a result of Met supplementation both at 6 h and 3 d.
     A significant interactive effect between maternal Se and Met on relative quantity of primary volatile oxidative compounds produced at the beginning of WOF was found (P<0.05),but the main effect of either Se or Met was not significant(P>0.05).Both the highest levels of Se and Met in breeder hens diets resulted in the lower content of total aldehyde,hexanal,1-pentanol,but the higher concentration of 2,3octanedione and 2-pentyl-furan in progeny thigh(P<0.05).0.13mg Se/kg-0.32%of Met treatment was as effective as that of 0.73 mg Se/kg-0.54%of Met in inhibiting WOF development,and there was no difference between the two treatments(P>0.05).There was no significant effects of maternal Se and Met supplementation on the content of volatile oxidative compounds produced at the later stage of WOF(P<0.05).The relative quantity of volatile oxidative compounds as a result of WOF development was significantly influenced by the chilled storage time(P<0.01).The contents of total aldehyde,total acids,hexanal,pentanal and 1-pentanol were found to negatively covary and decrease with increasing days of storage,while the relative quantities of total hydrocarbon,total ketone,octanal,nonanal, 1-octanol,2-octen-l-ol,1-octen-3-ol,2,3octanedione and 2-pentyl-furan increased with the storage time.
     0.54%of maternal dietary Met treatment exhibited the highest concentrations of flee fatty acids at 6 h(P<0.05);the contents of myristic acid(C14:0),palmitoleic acid(C16:1), linolenic acid(C18:3) and docosahexaenoic acid(C22:6) at 6 h significantly increased as a result of maternal Se supplementation(P<0.05);the interactive effect of Se and Met on the contents of free fatty acids at 6 h was not significant(P>0.05).Basically,there were no significant effects of dietary Se and Met supplementation of breeder hens on the concentrations of free fatty acids at 3 d,phospholipid fatty acids both at 6 h and 3 d (P>0.05).Free fatty acids and phospholipid fatty acids were all found to decrease with increasing days of storage(P<0.01).The oxidative rates of phospholipid fatty acids were significantly higher than those of free fatty acids(P<0.0001).The most decreased fatty acids from 6 h to 3 d both in free fatty acids and in phospholipid fatty acids were linolenic acid(C18:3),palmitoleic acid(C16:1) and myristic acid(C14:0).
     In conclusion,it was suggested that the effects of maternal Se and Met intake persist into the 13-wk-old offspring.Dietary supplementation with Se and Met of breeder hens resulted in the most Se deposition in and an effective protection against lipid oxidation and WOF of the progeny thigh.The results also indicated that the increase of protective ability against lipid oxidation and WOF of progeny thigh could be due to higher concentrations of GSH and other Met metabolites,not to GSH-Px activity.
引文
[1]毛胜勇.有机硒营养的研究进展[J].畜禽业,2000,3:20-22.
    [2]袁建敏,呙于明.硒的生物学功能及其在蛋鸡生产中的应用[J].中国饲料,1998,17:7-9.
    [3]井明艳,赵树盛,付亮剑.硒的生化特性与谷胱甘肽系统[J].饲料工业,2006,27(4):8-10.
    [4]Arteel G E,Sies H.The biochemistr of selenium and the glutathione system[J].Environmental Toxicology and Pharmacology,2001,10:153-158.
    [5]Apple J K,Maxwell C V,Derodas H,et al.Effect of mannesium mica on performance and carcass quality of growing-finishing swine[J].Journal of Animal Science,2000,78:2135-2143.
    [6]Chan K M,Decker E A.Endogenous skeletal muscle antioxidants[J].Critical Reviews in Food Science and Nutrition,1994(34):403-426.
    [7]Stanley D W.Biological membrane deterioration and associated quality losses in food tissues[J].Critical Reviews in Food Science and Technology,1991,30:487-553.
