PCV2感染、氧化应激与硒的相互作用关系及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪圆环病毒2型(PCV2)是一种新近发现的猪传染性疾病的病原,它与多种猪病的发生密切相关,如猪皮炎肾病综合征、繁殖障碍、猪呼吸道综合征、肉芽肿性肠炎、坏死性淋巴腺炎、渗出性皮炎和仔猪先天性震颤等,其中影响最为严重的是断奶仔猪多系统衰竭综合征PMWS,该病已在全世界范围内广泛存在,给全球养猪业造成了巨大的经济损失,但目前其致病机制还不是很清楚。已有研究表明,该病的发生还与氧化应激有关。硒是动物和人所必需的微量元素之一,具有增强机体抗氧化能力、提高机体免疫力、抵抗病毒感染等多种重要的生物学功能。当前研究显示,硒主要以硒半胱胺酸的形式掺入硒蛋白中,通过后者发挥其生物学功能,但对于很多硒蛋白具体的生物学功能与作用还有待于进一步地去研究、认识。富硒酵母主要含硒蛋氨酸,与无机硒(如亚硒酸钠)相比,它具有毒性小、生物利用率高的特点。本论文主要对PCV2的感染和复制与宿主细胞氧化还原状态之间的相互作用关系及其机理、硒影响PCV2感染与复制的机理、硒对PCV2感染阳性猪场断奶仔猪生长、抗氧化能力、PCV2感染水平以及免疫机能的影响进行了研究和探讨,以期从宿主氧化应激的角度阐述PCV2的致病机制,为硒特别是有机硒在养猪生产上的广泛应用提供理论依据。
     试验一:PCV2的感染和复制与宿主细胞氧化还原状态之间的相互作用研究
     本试验对PCV2的感染和复制与宿主细胞氧化还原状态之间的相互作用关系进行了研究。试验结果显示,PCV2感染后48小时细胞内还原型谷胱甘肽(GSH)和超氧化物歧化酶(SOD)活性均显著降低,而主要脂质过氧化代谢产物MDA的浓度在PCV2感染后48小时显著升高。GSH生成前体N-乙酰半胱氨酸NAC处理细胞能显著增加细胞内还原型谷胱甘肽(GSH)的浓度,进而抑制PCV2的复制。相反,利用H202的氧化性降低细胞内的还原型谷胱甘肽(GSH)浓度能促进PCV2的复制。本试验研究结果表明,PCV2感染改变了宿主细胞的氧化还原状态,导致氧化应激的产生,同时,宿主细胞氧化还原状态的改变也可影响PCV2的复制。
     试验二:活性氧(ROS)通过NF-κB信号途径调节猪圆环病毒2型(PCV2)的复制
     研究表明,细胞内的氧化还原状态对不同病毒在宿主细胞内的复制有不同的影响。本试验主要研究了活性氧(ROS)对猪圆环病毒2型(PCV2)在PK15细胞中复制的影响。试验结果显示,PCV2感染后PK15细胞中ROS水平升高,并随着时间的推移而变化,在感染后72小时达到最高,而后逐渐下降。抗氧化物N-乙酰半胱氨酸NAC能够降低PK15细胞内的ROS水平进而抑制PCV2的复制;相反地,还原型谷胱甘肽(GSH)合成酶抑制剂BSO则可提高PK15细胞内的ROS水平并促进PCV2的复制。通过抑制剂BAY11-7082抑制NF-κB信号途径的激活后发现,BSO诱导的ROS升高不再促进PCV2的复制。本试验研究结果表明,PCV2感染本身会诱导宿主细胞产生ROS; ROS可通过NF-κB信号途径调节PCV2的复制。
     试验三:硒通过提高GPX1的表达阻断氧化应激对PCV2复制的促进作用
     本试验主要对PCV2复制、氧化应激以及硒之间的相互作用关系进行了研究。通过测定PCV2的DNA拷贝数和PCV2阳性感染的细胞数发现,过氧化氢诱导的氧化应激能够促进PCV2的复制;高剂量的硒蛋氨酸(6gM)能够抑制PCV2的复制;而生理剂量的硒蛋氨酸(2或4μM)则能够阻断氧化应激对PCV2复制的促进作用;PCV2感染PK15细胞后GPX1活性下降,但GPX1mRNA水平却在PCV2感染后显著升高,该结果预示在PCV2感染过程中GPX1可能对宿主细胞起到重要的保护作用。对GPX1进行RNA干扰后发现,硒蛋氨酸对氧化应激促进PCV2复制的阻断作用下降了,其表现与GPX1被干扰后硒蛋氨酸对GPX1表达的影响相一致,从而说明在硒阻断氧化应激促进PCV2复制的过程中,GPX1起着至关重要的作用。本试验研究结果提示,PCV2感染后所导致的不同猪场发病率和死亡率的差异可能与氧化应激有关,而硒则具有预防控制PCV2感染的潜力。
     试验四:硒对PCV2感染阳性猪场断奶仔猪生长性能、抗氧化性能及PCV2感染的影响
     从江苏某PCV2感染阳性猪场选择断奶仔猪60头,随机分成5组,每组3个重复,每个重复4头,对照组饲喂基础日粮,试验组分别饲喂基础日粮+亚硒酸钠或富硒酵母,其中每种硒的添加浓度均为0.3和0.6mg/kg。试验结果表明,饲粮中添加不同形式不同水平的硒均可显著改善饲料的报酬率,提高断奶仔猪的日增重,降低料肉比;加硒提高了断奶仔猪血清中的GPX和SOD活性,降低了血清中的MDA含量,提高其抗氧化性能;加硒增加了血液中GPx1、GPx4、TR1等硒蛋白的mRNA水平。此外,添加不同浓度的亚硒酸钠或富硒酵母均能够显著降低PCV2感染阳性猪场断奶仔猪血液中的PCV2DNA拷贝数。从改善机体抗氧化性能、提高硒蛋白mRNA水平以及抑制PCV2感染的效果来看,富硒酵母优于亚硒酸钠。
     试验五:硒对PCV2感染阳性猪场断奶仔猪免疫机能的影响
     从江苏某PCV2感染阳性猪场选择断奶仔猪60头,随机分成5组,每组3个重复,每个重复4头,对照组饲喂基础日粮,试验组分别饲喂基础日粮+亚硒酸钠或富硒酵母,其中每种硒的添加浓度均为0.3和O.6mg/kg.试验结果表明,饲料中添加不同浓度的亚硒酸钠或富硒酵母均能够显著提高断奶仔猪血清细胞因子IL-2和TNF-α的含量(P<0.05);PCV2感染仔猪外周血液淋巴细胞转化试验结果表明,添加不同浓度的亚硒酸钠或富硒酵母可以提高其淋巴细胞的增殖水平;从提高断奶仔猪免疫机能的效果来看,富硒酵母优于亚硒酸钠。
Porcine circovirus diseases (PCVD) include porcine respiratory disease complex (PRDC), enteric disease, reproductive disease, and porcine dermatitis and nephropathy syndrome (PDNS). The most economically important PCVD is post-weaning multisystemic wasting syndrome (PMWS), characterized by wasting and growth retardation. PMWS primarily affects weanling piglets at the age of3to15weeks and has a high morbidity rate of up to60%. Several studies have linked PMWS expression to management measures, presence of concurrent viral infections, stimulation of the immune system, nutrition and oxidative stress, but the pathogenic mechanism of PCV2remains poorly understood. Selenium is an essential micronutrient for human and animals and its important biological functions have been attributed largely to its presence in selenoproteins as the21st amino acid, selenocysteine. The physiological roles of selenoproteins are closely related to selenium status. Low selenium status has been reported both to influence progression of some viral diseases while selenium supplementation has been found to affect the progression of some viral infections. However, further work is needed to provide insight into the role of selenium and specific selenoproteins in relation to viral diseases. In addition, precious studies have suggested that organic forms of Se (e.g., Se-enriched yeast, which mainly contains selenomethionine) are less toxic than inorganic forms of Se such as sodium selenite, and the bioavailability of organic Se is relatively high. The present study was conducted to investigate the interaction among PCV2infection, oxidative stress and selenium and their mechanism.
     Experiment1:Interaction of porcine circovirus type2replication with intracellular redox status in vitro
     Redox status influences replication of some viruses but its effect on porcine circovirus type2(PCV2), the primary causative agent of the emerging swine disease postweaning multisystemic wasting syndrome is not known. In this study we examined the interaction of PCV2replication with intracellular redox status in PK15cells. Both intracellular glutathione (GSH) and total superoxide dismutase activity (SOD) decreased significantly48h post-infection and subsequently returned to normal levels after72h, while malondialdehyde (MDA) concentration increased significantly at72h post-infection. Furthermore, PCV2replication in PK15cells was significantly impaired after the elevation of intracellular GSH through treatment with the antioxidant N-acetyl-1-cysteine (NAC), a precursor in glutathione synthesis. In contrast, PCV2replication in PK15cells was enhanced after reduction of GSH levels through H2O2-mediated oxidation. We conclude that PCV2infection induces oxidative stress and that intracellular redox status influences PCV2replication in PK15cells. This is the first demonstration of the interaction of PCV2replication with intracellular redox status.
