量子点/高分子复合物及金属有机聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以“量子点/高分子复合物及金属有机聚合物的研究”为主题,发展了一种合成含有量子点纳米粒子(QDs)的高分子微凝胶杂化复合物的新方法,利用激光光散射(LLS)、脉冲梯度场核磁共振(PFG NMR)、透射电子显微镜(TEM)和荧光等分析技术对高分子/量子点单个杂化复合粒子的化学物理性质进行了表征,并详细研究了金属有机嵌段聚合物在选择性溶剂中的自组装行为。
     首先,基于不同种类的温度敏感性高分子微凝胶以及表面分别被三辛基氧磷(TOPO)和油酸(OA)分子稳定的硒化镉(CdSe)和硫化铅(PbS)量子点,我们发展出一种合成含有QDs纳米粒子的微凝胶杂化复合物的新方法。QDs通过传统方法在有机溶剂中于高温条件下合成,其表面被有机配体覆盖。在与水互溶的有机溶剂(如四氢呋喃THF)中,这些QDs能被装载进微凝胶粒子内部。整个过程是通过被预先合成到微凝胶内部的功能性基团与QDs表面的分子之间的配体交换过程来完成的,该配体交换过程是不可逆的。最终制备得到的微凝胶杂化复合物能再被转移至水相中,并稳定分散。
     我们的实验结果证实,在水相中合成的微凝胶粒子能被稳定地转移到THF中;在整个溶剂转移过程中,量子点/微凝胶杂化粒子均能稳定分散在水和THF溶剂中。QDs在微凝胶网络内部的装载是通过配体交换过程完成的。该方法能很好地应用于两种不同类型的微凝胶体系-聚(N-异丙基丙烯酰胺)(PNIPAM)体系和聚(N-乙烯基己内酰胺/乙酰乙酸基甲基丙烯酸乙酯)(PVCL/AAEM)共聚物体系。QDs在微凝胶网络内部的分布行为取决于微凝胶不同的网络结构-均一分布或核/壳分布。在水和THF中,量子点/微凝胶杂化粒子仍然保持着QDs的荧光性质,在水中仍保留微凝胶原有的温度敏感性质。QDs会使微凝胶的体积相转变温度有较小的偏移。我们相信,利用这个新的制备方法,人们可以在微凝胶内装载各种各样的无机纳米粒子,进而能设计出更多的功能性新材料。
     其次,利用PFGNMR技术,我们表征了线型聚(甲基丙烯酸-N,N-二甲氨基乙酯)(PDMA)(M_n:12000,M_w/M_n=1,20,N_n=78)与表面覆盖有TOPO的CdSeQDs之间的配体交换过程。高分子的吸附过程与QDs表面TOPO分子被取代的过程同时进行。实验表明,在与PDMA进行配体交换之后,CdSe QDs的量子效率会增高。因此我们推断,PDMA结构单元与镉原子之间的相互作用能使PDMA高分子链有效地覆盖QDs表面,从而减少其表面的物理缺陷,进而到达提高量子效率的作用。当加入少量的PDMA时,PDMA使得QDs的流体力学体积有适当的增加,提高了胶体粒子在溶液中的稳定分散性。通过比较加入的高分子的量与从QDs表面被取代下来的TOPO的量之间的关系,我们测得,在较低的PDMA量水平上,平均含有19个DMA单体的一条高分子链能取代一个TOPO分子。当更多的高分子被加入到QDs溶液中时,量子点/高分子杂化粒子的流体力学直径进一步增加,高分子环状结构上的DMA重复单元数目增多。在最大的高分子吸附量条件下,每个纳米粒子吸附大约6个高分子链,平均每28个DMA单体可惜取代一个TOPO分子。这个结果表明,PDMA高分子链上平均只有3%的单体单元与QDs表面直接接触,其余97%的部分形成环状和尾巴状结构。我们的实验表明,对于溶液中胶体纳米晶体以及它与高分子间的相互作用的研究与表征来说,PFG NMR是一门非常有用的实验技术。
     第三,我们研究了有机金属嵌段共聚物-聚(二茂铁二甲基硅烷)-b-聚(乙烯基吡啶)(PFS_(23)-b-P2VP_(230))在乙醇中的自组装行为,其自组装体能从球状胶束转变成柱状胶束。起初形成的球状胶束和该聚合物在甲醇中形成的稳定胶束相类似。随着时间的增长,溶液中含有大量的柱状胶束和球状结构的聚集体。一年以后,溶液中只含有细长的柱状胶束,核的宽度分布很均匀为10nm,长度为20~50μm,每纳米的棒状结构中含有约4条高分子链。该柱状胶束与PFS_(23)-b-P2VP_(230)在异丙醇中形成的柱状胶束相似。通常情况下,具有较长可溶性嵌段和较短不溶性嵌段的共聚物在溶剂中都趋向于自组装成球状星形胶束,该胶束利用小球表面较大的曲率来减小壳内的高分子链在溶剂中的排斥作用,以保持结构的稳定。而对于拥有较长可溶性嵌段的PFS_(23)-b-P2VP_(230)嵌段共聚物而言,一些其他的因素例如PFS核的结晶性,能导致其自组装成柱状结构,该结构具有更小的核直径,其中壳内高分子链间的排斥作用更为强烈。
     我们通过实验表明,一旦种子胶束形成,它们就能通过高分子链在两端的附加结晶进一步增长。因此,由一年后得到的20-50μm长的胶束可以想象到,溶液中结晶核的数目很少,胶束的增长速度很慢。在胶束的增长过程中,通过光散射和TEM实验观测到的各种各样的聚集体并不是重要的转变中间态,而是作为一个提供嵌段共聚物单链的载体。这些高分子单链在溶剂中溶解性并不好,当单个的高分子链缓慢地从球状胶束或其聚集体中解离出来后,便通过外延的结晶化过程附加到已经形成的PFS两端,以供柱状胶束进一步增长。
With a title of "Quantum Dots/Polymer Hybrid Materials and Organometallic Polymers", the dissertation explores a new method for the preparation of fluorescent inorganic-nanoparticle (QDs) composite microgels. With a combination of laser light scattering (LLS), pulsed field gradient nuclear magnetic resonance (PFG NMR), transmission electronic microscopy (TEM) and fluorescence techniques, we characterize the physical chemistry aspects of QDs/polymer single hybrid nanoparticle systems and investigate the self-assembly of organometallic block copolymer in selective solvents.