    [8]Devore R,Colnago G L,Jensen L S,et al.Thiobarbituric acid values andglutathione peroxidase activity in meat from chickens fed a selenium-supplemented diet[J].Journal of Food Science,1983,48::300-301.
    [9]Ahn C N,Chae H S,Kim D W,et al.Effects of full fat flax seed,a-tocooherol,Ascorbic acid and selenium on the storage of broiler meats[J].Journal of Livestock Science,1998,40:96-102.
    [10]Edens F W.Organic selenium:from feathers to muscle integrity to drip loss[C].Five years onward:no more selenite.In:Biorechology in the Feed industry.Proceedings of Alltech's 12th Annual Symposium(Lyons T.P.and Jacques K.A.,Eds.).Nottingham University Press,Nottingham,UK,1996,pp.165-185.
    [11]Edens,F W.Involvement of Sel-Plex in physiological stability and performance of broiler chickens[C].In:Biotechnology in the Feed industry.Proceedings of Alltech's 17th Annual Symposium(Lyons T.P.and Jacques T.A.,Eds.).Nottingham University Press,Nottingham,UK,2001,pp.349-376.
    [12]Ryu Y C,Rhee M S,Lee K M,et al.Effects of Different Levels of Dietary Supplemental Selenium on Performance,lipid oxidation,and color stability of broiler chicks[J].Poultry Science,2005,84:809-815.
    [13]Zhan X A,Wang M,Zhao R Q,et al.Effects of different selenium source on selenium distribution,loin quality and antioxidant status in finishing pigs[J].Animal Feed Science and Technology,2007,132:202-211.
    [14]刘升军,呙于明.肉仔鸡蛋氨酸营养的研究与应用进展[J].饲料工业,1999(20),1:14-17.
    [15]王冉,周岩民.动物蛋氨酸营养研究进展[J].粮食与饲料工业,1999,4:27-30.
    [16]Finkelstein J D.The metabolism of homocysteine:pathways and regulation[J].Eur J Pediatr,1998,157:S40-S44.
    [17]霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4.
    [18]Wang S T,Chen H W,Sheen L Y,et al.Methionine and Cysteine Affect Glutathione Level,Glutathione-Related Enzyme Activities and the Expression of Glutathione S-Transferase Isozymes in Rat Hepatocytes[J].The Journal of Nutrition,1997,127(11):2135-2141.
    [19]Sies H.Glutathione and its role in cellular functions[J].Free Radical Biology & Medicine,1999,27:916-921.
    [20]Liu S M,Eady S J.Glutathione:its implications for animal health,meat quality,and health benefits of consumers[J].Australian Journal of Agricultural Research,2005,56:775-780.
    [21]刘秀丽,许立庆,曾宪惠,等.低硒、低蛋氨酸对大鼠体内GPx及TBA值的影响[J].哈尔滨医科大学学报,1993,27(1):31-33.
    [22]周葆初,许立庆,邹宁,等.低硒环境下蛋氨酸对大鼠体内维生素E、硒及脂质过氧化物含 量的影响[J].地方病通报,1992,7(2):7-9.
    [23]田园,曲宁,周燕,等.克山病病区粮食中补充蛋氨酸对大鼠膳食硒生物利用的影响[J].卫生研究,2001,30(1):55-58.
    [24]丁角立,呙于明,周毓平,等.硒缺乏对肉仔鸡体内含硫化合物代谢的影响[J].中国动物营养学报,1992,4(2):37-44.
    [25]黄炎坤,李先芳.母体效应对雏鸡健康的影响[J].当代畜牧,1999,1:13-18.
    [26]Dickerson G E,Grimes J C.Effectiveness of selection for efficiency of gain in duroc swine[J].Journal of Animal Science,1947,6:265-287.
    [27]Koch R M,Clark R T.Genetic and environmental relationships among economic characters in beef cattle.Ⅱ.Correlations between offspring and dam and offspring and sire[J].Journal of Animal Science,1955,14:786-791.
    [28]Mousseau T A,Fox C M.The adaptive significance of maternal effects[J].TREE,1998,13(10):403-407.
    [29]Rasmussen K M.Effects of under and overnutrition on lactation in laboratory rats[J].J.Nutr,1998,128:390-393.
    [30]Qvarnstrom A,Price T D.Maternal effects,paternal effects and sexual selection[J].Trends in Ecol Evol,200,16(2):95-100.
    [31]Meikle D B.Adult male house mice born to undernourished mothers are unattractive to oestrous females[j].Anim Behav,1995,50:753-758.
    [32]Kirkpatrick M,Lande R.The evolution of maternal effects[J].Evolution,1989,43:485-503.