     Experiment2:Reactive oxygen species regulate the replication of porcine circovirus type2via NF-κB pathway
     Intracellular redox state has been suggested to have various effects on the replication of different viruses within host cells. The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on replication of porcine circovirus type2(PCV2), in PK15cells. Following PCV2infection there was a time-dependent increase in ROS. Antioxidant N-acetyl-1-cysteine treatment of cells resulted lower ROS levels and lower PCV2replication. In contrast, treatment by buthionine sulfoximine (BSO), a GSH synthesis inhibitor, resulted in elevation of ROS levels and increased PCV2replication. Furthermore, inhibiting the activity of NF-κB, a redox-responsive transcription factor, suppressed BSO-mediated increase of PCV2replication, indicating that increased PCV2replication likely occurs via ROS activation of NF-κB. Taken together, our results indicate that the generation of ROS during PCV2infection is involved in its replication and this progression is associated with the alteration in NF-κB activity induced by ROS.
     Experiment3:Selenium blocks PCV2replication promotion induced by oxidative stress via improving GPxl expression
     Porcine circovirus type2(PCV2) is recognized as a key infectious agent in post-weaning multisystemic wasting syndrome (PMWS), but not all pigs infected with PCV2will develop PMWS. The aim of this work was to explore the relationships between PCV2infection, oxidative stress and selenium in a PK-15cell culture model of PCV2infection. The results showed that oxidative stress induced by H2O2treatment increased PCV2replication as measured by PCV2DNA copies and the number of infected cells. Furthermore, PCV2replication was inhibited by selenomethionine (SeMet) at a high concentration (6μM) and the increase in PCV2replication by oxidative stress was blocked by SeMet at physiological concentrations (2or4μM). PCV2infection caused a decrease of glutathione peroxidase1(GPxl) activity but an increase of GPxl mRNA levels, suggesting that GPx1may represent an important defense mechanism during PCV2infection. SeMet did not significantly block the promotion of PCV2replication in GPxl-knockdown cells. This observation correlates with the observed influence of SeMet on GPxl mRNA and activity in GPxl-knockdown cells, indicating that GPxl plays a key role in blocking the promotion of PCV2replication. We conclude that differences in morbidity and severity of PMWS caused on different pig farms may be related to variations in oxidative stress and that selenium has a potential role in control of PCV2infection.
     Experiment4:Effects of selenium on growth performance, anti-oxidation, selenoprotein expression and PCV2infection of weaned piglets in a PCV2-infected pig farm.
     This trial was conducted to study the effect of selenium on growth performance, anti-oxidation, selenoprotein expression and PCV2infection of weaned piglets in a PCV2-infected pig farm.60Duroc X (Landrace X Largewhite) weaned piglets were allotted to five treatments with three replications per treatment and4weaned piglets per replication. The control group was given a basal diet and other four groups were given a basal diet supplemented with0.3or0.6mg/kg selenium (sodium selenite or selenium-riched yeast). The results showed that supplementation of sodium selenite or selenium-enriched yeast at various concentrations significantly improved the ADG and ADFI of weaned piglets, increased SOD and GSH-PX activity while significantly (P<0.05) reduced MDA content of serum. In addition, selenium supplmentaion increased the mRNA levels of GPx1, GPx4and TR1, and decreased the PCV2DNA copies in weaned piglets. Compared to sodium selenite, selenium-enriched yeast showed better effects on growth performance, anti-oxidation, selenoprotein expression and PCV2infection of weaned piglets.
     Experiment5:Effects of selenium on the immunity of weaned piglets in a PCV2-infected pig farm
     This trial was conducted to study the effect of selenium on the immunity of weaned piglets in a PCV2-infected pig farm.60Duroc X (Landrace X Largewhite) weaned piglets were allotted to five treatments with three replications per treatment and4weaned piglets per replication. The control group was given a basal diet and other four groups were given a basal diet supplemented with0.3or0.6mg/kg selenium (sodium selenite or selenium-riched yeast). The results showed that sodium selenite or selenium-enriched yeast supplemented at various concentrations improved the immunity of weaned piglets, with a significantly increase in IL-2and TNF-a levels (P<0.05). In addition, sodium selenite or selenium-riched yeast supplemented at various concentrations significantly promoted the proliferation of peripheral blood lymphocyte (P<0.05). Compared to sodium selenite, selenium-enriched yeast showed better effects on the immunity of PCV2-infected piglets.
引文
[1]Tischer I, Rasch R, Tochtermann G Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A[J].1974;226:153-67.
    [2]Tischer I, Mields W, Wolff D, Vagt M, Griem W. Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol[J].1986;91:271-6.
    [3]Dulac GC, Afshar A. Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs. Can J Vet Res[J].1989;53:431-3.
    [4]Edwards S, Sands JJ. Evidence of circovirus infection in British pigs. Vet Rec[J].1994;134:680-1.
    [5]Hines RK, Lukert D. Porcine circovirus:a serological survey of swine in the United States. J Swine Health Prod[J].1995;3:71-3.
    [6]Allan GM, McNeilly F, Kennedy S, et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest[J].1998;10:3-10.
    [7]Harding JCS, Clark EG, Strokappe JH, Willson PI, Ellis JA. Postweaning multisystemic wasting syndrome:epidemiology and clinical presentation. J Swine Health Prod[J].1998;6:249-54.
    [8]LeCann P, Albina E, Madec F, Cariolet R, Jestin A. Piglet wasting disease. Vet Rec[J].1997; 141:660.
    [9]Segales J, Sitjar M, Domingo M, et al. First report of post-weaning multisystemic wasting syndrome in pigs in Spain. Vet Rec[J].1997; 141:600-1.
    [10]Ellis J, Hassard L, Clark E, et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J[J].1998;39:44-51.
    [11]Rosell C, Segales J, Ramos-Vara JA, et al. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec[J].2000; 146:40-3.
    [12]Kim J, Ha Y, Jung K, Choi C, Chae C. Enteritis associated with porcine circovirus 2 in pigs. Can J Vet Res[J].2004;68:218-21.
    [13]Jensen TK, Vigre H, Svensmark B, Bille-Hansen V. Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol[J].2006;135:176-82.
    [14]West KH, Bystrom JM, Wojnarowicz C, et al. Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. J Vet Diagn Invest[J].1999; 11:530-2.
    [15]Drolet R, Larochelle R, Morin M, Delisle B, Magar R. Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia. Vet Pathol[J].2003;40:143-8.
    [16]Grau-Roma L, Segales J. Detection of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, swine influenza virus and Aujeszky's disease virus in cases of porcine proliferative and necrotizing pneumonia (PNP) in Spain. Vet Microbiol[J].2007; 119:144-51.
    [17]Segales J, Allan GM, Domingo M. Porcine circovirus diseases. Anim Health Res Rev[J]. 2005;6:119-42.
    [18]Opriessnig T, Meng XJ, Halbur PG. Porcine circovirus type 2 associated disease:update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest[J].2007;19:591-615.
    [19]Segales J, Olvera A, Grau-Roma L, et al. PCV-2 genotype definition and nomenclature. Vet Rec[J]. 2008; 162:867-8.
    [20]Dupont K, Nielsen EO, Baekbo P, Larsen LE. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet Microbiol[J].2008; 128:56-64.
    [21]Todd D, Biagini, P., Bendinelli, M., Hino, S., Mankertz, A.,. Circoviridae. In:Fauquet CM MM, Maniloff J, Desselberger U, Ball LA., editor. Virus Taxonomy, Ⅷth Report of the International Committee for the Taxonomy of Viruses. London2005. p.327-34.
    [22]Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature[J].1982;295:64-6.
    [23]Royer RL, Nawagitgul P, Halbur PG, Paul PS. Susceptibility of porcine circovirus type 2 to commercial and laboratory disinfectants. Journal of Swine Health and Production[J].2001;281.
    [24]Martin H, Le Potier MF, Maris P. Virucidal efficacy of nine commercial disinfectants against porcine circovirus type 2. Vet J[J].2008;177:388-93.
    [25]O'Dea MA, Hughes AP, Davies LJ, Muhling J, Buddle R, Wilcox GE. Thermal stability of porcine circovirus type 2 in cell culture. J Virol Methods[J].2008;147:61-6.
    [26]Welch J, Bienek C, Gomperts E, Simmonds P. Resistance of porcine circovirus and chicken anemia virus to virus inactivation procedures used for blood products. Transfusion[J].2006;46:1951-8.
    [27]Tischer I, Bode L, Apodaca J, et al. Presence of antibodies reacting with porcine circovirus in sera of humans, mice, and cattle. Arch Virol[J].1995;140:1427-39.
    [28]Nayar GP, Hamel AL, Lin L, Sachvie C, Grudeski E, Spearman G. Evidence for circovirus in cattle with respiratory disease and from aborted bovine fetuses. Can Vet J[J].1999;40:277-8.
    [29]Allan GM, McNeilly F, McNair I, et al. Absence of evidence for porcine circovirus type 2 in cattle and humans, and lack of seroconversion or lesions in experimentally infected sheep. Arch Virol[J]. 2000;145:853-7.