     First, we demonstrate a new approach for the preparation of hybrid microgels containing inorganic nanoparticles, using TOPO-passivated Cadmium Selenide (CdSe) QDs and oleic acid capped Lead Sulfide (PbS) QDs as examples. In this method, nanoparticles prepared by traditional high temperature methods in organic solvents, and covered with a layer of organic ligands at their surface, are incorporated into the microgel in a water-miscible organic solvent such as tetrahydrofuran (THF). Functional groups introduced as part of the microgel structure exchange with ligands from the nanoparticle synthesis, and the nanoparticles become irreversibly incorporated into the polymer network. These hybrid structures can then be transferred back to water.
     Our experimental results demonstrate that the microgels, synthesized in water, retained their colloidal stability during the transfer from water to THF; and the QD-microgel hybrid particles retained their colloidal stability in THF and during transfer from THF to water. We were able to show that QD binding to the microgel took place by a ligand exchange process. This approach worked well for polymer microgels of two different compositions, one based upon Poly(N-isopropylacrylamide) (PNIPAM), and the other on a copolymer of acetoacetoxyethyl methacrylate (AAEM) with N-vinylcaprolactam. Small differences in behavior were noted and attributed to the different internal morphologies of these microgels. The QDs incorporated into the microgels remained photoluminescent, both in THF and in water. The hybrid microgels retained their temperature-sensitive properties in aqueous solution, but the presence of the QDs shifted the volume phase transition to lower temperatures.We believe that this new approach can be used to incorporate a broad range of nanoparticles into microgels and can also lead to the design of novel multifunctional materials.
     And then, PFG NMR measurements were used to characterize the interaction of TOPO-coated CdSe QDs in CDC1_3 with linear poly(2-N,N-dimethylaminoethyl methacrylate) (PDMA) (M_N=12,000,M_w/M_n=1.2,N_n=78).Polymer adsorption was accompanied by displacement of TOPO molecules from the QD surface. We have shown that ligand exchange with PDMA normally leads to a modest increase in the quantum yield of QD emission. Thus the DMA groups of the polymer in contact with the surface are effective at passivating the surface, presumably by binding to Cd ions. At low polymer binding level, PDMA enhanced the colloidal stability of the particles, but led to only a modest increase in the hydrodynamic volume of the particles. By comparing the amount of polymer added to the solution to the amount of TOPO released from the QD surface, we determined that at lower levels of added polymer,a chain segment of on average 19 DMA monomer units was associated with the displacement of each TOPO molecule from the QD surface. When additional polymer was added, the effective hydrodynamic diameter of the polymer increased substantially. Furthermore, an even smaller fraction of the PDMA repeat units became involved in binding to the surface as the amount of polymer adsorbed increased. At the highest level of binding, in which each nanoparticle on average had 6 polymer molecules attached, 28 DMA groups were bound for each TOPO displaced. This result indicates that, on average, only about 3% of the DMA groups interact directly with the surface, while the other 97% is present in the form of loops and tails. These experiments emphasize how useful PFG NMR experiments are for characterizing colloidal nanocrystals in solution and for the study of their interaction with polymers.
     Moreover,we have examined the sphere-to-cylinder transition for micelle solutions of poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) (PFS_(23)-b-P2VP_(230)) block copolymer in ethanol. The small spherical micelles formed initially (
引文
[1] Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. J. Control. Release 2002, 82,189.
    [2] Langer, R. Acc.Chem. Res. 1993, 26, 537.
    [3] Yang, L.; Alexandridis, P. Curr. Opin. Colloid & Interface Sci. 2000, 5, 132.
    [4] Cui, Y; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001,293,1289.
    [5] Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L; Lieber, C. M. Nature 1998, 394,52.
    [6] Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016.
    [7] Bruchez, M.; Moronne, M; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
    [8] Jaiswal, J. K.; Mattoussi, H.; Matthew, J.; Sanford, M.; Simon, M. Nature Biotechnology 2003,21, 47.
    [9] Wu, X. Y.;Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale,F.; Bruchez, M. P. Nature Biotechnology 2003, 21, 41.
    [10] Xu, G. C. Introduction to Nanotechnology, Higher Education Press, China 2005.
    [11] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993,115, 8706.
    [12] Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996,110, 468.
    [13] Peng, X. G; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Nature 2000, 404, 59.
    [14] Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001,123,183.
    [15] Gao, Y. W.; Banin, U. Angew. Chem. Int. Ed. 1999, 38, 3692.
    [16] Park, J.; Joo, J.; Kwon, S. G; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630.
    [17] Henglein, A. Chem. Rev. 1989, 89, 1861.
    [18] Zhang, J. Z. Acc. Chem. Res. 1997, 30, 423.
    [19] El-Sayed, M. A. Acc. Chem. Res. 2004;37, 326.
    [20] Ekimov, A. I.; Onushchenko, A. A.; Tzehomskii, A. V. Sov. Phys. Chem. Glass 1980, 6, 511.
    [21] Henglein, A. Ber. Bunsenges. Phys. Chem. 1982, 88, 301.
    [22] Weller, H.; Koch, U.; Gutierrez, M.; Henglein, A. Ber. Der. Buns.-Gesel. 1984, 88, 649.
    [23] Fojtik,A.; Weller, H.; Koch, U.; Henglein, A. Ber. Der. Buns.-Gesel. 1984,88, 969.
    [24] Spanhel, L.; Weller, H.; Fojtik, A.; Henglein, A. Ber. Der. Buns.-Gesel. 1987, 91, 88.
    [25] Henglein, A.; Kumar, A.; Janata, E.; Weller, H. Chem. Phys. Lett. 1986,132, 133.
    [26] Haase, M.; Weller, H.; Henglein, A. J. Phys. Chem. 1988, 92,4706.