    [33]Trivers R L,Willard D E.Natural selection of parental ability to vary the sex ratio of offspring[J].Science,1973,179:90-91.
    [34]Price T D.Maternal and paternal effects in birds:Effects on offspring fitness[M].In:Mousseau TA,Fox CW(eds) Maternal effects as adaptations.New York,Oxford University Press,1998,202-226.
    [35]Mousseau T A,Fox C W.(eds).Maternal Effects as Adaptations[M].New York,Oxford University Press,1998,54-60.
    [36]Paton N D,Cantor A H,Pescatore A J,et al.Effect of dietary selenium source and level of inclusion on selenium content of incubated eggs[J].Poulrry Science(Suppl),2000,79:40.
    [37]Surai P F.Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J].British Poulrry Science,2000a,41:235-243.
    [38]Pappas A C,Karadas F,Surai P F,et al.The selenium intake of the female chicken influences the selenium status of her progeny[J].Comparative biochemistry and physiology.Part B,Biochemistry & molecular biology,2005,142:465-474.
    [39]Bains J S,Shaw C A.Neurodegenerative disorders in humans:the role of glutathione in oxidative stress-mediated neuronal death[J].Brain Research Reviews,1997,25:335-358.
    [40]Christinsen M J,Burgener K W.Dietary selenium stabilises glutathione peroxidase mRNA in rat liver[J].Journal of Nutrition,1992,122:1620-1626.
    [41]Weiss S L,Evenson J K,Thompson K M,et al.Dietary selenium regulationof glutathione peroxidase mRNA and otherselenium-dependent parameters in male rats[J].Journal of Nutritional Biochemistry,1997,8:85-91.
    [42]Toyoda H,Himeno S,Imura N.Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation[J].Biochimica et Biophysica Acta,1990,1049:213-215.
    [43]Surai P F,Karadas F,Pappas A C,et al.Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny[J].British Poultry Science,2006,47(1):65-72.
    [44]Spratt R S,Lesson S.Effect of protein and energy intake of broiler breeder hens on performance of broiler chicken offspring[J].Poultry Science,1987,66(9):1489-1494.
    [45]Peebles E D,Doyle S M,Pansky T,et al.Effects of breeder age and dietary fat on subsequent broiler performance.1.Growth,mortality,and feed conversion[J].Poultry Science,1999,78:505-511.
    [46]Peebles E D,Doyle S M,Pansky T,et al.Effects of Breeder Age and Dietary Fat on Subsequent Broiler Performance.2.Slaughter Yield[J].Poultry Science,1999,78:512-515.
    [47]Peebles E D,Zumwalt C D,Gerard P D,et al.Market age live weight,carcass yield,and liver characteristics of broiler offspring from breeder hens fed diets differing in fat and energy contents [J].Poultry Science,2002,81(1):23-29.
    [48]Lopez G,Leeson S.Response of broiler breeders to low-protein diets.2.Offspring performance[j].Poultry Science,1995,74(4):696-701.
    [49]Pinchasov Y.Relationship between the weight of hatching eggs and subsequent early performance of broiler chicks[J].British Poultry Science,1991,32(1):109-115.
    [50]康相涛,宋素芳,李明,等.蛋鸡种蛋蛋重对孵化率和雏鸡生长发育的影响[J].中国家禽,2002,24(15):10-13.
    [51]Hamilton R J.In Rancidity in Foods[C]//ed.Allen J C,Hamilton R J.Applied Science.London,1983,pp.1-20.
    [52]王镜岩,朱圣庚,徐长法.生物化学.上册[M].第三版.北京:高等教育出版社,2002: pp. 100-101.
    [53] Kanner J, German J B, Kinsella J E. Initiation of lipid peroxidation in biological systems[J]. Crit. Rev. Food Sci. Nutr, 1987, 25(4): 317-364.
    [54] Cheeseman K H, Slater T E. An introduction to free radical biochemistry [J]. British Medical Bulletin, 1993, 49: 481-493.
    [55] Gutteridge J M C. Biological origin of free radicals, and mechanisms of antioxidant protection[J]. Chemico-biological interactions, 1994, 91: 133-140.
    