    [30]Ellis JA, Wiseman BM, Allan G, et al. Analysis of seroconversion to porcine circovirus 2 among veterinarians from the United States and Canada. J Am Vet Med Assoc[J].2000;217:1645-6.
    [31]Ellis JA, Konoby C, West KH, et al. Lack of antibodies to porcine circovirus type 2 virus in beef and dairy cattle and horses in western Canada. Can Vet J[J].2001;42:461-4.
    [32]Quintana J, Balasch M, Segales J, et al. Experimental inoculation of porcine circoviruses type 1 (PCV1) and type 2 (PCV2) in rabbits and mice. Vet Res[J].2002;33:229-37.
    [33]Kiupel M, Stevenson GW, Choi J, Latimer KS, Kanitz CL, Mittal SK. Viral replication and lesions in BALB/c mice experimentally inoculated with porcine circovirus isolated from a pig with postweaning multisystemic wasting disease. Vet Pathol[J].2001;38:74-82.
    [34]Opriessnig T, Patterson AR, Jones DE, Juhan NM, Meng XJ, Halbur PG. Limited susceptibility of three different mouse (Mus musculus) lines to Porcine circovirus-2 infection and associated lesions. Can J Vet Res[J].2009;73:81-6.
    [35]Ellis J, Spinato M, Yong C, et al. Porcine circovirus 2-associated disease in Eurasian wild boar. J Vet Diagn Invest[J].2003;15:364-8.
    [36]Schulze C, Segales J, Neumann G, Hlinak A, Calsamiglia M, Domingo M. Identification of postweaning multisystemic wasting syndrome in European wild boar (Sus scrofa). Vet Rec[J]. 2004;154:694-6.
    [37]Lipej Z, Segales J, Jemersic L, et al. First description of postweaning multisystemic wasting syndrome (PMWS) in wild boar (Sus scrofa) in Croatia and phylogenetic analysis of partial PCV2 sequences. Acta Vet Hung[J].2007;55:389-404.
    [38]Vicente J, Segales J, Hofle U, et al. Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet Res[J].2004;35:243-53.
    [39]Jacobsen B, Krueger L, Seeliger F, Bruegmann M, Segales J, Baumgaertner W. Retrospective study on the occurrence of porcine circovirus 2 infection and associated entities in Northern Germany. Vet Microbiol[J].2009;138:27-33.
    [40]Allan GM, Ellis JA. Porcine circoviruses:a review. J Vet Diagn Invest[J].2000; 12:3-14.
    [41]Finlaison D, Kirkland P, Luong R, Ross A. Survey of porcine circovirus 2 and postweaning multisystemic wasting syndrome in New South Wales piggeries. Aust Vet J[J].2007;85:304-10.
    [42]Albina E, Truong C, Hutet E, et al. An experimental model for post-weaning multisystemic wasting syndrome (PMWS) in growing piglets. J Comp Pathol[J].2001;125:292-303.
    [43]Bolin SR, Stoffregen WC, Nayar GP, Hamel AL. Postweaning multisystemic wasting syndrome induced after experimental inoculation of cesarean-derived, colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Invest[J].2001; 13:185-94.
    [44]Andraud M, Grasland B, Durand B, et al. Quantification of porcine circovirus type 2 (PCV-2) within- and between-pen transmission in pigs. Vet Res[J].2008;39:43.
    [45]Krakowka S, Ellis JA, Meehan B, Kennedy S, McNeilly F, Allan G Viral wasting syndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol[J]. 2000;37:254-63.
    [46]Larochelle R, Bielanski A, Muller P, Magar R. PCR detection and evidence of shedding of porcine circovirus type 2 in boar semen. J Clin Microbiol[J].2000;38:4629-32.
    [47]Shibata I, Okuda Y, Yazawa S, et al. PCR detection of Porcine circovirus type 2 DNA in whole blood, serum, oropharyngeal swab, nasal swab, and feces from experimentally infected pigs and field cases. J Vet Med Sci[J].2003;65:405-8.
    [48]Shibata I, Okuda Y, Kitajima K, Asai T. Shedding of porcine circovirus into colostrum of sows. J Vet Med B Infect Dis Vet Public Health[J].2006;53:278-80.
    [49]Segales J, Calsamiglia M, Olvera A, Sibila M, Badiella L, Domingo M. Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet Microbiol[J].2005; 111:223-9.
    [50]Ha Y, Ahn KK, Kim B, et al. Evidence of shedding of porcine circovirus type 2 in milk from experimentally infected sows. Res Vet Sci[J].2009;86:108-10.
    [51]Park JS, Ha Y, Kwon B, Cho KD, Lee BH, Chae C. Detection of porcine circovirus 2 in mammary and other tissues from experimentally infected sows. J Comp Pathol[J].2009; 140:208-11.
    [52]Opriessnig T, Patterson AR, Meng XJ, Halbur PG. Porcine circovirus type 2 in muscle and bone marrow is infectious and transmissible to naive pigs by oral consumption. Vet Microbiol[J]. 2009;133:54-64.
    [53]Dupont K, Hjulsager CK, Kristensen CS, Baekbo P, Larsen LE. Transmission of different variants of PCV2 and viral dynamics in a research facility with pigs mingled from PMWS-affected herds and non-affected herds. Vet Microbiol[J].2009;139:219-26.
    [54]Kristensen CS, Baekbo P, Bille-Hansen V, et al. Induction of porcine post-weaning multisystemic wasting syndrome (PMWS) in pigs from PMWS unaffected herds following mingling with pigs from PMWS-affected herds. Vet Microbiol[J].2009;138:244-50.
    [55]Park JS, Kim J, Ha Y, et al. Birth abnormalities in pregnant sows infected intranasally with porcine circovirus 2. J Comp Pathol[J].2005;132:139-44.
    [56]Ha Y, Lee YH, Ahn KK, Kim B, Chae C. Reproduction of postweaning multisystemic wasting syndrome in pigs by prenatal porcine circovirus 2 infection and postnatal porcine parvovirus infection or immunostimulation. Vet Pathol[J].2008;45:842-8.
    [57]Brunborg IM, Jonassen CM, Moldal T, et al. Association of myocarditis with high viral load of porcine circovirus type 2 in several tissues in cases of fetal death and high mortality in piglets. A case study. J Vet Diagn Invest[J].2007; 19:368-75.
    [58]Schmoll F, Lang C, Steinrigl AS, Schulze K, Kauffold J. Prevalence of PCV2 in Austrian and German boars and semen used for artificial insemination. Theriogenology[J].2008;69:814-21.
    [59]Madson DM, Ramamoorthy S, Kuster C, et al. Infectivity of porcine circovirus type 2 DNA in semen from experimentally-infected boars. Vet Res[J].2009;40:10.
    [60]Madson DM, Patterson AR, Ramamoorthy S, Pal N, Meng XJ, Opriessnig T. Reproductive failure experimentally induced in sows via artificial insemination with semen spiked with porcine circovirus type 2. Vet Pathol[J].2009;46:707-16.
    [61]Ladekjaer-Mikkelsen AS, Nielsen J, Storgaard T, Botner A, Allan G, McNeilly F. Transplacental infection with PCV-2 associated with reproductive failure in a gilt. Vet Rec[J].2001;148:759-60.
    [62]Maldonado J, Segales J, Martinez-Puig D, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet J[J].2005; 169:454-6.
    [63]Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Vet Rec[J].2004;155:489-92.
    [64]Harding JC. The clinical expression and emergence of porcine circovirus 2. Vet Microbiol[J]. 2004;98:131-5.
    [65]Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q[J].2002;24:109-24.
    [66]Olvera A, Sibila M, Calsamiglia M, Segales J, Domingo M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods[J]. 2004; 117:75-80.
    [67]Larochelle R, Magar R, D'Allaire S. Comparative serologic and virologic study of commercial swine herds with and without postweaning multisystemic wasting syndrome. Can J Vet Res[J]. 2003;67:114-20.
    [68]Sibila M, Calsamiglia M, Segales J, et al. Use of a polymerase chain reaction assay and an ELISA to monitor porcine circovirus type 2 infection in pigs from farms with and without postweaning multisystemic wasting syndrome. Am J Vet Res[J].2004;65:88-92.
    [69]Grau-Roma L, Hjulsager CK, Sibila M, et al. Infection, excretion and seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from post-weaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark. Vet Microbiol[J].2009; 135:272-82.
    [70]Rodriguez-Arrioja GM, Segales J, Calsamiglia M, et al. Dynamics of porcine circovirus type 2 infection in a herd of pigs with postweaning multisystemic wasting syndrome. Am J Vet Res[J]. 2002;63:354-7.
    [71]Opriessnig T, Fenaux M, Thomas P, et al. Evidence of breed-dependent differences in susceptibility to porcine circovirus type-2-associated disease and lesions. Vet Pathol[J].2006;43:281-93.
    [72]Larochelle R, Magar R, D'Allaire S. Genetic characterization and phylogenetic analysis of porcine circovirus type 2 (PCV2) strains from cases presenting various clinical conditions. Virus Res[J]. 2002;90:101-12.
    [73]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J[J].2011; 187:23-32.