    [27] Eychmuller, A.; Hasselbarth, A.; Katsikas, L; Weller, H. Ber. Der. Buns.-Gesel. 1990, 94,653.
    [28] Weller, H. Angew. Chem. Int. Ed. 1993, 32,41.
    [29] Spanhel, L; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc.1987,109, 5649.
    [30] Eychmuller, A.; Weller, H. Chem. Phys. Lett. 1993, 208, 59.
    [31] Brus, J. E.J. Chem. Phys. 1983, 79, 5566.
    [32] Brus, J. E. J. Chem. Phys. 1984, 80, 4403.
    [33] Brus, J. E. J. Chem. Phys. 1984, 80, 4464.
    [34] Brus, J. E. J. Chem. Phys. 1985, 82, 552.
    [35] Brus, J. E. J. Chem. Phys. 1986, 90,2555.
    [36] Bunge,S. D.; Krueger, K. M.; Boyle, T. J.; Rodriguez, M. A.; Headley, T. J.; Colvin, V. L. J.Mater. Chem. 2003,13, 1705.
    [37] Crouch, D. J.; O'Brien, P.; Malik, M. A.; Skabara,P. J.; Wright, S. P. Chem. Commun. 2003,1454.
    [38] Naramura, H.; Yamaguchi, Y; Miyazaki, M.; Maeda, H.; Uehara, M.; Mulvaney, P. Chem.Commun. 2002, 2844.
    [39] Qu, L. H.; Peng, Z. A.; Peng, X. G Nano Lett. 2001,1,33.
    [40] Brus, L. J.Phys. Chem. Solids 1998,59,459.
    [41] Sill, K. N. Ph.D. thesis, University of Massachusetts Amherst 2006.
    [42] Becerra, L. R.; Murray, C. B.; Griffin, R. G; Bawendi, M. G J. Phys. Chem. 1994,100,3297.
    [43] Taylor, J.; Kippeny, T.; Rosenthal, S. J. J. Clust. Sci. 2001,12, 571.
    [44] Wise, F. W. Acc. Chem. Res. 2003, 33, 773.
    [45] Cheong, W.F.; Prahl, S. A.; Welch, A. J.; IEEEJ. Quantum Electron. 1990, 26, 2166.
    [46] Bremer, V.; Ntziachristos, C; Weissleder, R. Ewr. Radiol. 2003,13, 195.
    [47] Warner, J. H.; Thomsen, E. A.; Watt, A. A. R.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.Nanotechnology 2005,16, 175.
    [48] Hines M. A.; Scholes, G. D. Adv. Mater. 2003, 75,1844.
    [49] Fan, J.; Liu, S.; Chen, G; Qi, Z. J. Appl. Poly. Sci. 2002,83,66.
    [50] Goodyear, C. Dinglers Polytechnisches Journal 1856, CXXXIX, 376.
    [51] Baekeland, L. H. Scientific American Supplement 1909, 68, 322.
    [52] Sheldon, R. P.; Composite Polymeric Materials; Applied Science Publishers LTD: Essex,England 1982.
    [53] Beecroft, L.; Ober, K. Chem. Mater. 1997, 9,1302.
    [54] Gupta, S.; Zhang, Q.; Emrick, T.; Balazs, A. C; Russell, T. P. Nat. Mater. 2006, 5, 229.
    [55] Lee, L.-Y.; Zhang, Q.; Emrick, T; Crosby, A. J. Macromolecules 2006, 39, 7392.
    [56] Hong, Y. et al. J. Rheology 1999, 43, 781.
    [57] Barnes, K. A. et al. Macromolecules 2000, 33, 4177.
    [58] Mackay, M. E. et al. Langmuir 2002,18,1877.
    [59] Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J. Macromolecules 2006, 39,4108.
    [60] Kim, B. J.; Fredickson, G. H.; Hawker, E. J.; Kramer, E. J. Proc.Natl.Acad. Sci. U.S.A. 2006,103, 1254.
    [61] Stratford, K.; Adhikari, R.; Pagonabarraga, I.; Desplat,J. C; Cates, M. E. Science 2005, 309,2198.
    [62] Buxton, G; Balazs, A. C. Mol. Simul.2004, 30, 249.
    [63] Jones, C. D.; Lyon, L. A. J. Am. Chem. Soc.2003,125, 460.
    [64] Watson, K. J.; Zhu, J.; Ngyen, S. T; Mirkin, C. A. J. Am. Chem. Soc. 1999,121, 462.
    [65] Jordan, R.; West, N.; Ulman, A.; Chou,Y. M.; Nuyken, O.Macromolecules 2001, 34,1606.
    [66] Duan, H.; Kuang, M.;Wang, D.; Kurth, D. G; M(?)hwald, H. Angew. Chem.Int. Ed. 2005, 44, 1717.
    [67] Zhou, Q.; Wang, S.; Fan, X.; Advincula,R.; Mays, J. Langmuir 2002,18, 3324.
    [68] Bartholome, C; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Zydowicz, N. Macromolecules 2003, 36, 7946.
    [69] Fanner, S. C; Patten, T. E. Chem. Mater. 2001,13, 3920.
    [70] von Werne, T.; Patten, T. E. J. Am. Chem. Soc. 1999,121,7409.
    [71] Gravano, S. M; Dumas, R.; Liu, K.; Patten, T. E. J. Polym. Sci. Part A 2005, 43, 3675.
    [72] Matsuno, R.; Yamamoto, K.; Otsuka, H.; Takahara, A. Chem. Mater. 2003,15, 3.
    [73] Matsuno, R.; Yamamoto, K.; Otsuka, H.; Takahara, A. Macromolecules 2004,37, 2203.
    [74] Skaff, H.;Ilker, M. F.; Coughlin, E. B.; Emrick, T. J. Am. Chem. Soc. 2002,124, 5729.
    [75] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,S.; Li, J. J.; Sundaresan, G;Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.
    [76] Skaff, H.; Emrick, T. Chem. Commun. 2003, 52.
    [77] Kim, S.; Bawendi, M. G. J. Am. Chem. Soc. 2003,125, 14652.