    [56] Jadhav S J, Nimbalkar S S, Kulkarni A D, et al. Lipid oxidation in biological and food systems. In "Food Antioxidants: Technological, Toxicological, and Health Perspectives, " Marcel Dekker, Inc, New York, 1996.
    
    [57] Frankel E N, Meyer A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants[J]. Journal of the Science of Food and Agriculture, 2000, 80: 1925-1941.
    [58] Tims MJ, Watts BM. Protection of cooked meats with phosphates[J]. Food Technology, 1958, 12(5): 240-243.
    [59] Spanier A M, Edwards J F, Dupuy H P. The warmed-over flavor process in beef. A study of meat proteins and peptides[J]. Food Technology, 1988, 42(6): 110-118.
    [60] St. Angelo A J, Crippen K L, Dupuy H P, et al. Chemical and sensory studies of antioxidanttreated beef[J]. J. Food Sci, 1990, 55: 1501-1505, 1539.
    [61] Vega J D, Brewer M S. Detectable odor threesholds of selected lipid oxidation compounds at various temperatures in a gelatin model system[J]. J. Food Lipids, 1994, 1(3): 229-245.
    [62] Love J D. Sensory analysis of warmed-over flavor in meat[J]. Food Technology, 1988, 42(6): 140-143.
    [63] Pearson A M, Love J D, Shorland F B. Warmed-over flavor in meat, poultry and fish[J]. Adv. Food Res, 1977, 23: 1-74.
    [64] Ingene J O, Pearson A M. Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems[J]. Journal of Food Science, 1979, 44, 1285-1290.
    [65] St. Angelo A J, Vercellotti J R, Legendre M G, et. al. Chemical and instrumental analysis of warmed-over flavor in beef[J]. Journal of Food Science, 1987, 52, 1163-1168.
    [66] McMillin K W. Initiation of oxidative processes in muscle foods[C]//. In Proceedings of Am. Meat Sci. Assn. 49th Annual Reciprocal Meat Conf. , Brigham Young University, Provo, Utah, 1996, pp: 53-63.
    [67] Younathan M T. Causes and prevention of warmed-over flavor[C]//. In Proceedings of Am. Meat Sci. Assn. 38th Annual Reciprocal Meat Conf. , Louisiana State University, Baton Rouge, 1985, pp. 74-80.
    [68] Melton S L. Methodology for following lipid oxidation in muscle foods[J]. Food Technology, 1983, 37, 105-111.
    [69] Tichivangana J Z, Morrissey P A. The influence of pH on lipid oxidation in cooked meats from several species[J]. Irish Journal of Food Science and Technology, 1985, 9, 99-106.
    [70] Rhee K S, Anderson L M, Sams A R. Lipid oxidation potential of beef, chicken, and pork[J]. Journal of Food Science, 1996, 61, 8-12.
    [71] Mottram D S, Edwards R A. The role of triglycerides and phospholipids in the aroma of cooked beef[J]. J. Sci. Food Agric, 1983, 34: 517-522.
    [72] Gray J I, Pearson A M. Lipid-derived off-flavours in meat[C]//: In "Flavor of Meat and Meat Products", Shahidi F, Ed, Blackie Academic and Professional, Glasgow, Scotland, 1994.
    [73] Kanner J. Oxidative processes in meat and meat products: Quality implications[J]. Meat Sci, 1994, 36: 169.
    [74] Labuza T P. Kinetics of lipid oxidation in foods[J]. CRC Crit. Rev. Food Technol, 1971, 2: 355-404.
    [75] Love J D . Mechanism of iron catalysis of lipid oxidation in warmedover flavor of meat[C]//. St. Angelo A J, Bailey M E, Eds. In "Warmed-Over Flavor of Meat", Academic Press, Inc. New York, 1987.
    [76] Buckley D J, Gray J I, Ashghar A, et al. Effects of dietary antioxidants and oxidized oil on membraneal lipid stability and pork product quality[J]. J. Food Sci, 1989, 54: 1193-1197.
    [77] St. Angelo A J, Vercellotti J R, Dupuy H P, et al. Assessment of beef flavor quality: a multidisciplinary approach[J]. Food Technology, 1988, 42, 133-138.
    [78] Byrne D V, O'Sullivan M G, Dijksterhuis G, et al. Sensory panel consistency during development of a vocabulary for warmed-over flavour[J]. Food Quality and Preference, 2001, 12: 171-187.
    [79] Byrne D V, Bredie W L P, Martens M. Development of a sensory vocabulary for warmed-over flavour: part II. in chicken meat[J]. Journal of Sensory Studies, 1999, 14, 67-78.
    [80] Brunton N P, Cronin D A, Monahan F J, et al. A comparison of solid-phase microextraction (SPME) fibres for measurement of hexanal and pentanal in cooked turkey [J]. Food Chem, 2000, 68: 339-45.
    [81] Ahn D U, Sell J L, Jo C, et al. Effects of dietary Vitamin E supplementation on lipid oxidation and volatiles content of irradiated, cooked turkey meat patties with different packaging[J]. Poultry Sci, 1998b, 77: 912-920.
    