    [74]McKeown NE, Opriessnig T, Thomas P, et al. Effects of porcine circovirus type 2 (PCV2) maternal antibodies on experimental infection of piglets with PCV2. Clin Diagn Lab Immunol[J]. 2005;12:1347-51.
    [75]Tomas A, Fernandes LT, Valero O, Segales J. A meta-analysis on experimental infections with porcine circovirus type 2 (PCV2). Vet Microbiol[J].2008; 132:260-73.
    [76]Calsamiglia M, Fraile L, Espinal A, et al. Sow porcine circovirus type 2 (PCV2) status effect on litter mortality in postweaning multisystemic wasting syndrome (PMWS). Res Vet Sci[J]. 2007;82:299-304.
    [77]Rose N, Larour G, Le Diguerher G, et al. Risk factors for porcine post-weaning multisystemic wasting syndrome (PMWS) in 149 French farrow-to-finish herds. Prev Vet Med[J]. 2003;61:209-25.
    [78]Rose N, Eveno E, Grasland B, et al. Individual risk factors for Post-weaning Multisystemic Wasting Syndrome (PMWS) in pigs:a hierarchical Bayesian survival analysis. Prev Vet Med[J]. 2009;90:168-79.
    [79]Lopez-Soria S, Segales J, Rose N, et al. An exploratory study on risk factors for postweaning multisystemic wasting syndrome (PMWS) in Spain. Prev Vet Med[J].2005;69:97-107.
    [80]Pogranichniy RM, Yoon KJ, Harms PA, Sorden SD, Daniels M. Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome. J Vet Diagn Invest[J].2002;14:449-56.
    [81]de Boisseson C, Beven V, Bigarre L, et al. Molecular characterization of Porcine circovirus type 2 isolates from post-weaning multisystemic wasting syndrome-affected and non-affected pigs. J Gen Virol[J].2004;85:293-304.
    [82]Wen L, Guo X, Yang H. Genotyping of porcine circovirus type 2 from a variety of clinical conditions in China. Vet Microbiol[J].2005;110:141-6.
    [83]Carman S, McEwen B, DeLay J, et al. Porcine circovirus-2 associated disease in swine in Ontario (2004 to 2005). Can Vet J[J].2006;47:761-2.
    [84]Carman S, Cai HY, DeLay J, et al. The emergence of a new strain of porcine circovirus-2 in Ontario and Quebec swine and its association with severe porcine circovirus associated disease--2004-2006. Can J Vet Res[J].2008;72:259-68.
    [85]Timmusk S, Wallgren P, Brunborg IM, et al. Phylogenetic analysis of porcine circovirus type 2 (PCV2) pre- and post-epizootic postweaning multisystemic wasting syndrome (PMWS). Virus Genes[J].2008;36:509-20.
    [86]Grau-Roma L, Crisci E, Sibila M, et al. A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence. Vet Microbiol[J].2008; 128:23-35.
    [87]Allan GM, McNeilly F, McMenamy M, et al. Temporal distribution of porcine circovirus 2 genogroups recovered from postweaning multisystemic wasting syndrome affected and nonaffected farms in Ireland and Northern Ireland. J Vet Diagn Invest[J].2007;19:668-73.
    [88]Chiarelli-Neto O, Yotoko KS, Vidigal PM, et al. Classification and putative origins of Brazilian porcine circovirus 2 inferred through phylogenetic and phylogeographical approaches. Virus Res[J]. 2009; 140:57-63.
    [89]Takahashi M, Seimiya YM, Seki Y, Yamada M. A piglet with concurrent polioencephalomyelitis due to porcine teschovirus and postweaning multisystemic wasting syndrome. J Vet Med Sci[J]. 2008;70:497-500.
    [90]Cortey M, Pileri E, Sibila M, et al. Genotypic shift of porcine circovirus type 2 from PCV-2a to PCV-2b in Spain from 1985 to 2008. Vet J[J].2011; 187:363-8.
    [91]Cheung AK, Lager KM, Kohutyuk OI, et al. Detection of two porcine circovirus type 2 genotypic groups in United States swine herds. Arch Virol[J].2007;152:1035-44.
    [92]Horlen KP, Dritz SS, Nietfeld JC, et al. A field evaluation of mortality rate and growth performance in pigs vaccinated against porcine circovirus type 2. J Am Vet Med Assoc[J].2008;232:906-12.
    [93]Wiederkehr DD, Sydler T, Buergi E, et al. A new emerging genotype subgroup within PCV-2b dominates the PMWS epizooty in Switzerland. Vet Microbiol[J].2009; 136:27-35.
    [94]Hesse R, Kerrigan M, Rowland RR. Evidence for recombination between PCV2a and PCV2b in the field. Virus Res[J].2008;132:201-7.
    [95]Cheung AK. Homologous recombination within the capsid gene of porcine circovirus type 2 subgroup viruses via natural co-infection. Arch Virol[J].2009; 154:531-4.
    [96]Lefebvre DJ, Van Doorsselaere J, Delputte PL, Nauwynck HJ. Recombination of two porcine circovirus type 2 strains. Arch Virol[J].2009;154:875-9.
    [97]Rose N, Abherve-Gueguen A, Le Diguerher G, et al. Effect of the Pietrain breed used as terminal boar on post-weaning multisystemic wasting syndrome (PMWS) in the offspring in four PMWS-affected farms. Livestock Production Science[J].2005; 177:186.
    [98]Opriessnig T, Patterson AR, Madson DM, et al. Difference in severity of porcine circovirus type two-induced pathological lesions between Landrace and Pietrain pigs. J Anim Sci[J]. 2009;87:1582-90.
    [99]Allan GM, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol[J]. 1999;121:1-11.
    [100]Allan GM, McNeilly F, Ellis J, et al. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol [J].2000;145:2421-9.
    [101]Harms PA, Sorden SD, Halbur PG, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol[J].2001;38:528-39.
    [102]Opriessnig T, Thacker EL, Yu S, Fenaux M, Meng XJ, Halbur PG. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol[J].2004;41:624-40.
    [103]Dorr PM, Baker RB, Almond GW, Wayne SR, Gebreyes WA. Epidemiologic assessment of porcine circovirus type 2 coinfection with other pathogens in swine. J Am Vet Med Assoc[J]. 2007;230:244-50.
    [104]Segales J, Collell M, Jensen HE, Blanco JL, Domingo M. Pulmonary aspergillosis in a postweaning multisystemic wasting syndrome (PMWS) affected pig. The Pig Journal[J].2003;52.
    [105]Zlotowski P, Rozza DB, Pescador CA, et al. Muco-cutaneous candidiasis in two pigs with postweaning multisystemic wasting syndrome. Vet J[J].2006;171:566-9.
    [106]Carrasco L, Segales J, Bautista MJ, et al. Intestinal chlamydial infection concurrent with postweaning multisystemic wasting syndrome in pigs. Vet Rec[J].2000;146:21-3.
    [107]Kyriakis SC, Saoulidis K, Lekkas S, Miliotis Ch C, Papoutsis PA, Kennedy S. The effects of immuno-modulation on the clinical and pathological expression of postweaning multisystemic wasting syndrome. J Comp Pathol[J].2002; 126:38-46.
    [108]Opriessnig T, Yu S, Gallup JM, et al. Effect of vaccination with selective bacterins on conventional pigs infected with type 2 porcine circovirus. Vet Pathol[J].2003;40:521-9.
    [109]Allan GM, Caprioli A, McNair I, et al. Porcine circovirus 2 replication in colostrum-deprived piglets following experimental infection and immune stimulation using a modified live vaccine against porcine respiratory and reproductive syndrome virus. Zoonoses Public Health[J]. 2007;54:214-22.
    [110]Ha Y, Lee EM, Lee YH, et al. Effects of a modified live CSFV vaccine on the development of PMWS in pigs infected experimentally with PCV-2. Vet Rec[J].2009; 164:48-51.
    [111]Resendes A, Segales J, Balasch M, et al. Lack of an effect of a commercial vaccine adjuvant on the development of postweaning multisystemic wasting syndrome (PMWS) in porcine circovirus type 2 (PCV2) experimentally infected conventional pigs. Vet Res[J].2004;35:83-90.
    [112]Krakowka S, Ellis J, McNeilly F, Waldner C, Rings DM, Allan G. Mycoplasma hyopneumoniae bacterins and porcine circovirus type 2 (PCV2) infection:induction of postweaning multisystemic wasting syndrome (PMWS) in the gnotobiotic swine model of PCV2-associated disease. Can Vet J[J].2007;48:716-24.
    [113]Kixmoller M, Ritzmann M, Eddicks M, Saalmuller A, Elbers K, Fachinger V. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine[J]. 2008;26:3443-51.
    [114]Wallgren P, Hasslung F, Bergstrom G, et al. Postweaning multisystemic wasting syndrome-PMWS. the first year with the disease in Sweden. Vet Q[J].2004;26:170-87.
    [115]Vigre H, Baekbo P, Jorsal SE, et al. Spatial and temporal patterns of pig herds diagnosed with Postweaning Multisystemic Wasting Syndrome (PMWS) during the first two years of its occurrence in Denmark. Vet Microbiol[J].2005;110:17-26.