    [78] Kim, S. W.; Kim, S.; Tracy, J. B.; Jasanoff, A.; Bawendi, M. G. J. Am. Chem. Soc. 2005,127,4556.
    [79] Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2007,129,482.
    [80] (a) Wang, X; Dykstra, T. E.; Lou, X.; Salvador, M. R.; Manners, I.; Scholes, G. D.; Winnik,M. A. J. Am. Chem. Soc. 2004,126, 7784; (b) Wang, M.; Oh, J. K.; Dykstra, T. E.; Lou,X.;Scholes, G. D.; Winnik, M. A. Macromolecules 2006, 39, 3664; (c) Wang, M.; Dykstra,T. E.;Lou, X.; Salvador, M. R.; Scholes, G. D.; Winnik, M. A. Angew. Chem. Int. Ed. 2006, 45,2221; (d) Wang, M.; Felorzabihi, N.; Guerin, G.; Haley, J. C; Scholes, G. D.; Winnik, M. A.Macromolecules 2007, 40, 6377.
    [81] Lin, W. J. Ph.D. thesis, University of Toronto, 2008.
    [82] Manners, I. Synthetic Metal-Containing Polymers, VCH, Weinheim, 2004.
    [83] Abd-El-Aziz, A. S. Macromol. Rapid Commun. 2002, 23,995.
    [84] Kulbaba,K.; Manners, I. Macromol. Rapid Commun. 2001, 22,711.
    [85] Korczagin, I.; Lammertink, R. G. H.; Hempenius, M. A.; Golze, S.; Vancso, G J.Adv. Polym.Sci. 2006, 200,91.
    [86] Peterson,R.;Foucher,D. A.; Tang, B. Z.; Lough, A.; Nandyala,R. P.; Grcedan, J. E.;Manners, I. Chem. Mater. 1995, 7, 2045.
    [87] Rulkens, R.; Resendes, R.; Verma, A.; Manners, I.; Murti, K.; Fossum, E.; Miler, P.;Matyjaszewski, K. Macromolecules 1997, 30, 8165.
    [88] Kulbaba, K.; Cheng, A.; Bartole, A.; Greenberg, S.; Resendes, R.; Coombs, N.; Safa-Sefat,A.; Greedan, J. E.; Stover, H. D. H.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc. 2002,124,12522.
    [89] Clendenning, S. B.; Aouba, S.;Rayat, M. S.; Grozea, D.; Sorge, J. B.; Brodersen, P. M.;Sodhin, R. N. S.; Lu, Z. H.; Yip, C. M.; Freeman, M. R.; Ruda, H. E.; Manners, I. Adv. Mater.2004, 75,215.
    [90] (a) Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 1998,120, 9533;(b) Massey, J.; Temple, K.; Cao, L; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. J. Am.Chem. Soc. 2000,122, 11577; (c) Raez, J.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc.2002,124,10381; (d) Raez, J.; Zhang, Y; Cao, L; Petrov. S.; Erlacher,K.; Wiesner, U.;Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2003,125, 6010.
    [91] Guerin, G.; Raez, J.; Manners, I.; Winnik, M. A. Macromolecules 2005,38, 7819.
    [92] Wang, X.; Wang, H.; Frankowski, D. J.; Lam, P. G; Welch, P. M.; Winnik, M. A.; Hartmann,J.; Manners, I.; Spontak, R. J. Adv. Mater. 2007,19, 2279.
    [93] (a) Cao, L.; Manners, I.;Winnik, M. A. Macromolecules 2001,34, 3353; (b) Cao, L.; Massey,J. A.; Winnik, M. A.; Manners, I.; Riethmuller, S.; Banhart, F.; Spatz, J. P.; Moller, M. Adv.Funct Mater. 2003, 73,271.
    [94] Korczagin, I.; Hempenius, M. A.; Fokkink, R. G; Cohen Stuart, M. A.; Al-Hussein, M.;Bomans, P. H. H.; Frederik,P. M.; Vancso, G. J. Macromolecules 2006,39,2306.
    [95] Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A.Adv. Mater. 1998,10,1559.
    [96] Wang, X.; Winnik, M. A.; Manners, I. Macromolecules 2005, 38,1928.
    [97] Kloninger, C; Rehahn, M. Macromolecules 2004, 37, 8319.
    [98] Kloninger, C; Knecht, D.; Rehahn, M. Polymer 2004, 45, 8323.
    [99] Arsenault, A. C; Rider, D. A.; Tetreault, N.; Chen, J.I.-L.;Coombs, N.; Ozin, G. A.; Manners,I. J. Am. Chem. Soc. 2005,127, 9954.
    [1] Rayleigh, L., Philos. Mag., 1871, 41(4), 447.
    [2] Rayleigh, L.,Philos. Mag., 1881,12(5), 81.
    [3] Rayleigh, L., Proc. Roy. Soc, 1910, A 86, 25.
    [4] Rayleigh, L., Proc. Roy. Soc, 1914, A 90, 219.
    [5] Rayleigh, L., Proc. Roy. Soc, 1918, A 94, 296.
    [6] Smoluchowski, M.,Ann. Phys., 1908, 25, 205.
    [7] Einstein, A., Ann. Phys., 1910, 33, 1275.
    [8] Debye, P., J. Phys. And Coll. Chem., 1947, 51, 18.
    [9] Zimm, B. H., J. Chem. Phys., 1948,16, 1099.
    [10] Berne, B.; Pecora, R. Dynamic Light Scattering; Plenum Press: New York, 1976.
    [11] Chu, B. Laser Light Scattering, 2nd ed.; Academic Press: New York, 1991.
    [12] Burchard, W. in Light Scattering Principles and Development; Clarendon Press; Brown, W.;Oxford 1996, p439.
    [13] (a) Stejskal, E.O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288-295; (b) Tanner, J. E. J. Chem.Phys. 1970, 52, 2523-2526.