    [82] Jensen C, Flensted-Jensen M, Skibsted L H, etal. Warmed-over flavour in chill-stored pre-cooked pork patties in relation to dietary rapeseed oil and vitamin E supplementation[J]. Zeitschrift-Lebensm.-Unterschung-Und-Forschung, 1998, 207: 154-159.
    [83] O'Keefe S F, Wilson L A, Resurreccion A P, et al. Determination of the binding of hexanal to soy glycinin and conglycinin in an aqueous model system using a headspace technique[J]. J Agric Food Chem, 1991, 39: 1022-8.
    
    [84] Gutheil R A, Bailey M E. A method for determining binding of hexanal by myosin and actin using equilibrium headspace sampling gas chromatography. In: Charalambous G, editor. Food science and human nutrition: developments in food science 29. Amsterdam: Elsevier Scientific Publications, 1992, pp. 783-815.
    
    [85] Bailey M E . Inhibition of warmed-over flavor, with emphasis on Maillard reaction products[J]. Food Technol, 1988, 42(6): 123-126.
    [86] Barbut S, Josephson D B, Naurer A J. Antioxidant properties of rosemary odeoresin in turkey sausage[J]. J. Food Sci, 1985, 50: 1356-1359.
    [87]Rhee K S. Natural antioxidants for meat products[C]//. St. Angelo A J, Bailey ME, Eds. In "Warmed-Over Flavor of Meat". Academic Press, Inc. New York, 1987.
    
    [88]Faustmann C, Cassens R G, Schaefer D M, et al. Improvement of pigment and lipid stability in Holstein steer beef by dietary supplementation with vitamin E[J]. J. Food Sci, 1989, 54: 858-862.
    