    [116]Woodbine KA, Medley GF, Slevin J, et al. Spatiotemporal patterns and risks of herd breakdowns in pigs with postweaning multisystemic wasting syndrome. Vet Rec[J].2007; 160:751-62.
    [117]Lohse L, Botner A, Hansen AS, et al. Examination for a viral co-factor in postweaning multisystemic wasting syndrome (PMWS). Vet Microbiol[J].2008;129:97-107.
    [118]Genzow M, Schwartz K, Gonzalez G, Anderson G, Chittick W. The effect of vaccination against Porcine reproductive and respiratory syndrome virus (PRRSV) on the Porcine circovirus-2 (PCV-2) load in porcine circovirus associated disease (PCVAD) affected pigs. Can J Vet Res[J]. 2009;73:87-90.
    [119]Haruna J, Hanna P, Hurnik D, Ikede B, Miller L, Yason C. The role of immunostimulation in the development of postweaning multisystemic wasting syndrome in pigs under field conditions. Can J Vet Res[J].2006;70:269-76.
    [120]Pan Q, Huang K, He K, Lu F. Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro. J Trace Elem Med Biol[J].2008;22:143-8.
    [1]Spallholz JE, Hoffman DJ. Selenium toxicity:cause and effects in aquatic birds. Aquat Toxicol[J].2002;57:27-37.
    [2]Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration.1951.Nutrition[J].1999;15:255.
    [3]Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science[J].1973;179:588-90.
    [4]Schrauzer GN, Surai PF. Selenium in human and animal nutrition:resolved and unresolved issues. A partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus Schwarz (1914-1978) on the occasion of the thirtieth anniversary of his death. Crit Rev Biotechnol[J]. 2009;29:2-9.
    [5]杨光圻,王光亚,殷泰安,et al.我国克山病的分布和硒营养状态的关系.营养学报[J].1982:191-200.
    [6]Snook JT, Kinsey D, Palmquist DL, DeLany JP, Vivian VM, Moxon AL. Selenium content of foods purchased or produced in Ohio. J Am Diet Assoc[J].1987;87:744-9.
    [7]Sanz Alaejos M, Diaz Romero C. Selenium in human lactation. Nutr Rev[J].1995;53:159-66.
    [8]Finley JW. Selenium accumulation in plant foods. Nutr Rev[J].2005;63:196-202.
    [9]侯少范,李德珠,王丽珍,王五一,谭见安.我国土壤中结合态硒的含量和分布规律.地理研究[J].1990:17-25.
    [10]易秀.生态环境中的硒及其地方病.西安工程学院学报[J].2000:69-72.
    [11]中国科学院地理研究所化学地理研究室环境与地方病组.我国克山病病带与非病带发硒分布的地理规律.地理学报[J].1982:136-43.
    [12]Kohrl J, Brigelius-Flohe R, Bock A, Gartner R, Meyer O, Flohe L. Selenium in biology:facts and medical perspectives. Biol Chem[J].2000;381:849-64.
    [13]鲍振国,张文举.微量元素硒的研究进展.饲料博览[J].2012:44-7.
    [14]Humaloja T, Mykkanen HM. Intestinal absorption of 75Se-labeled sodium selenite and selenomethionine in chicks:effects of time, segment, selenium concentration and method of measurement. J Nutr[J].1986;116:142-8.
    [15]Behne D, Kyriakopoulos A, Scheid S, Gessner H. Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats. J Nutr[J].1991; 121:806-14.
    [16]王迪,高玉红.微量元素硒的研究进展.饲料博览[J].2011:35-8.
    [17]Arduser F, Wolffram S, Scharrer E. Active absorption of selenate by rat ileum. J Nutr[J]. 1985;115:1203-8.
    [18]Vendeland SC, Deagen JT, Butler JA, Whanger PD. Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine. Biometals[J]. 1994;7:305-12.
    [19]Shrift A, Ulrich JM. Transport of selenate and selenite into astragalus roots. Plant Physiol[J]. 1969;44:893-6.
    [20]McConnell KP, Cho GJ. Active transport of L-selenomethionine in the intestine. Am J Physiol[J].1967;213:150-6.
    [21]赵晶,康世良,李艳华.硒在动物体内的药物代谢动力学.中国兽医杂志[J].2000:33-5.
    [22]Schrauzer GN. Selenomethionine:a review of its nutritional significance, metabolism and toxicity. J Nutr[J].2000; 130:1653-6.
    [23]Janghorbani M, Lynch NE, Mooers CS, Ting BT. Comparison of the magnitude of the selenite-exchangeable metabolic pool and whole body endogenous selenium in adult rats. J Nutr[J].1990;120:190-9.
    [24]Janghorbani M, Mooers CS, Ting BT, Smith M, Lynch NE. Effect of acute selenium restriction on whole body endogenous selenium and the selenite-exchangeable metabolic pool in the adult rat. J Nutr Biochem[J].1990;1:103-6.
    [25]Rios JJ, Blasco B, Rosales MA, et al. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J Sci Food Agric[J].2010;90:1914-9.
    [26]Kajander EO, Harvima RJ, Eloranta TO, et al. Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells. Biol Trace Elem Res[J].1991;28:57-68.
    [27]Sunde RA. Molecular biology of selenoproteins. Annu Rev Nutr[J].1990; 10:451-74.
    [28]Burk RF. Molecular biology of selenium with implications for its metabolism. FASEB J[J]. 1991;5:2274-9.
    [29]Bopp BA, Sonders RC, Kesterson JW. Metabolic fate of selected selenium compounds in laboratory animals and man. Drug Metab Rev[J].1982; 13:271-318.
    [30]Patterson BH, Levander OA, Helzlsouer K, et al. Human selenite metabolism:a kinetic model. Am J Physiol[J].1989;257:R556-67.
    [31]Swanson CA, Patterson BH, Levander OA, et al. Human [74Se]seleriomethionine metabolism: a kinetic model. Am J Clin Nutr[J].1991;54:917-26.
    [32]吴万征,吴忠.微量元素硒与人体健康.广东微量元素科学[J].2000:7-11.
    [33]王秀红.微量元素硒与人体健康.微量元素与健康研究[J].2006:66-7.
    [34]Sies H. Oxidative stress:from basic research to clinical application. Am J Med[J]. 1991;91:31S-8S.
    [35]Goldstein BJ, Mahadev K, Wu X, Zhu L, Motoshima H. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal[J].2005;7:1021-31.
    [36]Ip C, Birringer M, Block E, et al. Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem[J]. 2000;48:2062-70.
    [37]Berry MJ, Tujebajeva RM, Copeland PR, et al. Selenocysteine incorporation directed from the 3'UTR:characterization of eukaryotic EFsec and mechanistic implications. Biofactors[J]. 2001; 14:17-24.
    [38]Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science[J].2003;300:1439-43.
    [39]Bosl MR, Takaku K, Oshima M, Nishimura S, Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci U S A[J].1997;94:5531-4.
    [40]StadtmanTC. Selenocysteine. Annu Rev Biochem[J].1996;65:83-100.
    [41]Nauser T, Dockheer S, Kissner R, Koppenol WH. Catalysis of electron transfer by selenocysteine. Biochemistry [J].2006;45:6038-43.
    [42]Padmaja S, Squadrito GL, Lemercier JN, Cueto R, Pryor WA. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic Biol Med[J].1996;21:317-22.
    [43]Assmann A, Briviba K, Sies H. Reduction of methionine selenoxide to selenomethionine by glutathione. Arch Biochem Biophys[J].1998;349:201-3.
    [44]Le DT, Liang X, Fomenko DE, et al. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms. Biochemistry[J].2008;47:6685-94.
    [45]Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins:synthesis, identity, and their role in human health. Antioxid Redox Signal[J].2007;9:775-806.
    [46]Maiorino M, Aumann KD, Brigelius-Flohe R, et al. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe Seyler[J].1995;376:651-60.
    [47]Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med[J].1999;27:951-65.
    [48]Mirault ME, Tremblay A, Beaudoin N, Tremblay M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J Biol Chem[J].1991;266:20752-60.
    [49]Yagi K, Komura S, Kojima H, et al. Expression of human phospholipid hydroperoxide glutathione peroxidase gene for protection of host cells from lipid hydroperoxide-mediated injury. Biochem Biophys Res Commun[J].1996;219:486-91.
    [50]Imai H, Hirao F, Sakamoto T, et al. Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun[J].2003;305:278-86.
    [51]Seiler A, Schneider M, Forster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab[J].2008;8:237-48.
    [52]Cheng WH, Ho YS, Valentine BA, Ross DA, Combs GF, Jr., Lei XG Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J Nutr[J].1998;128:1070-6.
    [53]Ran Q, Liang H, Gu M, et al. Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem[J].2004;279:55137-46.
    [54]Fu Y, Sies H, Lei XG. Opposite roles of selenium-dependent glutathione peroxidase-1 in superoxide generator diquat- and peroxynitrite-induced apoptosis and signaling. J Biol Chem[J]. 2001;276:43004-9.
    [55]Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem[J].1997;272:27812-7.
    [56]Masumoto H, Kissner R, Koppenol WH, Sies H. Kinetic study of the reaction of ebselen with peroxynitrite. FEBS Lett[J].1996;398:179-82.