    [14] (a) Price, W. S. Concepts Magn. Reson. 1997, 9, 299-336; (b) Price, W. S. Concepts Magn.Reson. 1998,10,197-237; (c) Johnson Jr., C. S. Prog. In NMR Spectros. 1999, 34, 203-256; (d) Stilbs, P. Prog. In NMR Spectros. 1987,19,1-45.; (e) K(?)rger, J.; Pfeifer, H.; Heink, W. Adv.Magn. Optical Reson. 1988,12, 1-89; (f) Nicolay, K.; Braun,K.P. J.; de Graaf, R. A.;Dijkhuizen, R. M; Kruiskamp, M. J. NMR in Biomedicine 2001,14, 94-111.
    [15] Hahn, E. L. Phys. Rev. 1950, 80, 580.
    [16] Cohen, Y.; Avram, L.; Frish, L. Angew. Chem. Int. Ed. 2005, 44, 520.
    [17] Teraoka, I. Polymer Solution; John Wiley & Sons: New York, 2002; Chapter 3.
    [1] a) Pelton, R. Adv. Colloid Interface Sci. 2000, 85, 1; b) Nayak, S.; Lyon, L. A. Angew. Chem.Int. Ed. 2005, 44, 7686; c) Peppas, N. A.; Hilt, J. Z.; Khademhosseini A.; Langer, R. Adv.Mater. 2006,18,1345; d) Das, M.; Zhang, H.; Kumacheva, E. Annu Rev. Mater. Res. 2006,56,117.
    [2] Zhang, J.; Xu, S.; Kumacheva, E. J. Am. Chem. Soc. 2004,126, 7908.
    [3] Antonietti, M.; Grohn, E; Hartmann, J.; Bronstein, L. Angew. Chem. Int. Ed. 1997, 36, 2080.
    [4] Biffis,A.;Orlandi,N.;Corain,B.Adv.Mater. 2003, 15, 1551.
    [5] a) Gorelikov, I.; Field, L. M; Kumacheva, E. J. Am. Chem. Soc. 2004, 126,15938; b) Kuang,M.; Yang, D.; Bao, H.; Gao, ML; Mohwald, H.; Jiang, M. Adv. Mater. 2005,17, 267; c) Gong,Y.; Gao, M; Wang, D.; Mohwald, H. Chem. Mater. 2005,17, 2648.
    [6] a) Mrkic, J.; Saunders, B. R. J. Colloid and Interface Sci. 2000, 222,75; b) Pich, A.; Lu, Y.;Adler, H. P.; Schmidt, T.; Arndt, K. Polymer 2002, 43, 5723; c) Pich, A.; Lu, Y.; Boyko, V.;Arndt, K.-F.; Adler, H.-J. P., Polymer 2003,44, 7651; d) Pich A, Lu Y, Boyko V, Richter S,Arndt, K.; Adler, H. P. Polymer 2004,45,1079; e) Lopez-Cabarcos, E.; Mecerreyes, D.;Sierra-Martin, B.; Romero-Cano, M. S.; Strunz, P.; Fernandez-Barbero, A. Phys. Chem. Chem.Phys. 2004, 6, 1396; d) J. Rubio Retama,E. Lopez Cabarcos, D. Mecerreyes and B.Lopez-Ruiz, Biosens. Bioelectron. 2004,20, 1111.
    [7] a) Sharma, G; Ballauff, M. Macromol. Rapid Comm. 2004, 25, 547; b) Mei, Y; Sharma, G;Lu, Y; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. Langmuir 2005, 21,12229; c) Lu,Y; Mei, Y; Drechsler, M.; Ballauff, M. Angew. Chem. Int. Ed. 2006, 45, 813; d) Suzuki, D.; Kawaguchi, H. Langmuir 2005,21, 12016; e) Zhang, J.; Xu, S.; Kumacheva, E. Adv. Mater. 2005, 17, 2336; f) Pich, A.; Karak, A.; Lu, Y.; Ghosh, A.; Adler, H. J. P. Macromol. Rapid Comm. 2006, 27, 344; g) Biffis, A.; Orlandi, N.; Corain, B. Adv. Mater. 2003,15, 1551.
    [8] a) Gao, M.; Peng, X.; Shen, J. Thin Solid Films 1994, 248,106; b) Menager, C.; Sandre, O.; Mangili, J.; Cabuil, V. Polymer 2004,45, 2475.
    [9] a) Bai, C.; Fang, Y.; Zhang, Y.; Chen, B. Langmuir 2004, 20,263; b) Pich, A.; Hain, J.; Lu, Y; Boyko, V.; Prots, Y; Adler, H. Macromolecules 2005, 38,6610.
    [10] a) Nassif, N.; Gehrke, N.; Pinna, N.; Shirshova, N.; Tauer, K.; Antonietti, M.; Colfen, H. Angew. Chem. 2005,117, 6158; b) Zhang, G.; Wang, D.; Gu, Z.; Hartmann, J.; Mohwald, H. Chem. Mater. 2005, 17, 5268; c) Zhang, G.; Wang, D.; Gu, Z.; Mohwald, H. Langmuir 2005, 21,9143.
    [11] a) Fujii, S.; Read, E. S.; Binks, B. P.; Armes, S. P. Adv. Mater. 2005, 17:1014; b) Ngai, T.; Behrcns, S. H.; Auweter, H. Chem. Commun. 2005, 3, 331; c) Ngai, T.; Behrens, S. H.; Auweter, H. Macromolecules 2006, 39, 8171; d) Fujii, S.; Armes, S. P.; Binks, B. P.; Murakami, R. Langmuir 2006,22, 6818; e) Koh, A. Y. C.; Saunders, B. R. Langmuir 2005, 21,6734.
    
    [12] Crowther, H. M.; Vincent, B. Coll. Polym. Sci. 1998, 276, 46.
    [13] a) Bruchez, M. P.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281,2013; b) Chan, W. C. W.; Nie, S. Science 1998,281, 2016; c) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. d) Jovin, T. M. Nat. Biotechnol. 2003,21, 32; e) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435; f) Klostranec, J. M.; Chan, W. C. W.Adv. Mater. 2006,18,1953.