    [89] Phillips A L, Faustman C, Lynch MP, et al. Effect of dietary α-tocopherol supplementation on color and lipid stability in pork[J]. Meat Sci, 2001, 58: 389-393.
    [90] Marusich W L, de Ritter E, Ogrinz E F, et al. Effect of supplemental vitamin E in control of rancidity in poultry meat[J]. Poultry Sci, 1975, 54: 831-844.
    
    [91] Govaris A, Botsoglou N, Papageorgiou G, et al. Dietary versus post-mortem use of oregano oil and/or alpha-tocopherol in turkeys to inhibit development of lipid oxidation in meat during refrigerated storage[J]. Intl. J. Food Sci. Nutr, 2004, 55(2): 115-123.
    
    [92]Asghar A, Gray J I, Booren A M, et al. Influence of supranutritional dietary vitamin E levels on subcellular deposition of alphatocopherol in the muscle and on pork quality [J]. J. Sci. Food Agric, 1991, 57: 31-41.
    
    [93] Shahidi F, Rubin L J, Diosady L L, et al. Effect of sequestering agents on lipid oxidation in cooked meats[J]. Food Chem, 1986, 21: 145-149.
    [94] Lingert H, Eriksson CE. Antioxidative effect of Maillard reaction products[J]. Prog. Food Nutr, 1981, 5: 453-460.
    [95] Bailey M E, Shin-Lee S Y, Dupuy H P, et al. Inhibition of warmed-over flavor by maillard reaction products [C]//St. Angelo A J, Bailey ME, Eds. In "Warmed-Over Flavor of Meat". Academic Press, Inc. New York, 1987.
    [96] Korschgen B M, Baldwin R E. Palatability of meat after low temperature roasting and frozen storage[J]. Food Prod Dev, 1972, 6(April): 39-40.
    [1] Surai P F. Effect of the selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick[J]. British Poulrry Science, 2000, 41: 235-243.
    [2]. Surai P F, Karadas F, Pappas A C, et al. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny[J]. British Poultry Science, 2006, 47(1): 65-72.
    [3] National Research Council. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC, 1994.
    [4] Lo Fiego D P, Santoro P, Macchioni P, et al. The effect of dietary supplementation of vitamins C and E on the a-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits[J]. Meat science, 2004, 67: 319-327.
    
    [5] SAS Institute Inc. SAS User's Guide, Version 8.2. SAS Institute, Cary, NC, 2001.
    [6] Pappas A C, Karadas F, Surai P F, Speake B K. The selenium intake of the female chicken influences the selenium status of her progeny[J]. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 2005, 142: 465-474.
    [7] Waschulewski I H, Sunde R A. Effect of dietary methionine on the tissue selenium and glutathione peroxidase (EC 1.11.1.9 ) activity in rats given selenomethionine[J]. The British journal of nutrition, 1988a, 60: 57-68.
    [8] Daun C, Akesson B. Comparison of glutathione peroxidase activity, and of total and soluble selenium content in two muscles from chicken, turkey, duck, ostrich and lamb[J]. Food chemistry, 2004, 85: 295-303.
    
    [9] Payne R. L, Southern L L. Comparison of inorganic and organic selenium sources for broilers[J]. Poultry science, 2005, 84: 898-900.
    [10] O'Grady MN, Monahan F J, Fallon RJ, Allen P. Effects of dietary supplementation with vitamin E and organic selenium on the oxidative stability of beef[J]. Journal of animal science, 2001, 79: 2827-2834.
    [11]Bou R, Guardiola F, Barroeta A C, Codony R. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability on chicken meat[J]. Poultry science, 2005, 84: 1129-1135.
    