    [57]Briviba K, Roussyn I, Sharov VS, Sies H. Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem J[J].1996;319 (Pt 1):13-5.
    [58]Bjornstedt M, Hamberg M, Kumar S, Xue J, Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem[J].1995;270:11761-4.
    [59]Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A[J].1996;93:6146-51.
    [60]Conrad M, Jakupoglu C, Moreno SG, et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol[J]. 2004;24:9414-23.
    [61]Jakupoglu C, Przemeck GK, Schneider M, et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol[J].2005;25:1980-8.
    [62]Fritz-Wolf K, Urig S, Becker K. The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J Mol Biol[J].2007;370:116-27.
    [63]Zhong L, Arner ES, Holmgren A. Structure and mechanism of mammalian thioredoxin reductase:the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U S A[J].2000;97:5854-9.
    [64]Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem[J].1992;267:24161-4.
    [65]Rhee SG, Chae HZ, Kim K. Peroxiredoxins:a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med[J]. 2005;38:1543-52.
    [66]Moskovitz J, Singh VK, Requena J, Wilkinson BJ, Jayaswal RK, Stadtman ER. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun[J].2002;290:62-5.
    [67]Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem[J].2000;267:6102-9.
    [68]Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med[J].2000;28:625-35.
    [69]Ottaviano FG, Handy DE, Loscalzo J. Redox regulation in the extracellular environment. Circ J[J].2008;72:1-16.
    [70]Bjornstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem[J]. 1994;269:29382-4.
    [71]Burk RF, Early DS, Hill KE, Palmer IS, Boeglin ME. Plasma selenium in patients with cirrhosis. Hepatology[J].1998;27:794-8.
    [72]Speckmann B, Walter PL, Alili L, et al. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1 alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology[J].2008;48:1998-2006.
    [73]Motsenbocker MA, Tappel AL. A selenocysteine-containing selenium-transport protein in rat plasma. Biochim Biophys Acta[J].1982;719:147-53.
    [74]Burk RF, Hill KE, Awad JA, et al. Pathogenesis of diquat-induced liver necrosis in selenium-deficient rats:assessment of the roles of lipid peroxidation and selenoprotein P. Hepatology[J].1995;21:561-9.
    [75]Saito Y, Hayashi T, Tanaka A, et al. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J Biol Chem[J].1999;274:2866-71.
    [76]Takebe G, Yarimizu J, Saito Y, et al. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem[J]. 2002;277:41254-8.
    [77]Artcel GE, Mostert V, Oubrahim H, Briviba K, Abel J, Sies H. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol Chem[J]. 1998;379:1201-5.
    [78]Traulsen H, Steinbrenner H, Buchczyk DP, Klotz LO, Sies H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic Res[J].2004;38:123-8.
    [79]Saito Y, Sato N, Hirashima M, Takebe G, Nagasawa S, Takahashi K. Domain structure of bi-functional selenoprotein P. Biochem J[J].2004;381:841-6.
    [80]Bosschaerts T, Guilliams M, Noel W, et al. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. J Immunol[J].2008;180:6168-75.
    [81]Dreher I, Schmutzler C, Jakob F, Kohrle J. Expression of selenoproteins in various rat and human tissues and cell lines. J Trace Elem Med Biol[J].1997;11:83-91.
    [82]Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P. Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med[J]. 2006;40:1513-23.
    [83]Moskovitz J. Prolonged selenium-deficient diet in MsrA knockout mice causes enhanced oxidative modification to proteins and affects the levels of antioxidant enzymes in a tissue-specific manner. Free Radic Res[J].2007;41:162-71.
    [84]Kim KH, Gao Y, Walder K, Collier GR, Skelton J, Kissebah AH. SEPS1 protects RAW264.7 cells from pharmacological ER stress agent-induced apoptosis. Biochem Biophys Res Commun[J].2007;354:127-32.
    [85]Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature[J].2009;459:931-9.
    [86]Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science[J].2009;325:197-201.
    [87]Liu X, Sun L, Yu M, et al. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol[J].2009; 11:730-41.
    [88]Baruah P, Dumitriu IE, Malik TH; et al. Clq enhances IFN-gamma production by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells. Blood[J]. 2009;113:3485-93.
    [89]Nelson HK, Shi Q, Van Dael P, et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J[J].2001; 15:1846-8.
    [90]Zhang J, Li Q Liu X, Wang Z, Liu W, Ye X. Influenza A virus M1 blocks the classical complement pathway through interacting with ClqA. J Gen Virol[J].2009;90:2751-8.
    [91]Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science[J].2005;309:1206.
    [92]Hatta M, Gao P, Halfinann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science[J].2001;293:1840-2.
    [93]Wang G, Zhan D, Li L, et al. H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation. J Gen Virol[J].2008;89:697-702.
    [94]Shao S, Zheng B. The biogeochemistry of selenium in Sunan grassland, Gansu, Northwest China, casts doubt on the belief that Marco Polo reported selenosis for the first time in history. Environ Geochem Health[J].2008;30:307-14.
    [95]Yu Z, Song Y, Zhou H, et al. Avian influenza (H5N1) virus in waterfowl and chickens, central China. Emerg Infect Dis[J].2007; 13:772-5.
    [96]Smith GJ, Vijaykrishna D, Ellis TM, et al. Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong,2004-2008. Emerg Infect Dis[J].2009; 15:402-7.
    [97]Stone CA, Kawai K, Kupka R, Fawzi WW. Role of selenium in HIV infection. Nutr Rev[J]. 2010;68:671-81.
    [98]Kupka R, Msamanga GI, Spiegelman D, et al. Selenium status is associated with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J Nutr[J]. 2004;134:2556-60.
    [99]Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr[J]. 2003;133:1463S-7S.
    [100]Beck MA. Selenium and vitamin E status:impact on viral pathogenicity. J Nutr[J]. 2007; 137:1338-40.
    [101]Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc Natl Acad Sci U S A[J].1999;96:835-9.
    [102]Taylor EW, Ramanathan CS, Jalluri RK, Nadimpalli RG. A basis for new approaches to the chemotherapy of AIDS:novel genes in HTV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression. J Med Chem[J].1994;37:2637-54.
    [103]Mix H, Lobanov AV, Gladyshev VN. SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes. Nucleic Acids Res[J].2007;35:414-23.
    [104]Taylor EW, Nadimpalli RG, Ramanathan CS. Genomic structures of viral agents in relation to the biosynthesis of selenoproteins. Biol Trace Elem Res[J].1997;56:63-91.
    [105]秦顺义,黄克和,高建忠.富硒益生菌对小鼠免疫功能及抗氧化能力的影响.营养学报[J].2006;28:423-6.
    [106]Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR. Dietary selenium modulates activation and differentiation of CD4+T cells in mice through a mechanism involving cellular free thiols. J Nutr[J].2010; 140:1155-61.
    [107]Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity:from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal[J].2012;16:705-43.
    [108]Zeng H, Yan L, Cheng WH, Uthus EO. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa. J Nutr[J].2011; 141:1464-8.
    [109]Cyr AR, Domann FE. The redox basis of epigenetic modifications:from mechanisms to functional consequences. Antioxid Redox Signal[J].2011;15:551-89.
    [110]Cox R, Goorha S. A study of the mechanism of selenite-induced hypomethylated DNA and differentiation of Friend erythroleukemic cells. Carcinogenesis[J].1986;7:2015-8.
    [111]Wang RD, Wang CS, Feng ZH, Luo Y. Investigation on the effect of selenium on T lymphocyte proliferation and its mechanisms. J Tongji Med Univ[J].1992;12:33-8.
    [112]杜立芹,程五凤,史奎雄,李宣海,潘碧霞,金慧芳.硒对小鼠免疫功能的影响.上海第二医科大学学报[J].2000;20:29-31.
    [113]程道胜.硒对细胞免疫功能影响的研究进展.国外医学(临床生物化学与检验学分册)[J].1999;20:177-9.
    [114]Rafai P, Tuboly S, Biro H, Jakab L, Papp Z, Molnar L. Effect of selenium, vitamin E and riboflavin supplementation of the feed on the humoral and cell-mediated immune responses of growing pigs. Acta Vet Hung[J].1989;37:201-17.
    [115]Panousis N, Roubies N, Karatzias H, Frydas S, Papasteriadis A. Effect of selenium and vitamin E on antibody production by dairy cows vaccinated against Escherichia coli. Vet Rec[J]. 2001;149:643-6.
    [116]张华,黄克和,薛家宾,陈兴祥,徐为中,陈甫.不同硒源对兔体液免疫及抗氧化能力影响的研究.营养学报[J].2006;28:209-12.
    [117]苏惠龙,韩卓宙,李永红,et al.富硒益生菌对清远鹅疫苗免疫效果的影响.畜牧与兽医[J].2010;42:76-8.
    [118]Hayek MG, Mitchell GE, Jr., Harmon RJ, et al. Porcine immunoglobulin transfer after prepartum treatment with selenium or vitamin E. J Anim Sci[J].1989;67:1299-306.
    [119]沈玉先,汪思应,魏伟,张安平,徐叔云.富硒酵母对小鼠巨噬细胞功能及抗体生成的影响.微量元素与健康研究[J].1996;13:5-6.