    [14] a) Weller, H. Angew. Chem. Int. Ed. 1993, 32, 41; b) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    [15] a) Boyko, V.; Pich, A.; Lu, Y.; Richter, S.; Arndt, K.-F.; Adler, H.-J. Polymer 2003,44/25, 7821. b) Pich, A.; Teissier, A.; Boyko, V.; Lu, Y.; Adler, H.-J. P. Macromolecules 2006,39, 7701.
    [16] a) Skaff, H.; Emrick, T.; Chem. Commun. 2003,1, 52. b) Sill, K.; Emrick, T. Chem. Mater. 2004, 16,1240.
    [17] a) Wang, X.-S.; Dykstra, T. E.; Lou, X.; Salvador, M. R.; Manners, I.; Scholes, G. D.; Winnik,M. A. J. Am. Chem. Soc. 2004,126, 7784. b) Wang, M.; Oh, J. K.;Dykstra, T. E.; Lou, X.;Scholes, G. D.; Winnik, M. A. Macromolecules 2006,39, 3664. c) Wang, M.; Dykstra, T. E.;Lou, X.; Salvador, M. R.; Scholes, G. D.; Winnik, M. A. Angew.Chem. Int. Ed. 2006, 45,2221.
    [18] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993,115, 8706-8715.
    [19] Hines,M. A.; Scholes, G. D. Adv. Mater. 2003,15,1844.
    [20] Zhang, C; O'Brien, S.; Balogh, L. J. Phys. Chem. B 2002,106,10316.
    [21] Wang, Y. A.; Li, J. J.; Chen,H; Peng, W. J. Am. Chem. Soc. 2002, 124, 2293.
    [22] Potapova, I.; Mruk, R.; Prehl, S.; Zentel, R.; Basche, T.; Mews, A. J. Am. Chem. Soc. 2003,125,320.
    [23] Zhang, Y.; He, J.; Wang, P. N.; Chen, J. Y; Lu, Z. J.; Lu, D. R.; Guo, J.; Wang, C. C; Yang,W. Y. J. Am. Chem. Soc. 2006, 128,13396.
    [24] Li, J.; Hong, X.; Liu, Y; Li, D.; Wang, Y; Li, J.; Bai, Y; Li, T. Adv. Mater. 2005, 17, 163.
    [2] Steckel, J. S.; Zimmer, J. P.; Coe-Sullivan, S.; Stott, N. E.; Buloviae, V.; Bawendi, M. G. Angew.Chem. Int. Ed. 2004, 43, 2154-2158
    [3] Klimov, V. A.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollinsworth, J. A.; Leatherdale, C. A.;Eisler, H.-J.; Bawendi, M. G. Science 2000, 290, 314-317.
    [4] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002,295, 2425-2427.
    [5] Huynh, W. U.; Peng, X.; Alivisatos, A. P. Adv. Mater. 1999,11, 923-923.
    [6] Liu, J.; Tanaka, T.; Sivila, K.; Alivisatos, A. P.; Fréchet, J. M. J. Am. Chem. Soc. 2004,126,6550-6551.
    [7] Schaller, R. D.; Klimov, V. I. Phys. Rev Lett. 2004, 92,186601.
    [8] Ellingson, R. J.; Beard, M. C; Johnson, J. C; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.;Efros, A. L. Namo Lett. 2005, 5, 865-871.
    [9] Boyenand, H.-G.; Kastle, G; Weigl, F.; Koslowski, B.; Dietrich, C; Ziemann, P.; Spatz, J.P.;Riethmuller, S.; Hartmann, C; Moller, M. Schmid, G; Gamier, M. G; Oelhafen, P. Science 2002,297,1533-1536.
    [10] Narayanan, R.; El-Sayed, M. A. Nano Lett. 2004, 4,1343.
    [11] Zhou, K.B.;Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. J. Catal.2005, 229, 206.
    [12] Han, M.; Gao, X.; Su, J. Z.; Nie, S. Nat. Biotechnol. 2001,19, 631-635.
    [13] Alivisatos, A. P. Nat. Biotechnol. 2004, 22,47-52.
    [14] Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc. 2001,123,4103-4104.
    [15] (a) Skaff,H.;Emrick, T.; Chem. Commun. 2003,1, 52; (b) Sill, K.; Emrick, T. Chem. Mater.2004, 16, 1240.
    [16] Potapova,I.;Mruk, R.; Prehl, S.; Zentel, R.; Basche,T.; Mews, A. J. Am. Chem. Soc. 2003,125,320.
    [17] (a) Wang, X; Dykstra, T. E.; Lou, X.; Salvador, M. R.; Manners, I.; Scholes, G. D.; Winnik,M. A. J. Am. Chem. Soc. 2004,126, 7784; (b) Wang, M.; Oh, J. K.; Dykstra, T. E.; Lou, X.;Scholes, G D.; Winnik, M. A. Macromolecules 2006, 39, 3664; (c) Wang, M.; Dykstra, T. E.;Lou, X.; Salvador, M. R.; Scholes, G. D.; Winnik, M. A. Angew. Chem. Int. Ed 2006, 45,2221; (d) Wang, M.; Felorzabihi, N.; Guerin, G; Haley, J. C; Scholes, G. D.; Winnik, M. A.Macromolecules 2007, 40, 6377.
    [18] (a) Price, W. S. Concepts Magn.Reson.1997, 9, 299-336; (b) Price, W. S. Concepts Magn.Reson. 1998,10,197-237; (c) Johnson Jr., C. S. Prog. In NMRSpectros. 1999, 34, 203-256;(d) Stilbs, P. Prog. In NMR Spectros. 1987,19,1-45; (e) K(?)rger, J.; Pfeifer, H;Heink, W.Adv. Magn. Optical Reson. 1988,12, 1-89; (f) Nicolay, K.; Braun, K. P. J.; de Graaf, R. A.;Dijkhuizen, R. M; Kruiskamp, M. J. NMR in Biomedicine 2001,14, 94-111.
    [19] Terrill, R. H.; Postlethwaite, T. A.; Chen C; Poon, C; Terzis, A.; Chen, A.; Hutchison, J. E.;Clark, M. R.; Wignall, G; Londono, J. D.; Superfine, R.; Falvo, M.; Johnson Jr., C. S.;Samulski, E. T.; Murray, R. W. J. Am. Chem. Soc.1995,117, 12537-12548.