    [12] Ryu Y C, Rhee M S, Lee K M, Kim B C. Effects of different levels of dietary supplemental selenium on performance, lipid oxidation, and color stability of broiler chicks[J]. Poultry science, 2005,84:809-815.
    [13]Sastre J,Pallardo F V,Vina J.Glutathione,oxidative stress and aging[J].Age,1996,19:129-139.
    [14]Bains J S,Shaw C A.Neurodegenerative disorders in humans:the role of glutathione in oxidative stress-mediated neuronal death[J].Brain research reviews,1997,25:335-358.
    [15]Mètayer S,Seiliez Ⅰ,Collin A,et al.Mechanisms through which sulfur amino acids control protein metabolism and oxidative status[J].The Journal of nutritional biochemistry,2007,In Press,Corrected Proof,Available online 17 August 2007.http://linkinghub.elsevier.com/retrieve/pii/S0955-2863(07)00138-6.
    [16]Toborek M,Grzèbieniàk E K,Dròzdz M,Wieczorek M.Increased lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbits[J].Atherosclerosis,1995,115:217-224.
    [17]McConnell K P,Cho G J.Transmucosal movement of selenium[J].The American journal of physiology,1965,208:1191-1195.
    [18]Hoffman J L,McConnell K P,Carpenter D R.Aminoacylation of Escherichia coli methionine tRNA by selenomethionine[J].Biochimica et biophysica acta,1970,199:531-534.
    [19]McConnell K P,Hoffman J L.Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis[J].FEBS Letters,1972,24:60-62.
    [20]Sunde R A.The biochemistry of selenoproteins[J].Journal of the American Oil Chemists' Society,1984,61:1891-1900.
    [21]Steele R D,Benevenga N J.Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism[J].The Journal of biological chemistry,1978,253:7844-7850.
    [22]Esaki N,Nakamura T,Tanaka H,Soda K.Selenocysteine lyase,a novel enzyme that specifically acts on selenocysteine.Mammalian distribution and purification and properties of pig liver enzyme[J].The Journal of biological chemistry,1982,257:4386-4391.
    [23]Sunde R A,Evenson J K.Serine incorporation into the selenocysteine moiety of glutathione peroxidase[J].The Journal of biological chemistry,1987,262:933-937.
    [24]Waschulewski I H,Sunde R A.Effect of Dietary Methionine on Utilization of Tissue Selenium from Dietary Selenomethionine for Olutathione Peroxidase in the Rat[J].The Journal of nutrition,1988b,118:367-374.
    [25]田园,曲宁,周燕等.克山病病区粮食中补充蛋氨酸对大鼠膳食硒生物利用的影响[J].卫生研究,2001,30(1):55-58.
    [26]Sunde R A,Gutzke G E,Hoekstra W G.Effect of Dietary Methionine on the Biopotency of Selenite and Selenomethionine in the Rat[J].The Journal of nutrition,1981,111:76-86.
    [1]Tims M J,Watts B M.Protection of cooked meats with phosphates[J].Food Technology,1958,12(5):240-243.
    [2]Ingene J O,Pearson A M.Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems[J].Journal of Food Science,1979,44,1285-1290.
    [3]Pearson A M,Love J D,Shorland F B.Warmed-over flavor in meat,poultry and fish[J].Adv.Food Res,1977,23:1-74.
    [4]St.Angelo A J,Vercellotti J R,Legendre M G,et al.Chemical and instrumental analysis of warmed-over flavor in beef[J].Journal of Food Science,1987,52,1163-1168.
    [5]Govaris A,Botsoglou N,Papageorgiou G,et al.Dietary versus post-mortem use of oregano oil and/or alpha-tocopherol in turkeys to inhibit development of lipid oxidation in meat during refrigerated storage[J].Intl.J.Food Sci.Nutr,2004,55(2):115-123.
    [6]潘晓建.母源性有机硒和蛋氨酸对狼山鸡种蛋和后代鸡胸肉品质的影响[D].南京:南京农业大学,2007.
    [7]Gray J I,Pearson A M.Rancidity and warmed-over flavour[C]//In Pearson A M,Dutson T R (Eds.).Advances in meat research.New York:Van Nostrand Reinhold Co,1987:pp.221-269.