    [120]黄克和,陈振旅,工小龙.硒对雏鸡生长体液免疫功能和抗自然感染能力的影响.南京农业大学学报[J].1990;13:98-102.
    [121]Rock MJ, Kincaid RL, Carstens GE. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rumin Res[J]. 2001;40:129-38.
    [122]马艳弘,刘安军,朱振元,周剑忠,黄开红.硒精氨酸对衰老小鼠的抗氧化及免疫调节作用.江苏农业学报[J].2011;27:883-7.
    [123]Wuryastuti H, Stowe HD, Bull RW, Miller ER. Effects of vitamin E and selenium on immune responses of peripheral blood, colostrum, and milk leukocytes of sows. J Anim Sci[J]. 1993;71:2464-72.
    [124]秦顺义,黄克和,高建忠.富硒益生菌对小鼠免疫功能及抗氧化能力的影响.营养学报[J].2006:423-6.
    [1]Chen TH, Tang P, Yang CF, et al. Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology[J].2011;410:410-7.
    [2]Ha HL, Shin HJ, Feitelson MA, Yu DY. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol[J].2010;16:6035-43.
    [3]Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction:a focus on recent advances in proteomics. Proteomics Clin Appl[J].2010;4:782-93.
    [4]Baruchel S, Wainberg MA. The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus. J Leukoc Biol[J].1992;52:111-4.
    [5]Staal FJ, Roederer M, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A[J]. 1990;87:9943-7.
    [6]Michalek RD, Pellom ST, Holbrook BC, Grayson JM. The requirement of reactive oxygen intermediates for lymphocytic choriomeningitis virus binding and growth. Virology[J]. 2008;379:205-12.
    [7]Bouzar AB, Boxus M, Florins A, Francois C, Reichert M, Willems L. Reduced levels of reactive oxygen species correlate with inhibition of apoptosis, rise in thioredoxin expression and increased bovine leukemia virus proviral loads. Retrovirology[J].2009;6:102.
    [8]Allan GM, Mc Neilly F, Meehan BM, et al. Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. Vet Microbiol[J].1999;66:115-23.
    [9]Donadeu M, Waddilove J, Marco E. European management strategies to control postweaning multisystemic wasting syndrome. In:Proceedings of the Allen D Leman Swine Conference, Minneapolis, USA, [J].2003:pp.136-42.
    [10]Pan Q, Huang K, He K, Lu F. Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro. J Trace Elem Med Biol[J].2008;22:143-8.
    [11]Biswas SK, Newby DE, Rahman I, Megson IL. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E(-/-) mice. Biochem Biophys Res Commun[J].2005;338:1368-73.
    [12]Nakamura H, Masutani H, Yodoi J. Redox imbalance and its control in HIV infection. Antioxid Redox Signal[J].2002;4:455-64.
    [13]Ciriolo MR, Palamara AT, Incerpi S, et al. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem[J].1997;272:2700-8.
    [14]Qadri I, Iwahashi M, Capasso JM, et al. Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK, p38 MAPK and AP-1. Biochem J[J].2004;378:919-28.
    [15]Gargouri B, Nasr R, Ben Mansour R, et al. Reactive Oxygen Species Production and Antioxidant Enzyme Expression after Epstein-Barr Virus Lytic Cycle Induction in Raji Cell Line. Biol Trace Elem Res[J].2011.
    [16]Hosakote YM, Liu T, Castro SM, Garofalo RP, Casola A. Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol[J].2009;41:348-57.
    [17]Halliwell B, Chirico S. Lipid peroxidation:its mechanism, measurement, and significance. Am J Clin Nutr[J].1993;57:715S-24S; discussion 24S-25S.
    [18]Meerts P, Misinzo G, McNeilly F, Nauwynck HJ. Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol[J].2005;150:427-41.
    [19]Cheung AK, Bolin SR. Kinetics of porcine circovirus type 2 replication. Arch Virol[J]. 2002; 147:43-58.
    [20]Geiler J, Michaelis M, Naczk P, et al. N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol[J].2010;79:413-20.
    [21]Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP. Inhibition of influenza infection by glutathione. Free Radic Biol Med[J].2003;34:928-36.
    [22]Baba M. Inhibitors of HIV-1 gene expression and transcription. Curr Top Med Chem[J]. 2004;4:871-82.
    [1]Todd D, Biagini, P., Bendinelli, M., Hino, S., Mankertz, A.,. Circoviridae. In:Fauquet CM MM, Maniloff J, Desselberger U, Ball LA., editor. Virus Taxonomy, Ⅷth Report of the International Committee for the Taxonomy of Viruses. London2005. p.327-34.
    [2]Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature[J].1982;295:64-6.
    [3]Allan GM, McNeilly F, Cassidy JP, et al. Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol[J]. 1995;44:49-64.
    [4]Clark E. Postweaning multisystemic wasting syndrome. Proceedings of the Annual Meeting of the American Association of Swine Practitioners. Quebec City, Canada1997. p.499-501.
    [5]Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q[J].2002;24:109-24.
    [6]Darwich L, Segales J, Mateu E. Pathogenesis of postweaning multisystemic wasting syndrome caused by Porcine circovirus 2:An immune riddle. Arch Virol[J].2004;149:857-74.
    [7]Segales J, Domingo M, Chianini F, et al. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol[J].2004;98:151-8.
    [8]Allan GM, Ellis JA. Porcine circoviruses:a review. J Vet Diagn Invest[J].2000;12:3-14.
    [9]Allan GM, McNeilly F, Kennedy S, et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest[J].1998; 10:3-10.
    [10]Choi C, Chae C, Clark EG Porcine postweaning multisystemic wasting syndrome in Korean pig: detection of porcine circovirus 2 infection by immunohistochemistry and polymerase chain reaction. J Vet Diagn Invest[J].2000;12:151-3.
    [11]Fenaux M, Halbur PG, Gill M, Toth TE, Meng XJ. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2. J Clin Microbiol[J].2000;38:2494-503.
    [12]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J[J].2011;187:23-32.
    [13]Mankertz A, Domingo M, Folch JM, et al. Characterisation of PCV-2 isolates from Spain, Germany and France. Virus Res[J].2000;66:65-77.
    [14]Patterson AR, Opriessnig T. Epidemiology and horizontal transmission of porcine circovirus type 2 (PCV2). Anim Health Res Rev[J].2010;11:217-34.
    [15]Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med[J].2001;30:1191-212.
    [16]Baruchel S, Wainberg MA. The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus. J Leukoc Biol[J].1992;52:111-4.
    [17]Casola A, Burger N, Liu T, Jamaluddin M, Brasier AR, Garofalo RP. Oxidant tone regulates RANTES gene expression in airway epithelial cells infected with respiratory syncytial virus. Role in viral-induced interferon regulatory factor activation. J Biol Chem[J].2001;276:19715-22.
    [18]Jamaluddin M, Tian B, Boldogh I, Garofalo RP, Brasier AR. Respiratory syncytial virus infection induces a reactive oxygen species-MSKl-phospho-Ser-276 RelA pathway required for cytokine expression. J Virol[J].2009;83:10605-15.
    [19]Korenaga M, Wang T, Li Y, et al. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem[J]. 2005;280:37481-8.
    [20]Seet RC, Lee CY, Lim EC, et al. Oxidative damage in dengue fever. Free Radic Biol Med[J]. 2009;47:375-80.
    [21]Wang Y, Oberley LW, Murhammer DW. Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines. Free Radic Biol Med[J].2001;31:1448-55.
    [22]Waris G, Turkson J, Hassanein T, Siddiqui A. Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress:role of STAT-3 in HCV replication. J Virol[J].2005;79:1569-80.
    [23]Ciriolo MR, Palamara AT, Incerpi S, et al. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem[J].1997;272:2700-8.
    [24]Garaci E, Palamara AT, Ciriolo MR, et al. Intracellular GSH content and HIV replication in human macrophages. J Leukoc Biol[J].1997;62:54-9.
    [25]Palamara AT, Perno CF, Ciriolo MR, et al. Evidence for antiviral activity of glutathione:in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res[J].1995;27:237-53.
    [26]Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A[J].1993;90:7632-6.
    [27]Staal FJ, Roederer M, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A[J]. 1990;87:9943-7.
    [28]Bouzar AB, Boxus M, Florins A, Francois C, Reichert M, Willems L. Reduced levels of reactive oxygen species correlate with inhibition of apoptosis, rise in thioredoxin expression and increased bovine leukemia virus proviral loads. Retrovirology[J].2009;6:102.
    [29]Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP. Inhibition of influenza infection by glutathione. Free Radic Biol Med[J].2003;34:928-36.
    [30]Wei L, Kwang J, Wang J, et al. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by IkappaBalpha degradation. Virology[J].2008;378:177-84.
    [31]Hemandez-Garcia D, Wood CD, Castro-Obregon S, Covarrubias L. Reactive oxygen species:A radical role in development? Free Radic Biol Med[J].2010;49:130-43.
    [32]Michalek RD, Pellom ST, Holbrook BC, Grayson JM. The requirement of reactive oxygen intermediates for lymphocytic choriomeningitis virus binding and growth. VirologyfJ]. 2008;379:205-12.