    [20] Kohlmann, O.;Steinmetz, W. E.; Mao, X.; Wuelfing, W. P.; Templeton, A.C; Murray, R. W.;Johnson Jr., C. S. J. Phys. Chem. B 2001,105, 8801-8809.
    [21] Ribot, F.; Escax, V.;Roiland, C; Sanchez, C; Martins, J. C; Biesemans, M.; Verbruggen, I.;Willem, R. Chem. Commun. 2005, 8, 1019-1021.
    [22] (a) Hens, Z.; Moreels, I.; Martins, J. C. ChemPhysChem 2005, 6, 2578-2584; (b) Moreels, I.;Martins, J. C; Hens, Z. ChemPhysChem 2006, 7,1028-1031.
    [23] C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 1993,115, 8706-8715.
    [24] Manna, L.; Scher, E. C; Alivisatos, A. P. J. Am. Chem. Soc. 2000,122, 12700.
    [25] M. A. Hines and G. D. Scholes, Adv. Mater. 2003,15, 1844.
    [26] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
    [27] (a) Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288-295; (b) Tanner, J. E. J. Chem.Phys. 1970, 52, 2523-2526.
    [28] Fauth, J.-M.; Schweiger, A.; Braunschweiler, L.; Forrer, J.; Ernst, R.R. J. Magn. Reson. 1986,66, 74-85.
    [29] Mills, R. J. Phys. Chem. 1973, 77, 685-688.
    [30] Becerra, L. R.; Murray, C. B.; Griffin, R. G; Bawendi, M. G. J. Chem. Phys. 1994,100,3297-3301.
    [31] Marcus, M. A.; Brus, L. E.; Murray, C. B.; Bawendi, M. G; Prasad, A.; Alivisatos, A. P.Nanostruct. Mater. 1992,1, 323.
    [32] Kuno, M.; Lee, J. K.; Dabbousi, B.O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997,106,9869-9882.
    [33] Napper, D. H. Polymeric Stabilization of Colloidal Dispersions. Academic Press, London, 1983, p 29.
    [34] Alexander, S. J. Phys. Paris. 1977, 38, 977-981; 983-987.
    [35] Ou-Yang, H. D.; Gao, Z. J. Phys.Ⅱ1991, 59,1375-1385.
    [36] Charkrabati,A.J.Chem.Phys. 1994,100, 631-635.
    [37] Berrettini,M.G;Braun,G; Hu,J.G;Strouse, G. F. J. Am. Chem. Soc.2004,126,7063-7070.
    [38] Muller A.H.E.et al.Macromolecules 2004, 37,2054.
    [1] Hamley,I.W.The Physics of Block Copolymers. Oxford: Oxford University Press; 1998.
    [2] Hadjichristidis, N.; Pispas, S.; Floudas, G. A. Block Copolymers. New York: Wiley: 2003.
    [3] Discher, D. E.; Eisenberg, A. Science 2002,297, 967.
    [4] Riess, G. Prog. Polym.Sci. 2003, 28,1107.
    [5] Forster, S.; Abetz, V.; Müller,H.E.Adv. Polym. Sci. 2004,166, 173.
    [6] Gohy, J. F. Adv. Polym. Sci. 2005,190, 65.
    [7] Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Prog. Polym. Sci. 2005,30,691.
    [8] Aleshin, A. N. Adv. Mater. 2006,18,17.
    [9] Chan, V. Z.-H.; Hoffman, J.; Thomas. E. L. Science 1999, 286, 1716.
    [10] Forster, S.; Antonietti, M. Adv. Mater. 1998,10,195.
    [11] Hamley, I. W. Angew. Chem. Int. Ed. 2003, 42, 1692.
    [12] Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M; Amstutz, A.Science 1997,276, 384.
    [13] Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Science 1994, 263,1600.
    [14] Schnerder, A.; Zanna,J.-J.;Yamada, M.; Finkelmann, H.; Thomann, R. Macromolecules 2000, 33, 649.
    [15] Dalhaimer, P.; Bates, F. S.; Discher, D. E. Macromolecules 2003, 36,953.
    [16] Savic, R.; Luo, L. B.; Eisenberg, A.; Maysinger, D. Science 2004, 300, 615.
    [17] Kulbaba, K.; Manners, I. Macromol.Rapid Commun. 2001, 22, 711.
    [18] Peterson, R.; Foucher, D. A.; Tang, B. Z.; Lough, A.; Nandyala, R. P.; Greedan, J. E.;Manners,1.Chem. Mater. 1995, 7,2045.
    [19] Rulkens, R.; Resendes,R.; Verma,A.; Manners, I.; Murti, K.; Fossum, E.; Miler, P.;Matyjaszewski, K. Macromolecules 1997,30,8165.
    [20] Kulbaba, K.; Cheng, A.; Bartole, A.; Greenberg, S.; Resendes, R.; Coombs,N,;Safa-Sefat,A.; Greedan, J. E.; Stover, H. D. H.; Ozin, G. A.; Manners, I. J. Am. Chem. Soc.2002,124,12522.
    [21] (a) Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 1998,120,9533;(b) Massey, J.; Temple, K.; Cao,L.; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. J. Am.Chem. Soc. 2000,122,11577; (c) Raez,J.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc.2002,124,10381; (d) Raez, J.; Zhang, Y.; Cao, L.; Petrov. S.; Erlacher, K.; Wiesner,U,;Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2003,125, 6010.
    [22] Wang, X.; Wang, H.; Frankowski, D. J.; Lam, P. G; Welch, P. M.; Winnik, M. A.; Hartmann,J.;Manners, I.; Spontak, R. J. Adv. Mater. 2007,19, 2279.
    [23] (a) Cao,L.; Manners, I.; Winnik, M. A. Macromolecules 2001, 34, 3353; (b) Cao, L.; Massey,J. A.; Winnik, M. A.; Manners, I.; Riethmuller, S.; Banhart,F.; Spatz, J. P.; M(?)ller, M. Adv.Funct.Mater. 2003,13,271.