    [8]Tichivangana J Z,Morrissey P A.The influence of pH on lipid oxidation in cooked meats from several species[J].Irish Journal of Food Science and Technology,1985,9:99-106.
    [9]Rhee K S,Anderson L M,Sams A R.Lipid oxidation potential of beef,chicken,and pork[J].Journal of Food Science,1996,61:8-12.
    [10]Pegg R B,Shahidi F.Warmed-over flavour[J].Encyclopedia of Meat Science,2004,2:592-599.
    [11]Brunton N P,Cronin D A,Monahan F J,et al.A comparison of solid-phase microextraction(SPME)fibres for measurement of hexanal and pentanal in cooked turkey[J].Food Chem,2000,68:339-345.
    [12]Ahn D U,Sell J L,Jo C,et al.Effects of dietary Vitamin E supplementation on lipid oxidation and volatiles content of irradiated,cooked turkey meat patties with different packaging[J].Poultry Science,1998,77:912-920.
    [13]Su Y,Ang C Y W,Lillard D A.Precooking method affects warmed-over flavour of broiler breast patties[J].Journal of Food Science,1991,56:881-898.
    [14]Jensen C,Flensted-Jensen M,Skibsted L H,et al.Warmed-over flavour in chill-stored pre-cooked pork patties in relation to dietary rapeseed oil and vitamin E supplementation[J].Zeitschrift-Lebensm.-Unterschung-Und-Forschung,1998,207:154-159.
    [15] Byrne D V, BredieWLP, Mottram D S, etal. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat[J]. Meat Science, 2002, 61: 127-139.
    [16] Siegmund B, Pfannhauser W. Changes of the volatile fraction of cooked chicken meat during chill storing: results obtained by the electronic nose in comparison to GC-MS and GC olfactometry[J]. Z Lebensm Unters Forsch A, 1999, 208: 336-341.
    [17] Brunton N P, Cronin D A, Monahan F J. Volatile components associated with freshly cooked and oxidized off-flavours in turkey breast meat[J]. Flavour and Fragrance journal, 2002, 17: 327-334.
    [18] Konopka U C, Guth H, Grosch W. Potent odorants formed by lipid peroxidation as indicators of the warmed-over flavour (WOF) of cooked meat[J]. Z Lebensm Unters Forsch, 1995, 201: 339-343.
    [1]潘晓建.母源性有机硒和蛋氨酸对狼山鸡种蛋和后代鸡胸肉品质的影响[D].南京:南京农业大学,2007.
    [2]Folch J,Lees M,Stanley G H S.A silmple method for isolation and purification of total lipids from animal tissues[J]. Journal of Biology Chemistry, 1957, 226: 487-509.
    [3] Garcia R J A, Gibert J, Diaz I. Determination of neutral lipids from subcutaneous fat of cured ham by capillary gas chromatography and liquid chromatography[J]. Journal of Chromatography A, 1994, 667: 225-233.
    [6] Finkelstein J D. The metabolism of homocysteine: pathways and regulation[J]. Eur J Pediatr, 1998, 157: S40-S44.
    [7] Wilson F A, Rees W D, Lobley G E. Methyl group deficiency and tissue methionine cycle activity [J]. Proc Nutr Soc, 2004, Special Issue 1 (September): 75 A.
    
    [8] Kosower N S, Kosower E M. The glutathione status of cells[J]. Int. Rev. Cytol, 1978, 54:109-160.
    [9] Arias I M, Jakoby W B, eds. Glutathione: metabolism and function[M]. New York: Raven Press, 1976, pp. 175-187.
    
    [10]SiesH, Wendel A, eds. Functions of glutathione in liver and kidney[M]. Berlin: Springer: 1978
    [11] Vina J, eds. Glutathione: metabolism and physiological functions[M]. Boca Raton: CRC Press, 1990
    [12] Byrne D V, Bredie W L P, Bak L S, et al. Sensory and chemical analysis of cooked porcine meat patties in relation to warmed-over flavor and pre-slaughter stress[J]. Meat science, 2001, 59: 229-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700