    [24] Korczagin, I.; Hempenius, M. A.; Fokkink, R. G; Cohen Stuart, M. A.;Al-Hussein, M.;Bomans, P. H. H.; Frederik, P. M.; Vancso, G J. Macromolecules 2006, 39, 2306.
    [25] Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. Adv. Mater. 1998,10,1559.
    [26] Wang, X.; Winnik, M. A.; Manners, I. Macromolecules 2005, 35, 1928.
    [27] Wang, H.; Winnik, M. A.; Manners, I. Macromolecules 2007, 40, 3784.
    [28] Reiss-Husson, F.; Luzzati, V. J. Phys. Chem.1964,68, 3504.
    [29] (a) Hoffmann, H.; Ebert, G. Angew. Chem. Int. Ed. 1988, 27, 902; (b) Imae, T.; Skeda,S. J.Phys. Chem. 1986, 90, 5216; (c) Gamboa, C;Rois, H.; Sepulveda, L. J. Phys. Chem.1989,93, 5540; (d) Christov, N.C.;Denkov,N. D.; Kralchevsky, P. A.; Ananthapadmanabhan,K.P.;Lips, A. Langmuir 2004, 20, 565; (e) Bernheim-Groswasser, A.; Zana, R.; Talmon, Y. J.Phys. Chem. B 2000,104, 4005; (f) Alargova,R.G;Danov, K. D.; Petkov, J. T.; Kralchevsky,P. A.; Broze, G; Mehreteab, A. Langmuir 1997, 13, 5544; (g) Heerklotz,H.;Tsamaloukas, A.;Kita-Tokarczyk,K.;Strunz, P.; Gutberlet, T. J. Am. Chem. Soc.2004,126,16544.
    [30] Zhou, Z.; Chu, B. Macromolecules 1988, 21, 2548
    [31] (a) Schillen, K.; Brown, W.; Johnsen, R. M. Macromolecules 1994, 27, 4825; (b) Jorgensen,E. B.; Hvidt, S.; Brown, W.; Schillen, K. Macromolecules 1997, 30, 2355.
    [32] Mortensen, K.; Pedersen, J. S. Macromolecules 1993, 26, 805.
    [33] (a) Zhang, L.; Eisenberg, A. Science 1995, 268, 1728; (b) Burke, S. E.; Eisenberg, A.Langmuir 2001,17,6105.
    [34] Spatz, J. P.; M(?)βmer,S.;Moller, M. Angew. Chem. Int. Ed.1996, 55,1510.
    [35] Iyama,K.;Nose, T. Polymer 1998, 39,651.
    [36] Lodge, T. P.; Bang, J.; Li, Z.; Hillmyer, M. A.; Talmon, Y. Faraday Discuss. 2005,128,1.
    [37] LaRue, I.; Adam, M.; Pitsikalis, M.; Hadjichristidis, N.; Rubinstein, M.; Sheiko, S.Macromolecules 2006, 39, 309.
    [38] Gebhardt, K. E.; Ahn, S.; Venkatachalam,G; Savin, D.A.Langmuir 2007, 23, 2851.
    [39] Linse, P. J. Phys.Chem.1993, 97,13896.
    [40] Zhulina,E.B.;Adam, M.; LaRue,I.; Sheiko, S. S.; Rubinstein, M. Macromolecules 2005,38,5330.
    [41] Massey, J.; Kulbaba, K.; Winnik, M.A.;Manners, I. J. Polym. Sci. Part B: Polym. Phys.2000, 38, 3032.
    [42] (a) Holtzer, A. J. Polym. Sci. 1955,17, 432; (b) Casassa, E. F. J. Am. Chem. Soc. 1956, 78,3980.
    [43] Zimm, B. J. Chem. Phys. 1948,16, 1099.
    [44] Kulbaba, K.;MacLachlan,M. J.; Evans, C. E. B.; Manners,1.Macromol. Chem. Phys. 2001,202, 1768.
    [45] Chu, B.Laser Light Scattering, 2nd ed.; Academic Press: New York,1991.
    [46] Berne, B.; Pecora,R.Dynamic Light Scattering; Plenum Press: New York,1976.
    [47] Burchard, W. in Light Scattering Principles and Development; Clarendon Press; Brown, W.;Oxford 1996, p439.
    [48] Schmidt, M.; Paradossi, G; Burchard, W.Makromol. Chem. Rapid Commun.1985, 6, 767.
    [49] Denkinger, P.; Burchard, W.; Kunz, M. J. Phys. Chem. 1989, 93, 1428.
    [50] Guerin, G; Raez, J.; Manners, I.; Winnik, M. A. Macromolecules 2005, 38, 7819.
    [51] Denkinger, P.; Burchard, W. J. Polym. Sci. Part B: Polym. Phys. 1991, 29, 589.
    [52] Rasburn, J.; Petersen, R.; Jahr, T.; Rulkens, R.; Manners,L;Vancso, G. J. Chem. Mater. 1995,7,871.
    [53] (a) Chen, Z.; Foster, M. D.; Zhou, W.; Fong, H.; Reneker, D. H.; Resendes, R.; Manners, I.Macromolecules 2001, 34, 6156; (b) Papkov,V. S.; Gerasimov,M. V.; Dubovik,1.I.;Sharma,S.; Dementiev, V. V.; Pannell, K. H. Macromolecules 2000, 33, 7107.
    [54] Rulkens, R.; Lough, A. J.; Manners, I.; Lovelace, S. R.; Grant, C;Geiger, W. E. J. Am. Chem.Soc. 1996,118,12683.
    [55] Savin, G; Burchard, W. Macromolecules 2004, 37, 3005.
    [56] Herzog, B.; Huber, K.; Stegemeyer, H. Langmuir 2003,19,5223.
    [57] Lou, Y-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    [58] Wang, H.; Lin, W.; Fritz, K. P.; Scholes, G D.; Winnik, M. A.; Manners, I. J. Am. Chem. Soc.2007,129,12924.
    [59] Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Science 2007, 317, 644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700