    [33]Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res[J]. 2011;21:103-15.
    [34]Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med[J].2009;23:1151-63.
    [35]Armstrong D, Bishop S. Does genetics or litter effect influence mortality in PMWS? Proceedings of the 18th International Pig Veterinary Society Congress. Hamburg, Germany,2004. p.809.
    [36]Smith AD, Dawson H. Glutathione is required for efficient production of infectious picornavirus virions. Virology[J].2006;353:258-67.
    [37]Macchia I, Palamara AT, Bue C, et al. Increased replication of Sendai virus in morphine-treated epithelial cells:evidence for the involvement of the intracellular levels of glutathione. Int J Immunopharmacol[J].1999;21:185-93.
    [38]Nakamura H, Masutani H, Yodoi J. Redox imbalance and its control in HIV infection. Antioxid Redox Signal[J].2002;4:455-64.
    [39]Sgarbanti R, Nencioni L, Amatore D, et al. Redox regulation of the influenza hemagglutinin maturation process:a new cell-mediated strategy for anti-influenza therapy. Antioxid Redox Signal[J].2011;15:593-606.
    [1]Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature[J].1982;295:64-6.
    [2]Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J[J].2003; 166:251-6.
    [3]Jensen TK, Vigre H, Svensmark B, Bille-Hansen V. Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol[J]. 2006;135:176-82.
    [4]Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev[J].2011;12:47-65.
    [5]Rosell C, Segales J, Ramos-Vara JA, et al. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec[J].2000; 146:40-3.
    [6]Segales J, Sitjar M, Domingo M, et al. First report of post-weaning multisystemic wasting syndrome in pigs in Spain. Vet Rec[J].1997;141:600-1.
    [7]Armstrong D, Bishop S. Does genetics or litter effect influence mortality in PMWS? Proceedings of the 18th International Pig Veterinary Society Congress. Hamburg, Germany,2004. p.809.
    [8]Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q[J].2002;24:109-24.
    [9]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J[J].2011; 187:23-32.
    [10]Patterson AR, Opriessnig T. Epidemiology and horizontal transmission of porcine circovirus type 2 (PCV2). Anim Health Res Rev[J].2010; 11:217-34.
    [11]Lu J, Holmgren A. Selenoproteins. J Biol Chem[J].2009;284:723-7.
    [12]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal[J].2011;14:1337-83.
    [13]Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr[J]. 2003;133:1463S-7S.
    [14]Nelson HK, Shi Q, Van Dael P, et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J[J].2001;15:1846-8.
    [15]Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res[J]. 2008;52:1273-80.
    [16]Broome CS, McArdle F, Kyle JA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr[J].2004;80:154-62.
    [17]Yu L, Sun L, Nan Y, Zhu LY. Protection from H1N1 influenza virus infections in mice by supplementation with selenium:a comparison with selenium-deficient mice. Biol Trace Elem Res[J]. 2011;141:254-61.
    [18]Sanmartin C, Plano D, Font M, Palop JA. Selenium and clinical trials:new therapeutic evidence for multiple diseases. Curr Med Chem[J].2011;18:4635-50.
    [19]Biswas SK, Newby DE, Rahman I, Megson IL. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E(-/-) mice. Biochem Biophys Res Commun[J].2005;338:1368-73.
    [20]Hernandez-Garcia D, Wood CD, Castro-Obregon S, Covarrubias L. Reactive oxygen species:A radical role in development? Free Radic Biol Med[J].2010;49:130-43.
    [21]Baruchel S, Wainberg MA. The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus. J Leukoc Biol[J].1992;52:111-4.
    [22]Staal FJ, Roederer M, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci U S A[J]. 1990;87:9943-7.
    [23]Michalek RD, Pellom ST, Holbrook BC, Grayson JM. The requirement of reactive oxygen intermediates for lymphocytic choriomeningitis virus binding and growth. Virology [J]. 2008;379:205-12.
    [24]Bouzar AB, Boxus M, Florins A, Francois C, Reichert M, Willems L. Reduced levels of reactive oxygen species correlate with inhibition of apoptosis, rise in thioredoxin expression and increased bovine leukemia virus proviral loads. Retro virology [J].2009;6:102.
    [25]Shen H, Yang C, Liu J, Ong C. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radic Biol Med[J].2000;28:1115-24.
    [26]Kim YY, Mahan DC. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J Anim Sci[J].2001;79:942-8.
    [27]Wu X, Huang K, Wei C, Chen F, Pan C. Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes. J Nutr Biochem[J]. 2010;21:153-61.
    [28]Jun EJ, Ye JS, Hwang IS, Kim YK, Lee H. Selenium deficiency contributes to the chronic myocarditis in coxsackievirus-infected mice. Acta Virol[J].2011;55:23-9.
    [29]Beck MA, Williams-Toone D, Levander OA. Coxsackievirus B3-resistant mice become susceptible in Se/vitamin E deficiency. Free Radic Biol Med[J].2003;34:1263-70.
    [30]Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J[J].2001;15:1481-3.
    [31]Verma S, Molina Y, Lo YY, et al. In vitro effects of selenium deficiency on West Nile virus replication and cytopathogenicity. Virol J[J].2008;5:66.
    [32]Kupka R, Mugusi F, Aboud S, Hertzmark E, Spiegelman D, Fawzi WW, Effect of selenium supplements on hemoglobin concentration and morbidity among HIV-1-infected Tanzanian women. Clin Infect Dis[J].2009;48:1475-8.
    [33]Nakamura H, Masutani H, Yodoi J. Redox imbalance and its control in HIV infection. Antioxid Redox Signal[J].2002;4:455-64.
    [34]Treitinger A, Spada C, Verdi JC, et al. Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur J Clin Invest[J].2000;30:454-9.
    [35]Ha HL, Shin HJ, Feitelson MA, Yu DY. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol[J].2010;16:6035-43.
    [36]Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction:a focus on recent advances in proteomics. Proteomics Clin Appl[J].2010;4:782-93.
    [37]Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP. Inhibition of influenza infection by glutathione. Free Radic Biol Med[J].2003;34:928-36.
    [38]Gil L, Martinez G, Tapanes R, et al. Oxidative stress in adult dengue patients. Am J Trop Med Hyg[J].2004;71:652-7.
    [39]Bolfa PF, Leroux C, Pintea A, et al. Oxidant-antioxidant imbalance in horses infected with equine infectious anaemia virus. Vet J[J].2011.
    [40]Styblo M, Walton FS, Harmon AW, Sheridan PA, Beck MA. Activation of superoxide dismutase in selenium-deficient mice infected with influenza virus. J Trace Elem Med Biol[J].2007;21:52-62.
    [41]Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J[J].2001;357:851-8.
    [42]Beck MA. Nutritionally induced oxidative stress:effect on viral disease. Am J Clin Nutr[J]. 2000;71:1676S-81S.
    [43]Verma S, Hoffmann FW, Kumar M, et al. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol[J].2011;186:2127-37.
    [44]Kalantari P, Narayan V, Natarajan SK, et al. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages. J Biol Chem[J]. 2008;283:33183-90.
    [45]Morbitzer M, Herget T. Expression of gastrointestinal glutathione peroxidase is inversely correlated to the presence of hepatitis C virus subgenomic RNA in human liver cells. J Biol Chem[J]. 2005;280:8831-41.
    [46]Mateo RD, Spallholz JE, Elder R, Yoon I, Kim SW. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. J Anim Sci[J].2007;85:1177-83.
    [47]Yoon I, McMillan E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs. J Anim Sci[J].2006;84:1729-33.
    [1]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal[J].2011;14:1337-83.
    [2]Lu J, Holmgren A. Selenoproteins. J Biol Chem[J].2009;284:723-7.
    [3]Ryan-Harshman M, Aldoori W. The relevance of selenium to immunity, cancer, and infectious/inflammatory diseases. Can J Diet Pract Res[J].2005;66:98-102.
    [4]Yu W. [Review on the study of Keshan disease in China]. Zhonghua Liu Xing Bing Xue Za Zhi[J].1999;20:11-4.
    [5]Wei HL, Pei JR, Jiang CX, et al. Analysis of glutathione peroxidase 1 gene polymorphism and Keshan disease in Heilongjiang Province, China. Genet Mol Res[J].2011; 10:2996-3001.
    [6]Jun EJ, Ye JS, Hwang IS, Kim YK, Lee H. Selenium deficiency contributes to the chronic myocarditis in coxsackievirus-infected mice. Acta Virol[J].2011;55:23-9.
    [7]Nelson HK, Shi Q, Van Dael P, et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J[J].2001;15:1846-8.
    [8]Beck MA, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J[J].2001;15:1481-3.
    [9]Broome CS, McArdle F, Kyle JA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr[J]. 2004;80:154-62.
    [10]Kupka R, Mugusi F, Aboud S, Hertzmark E, Spiegelman D, Fawzi WW. Effect of selenium supplements on hemoglobin concentration and morbidity among HIV-1-infected Tanzanian women. Clin Infect Dis[J].2009;48:1475-8.
    [11]Kalantari P, Narayan V, Natarajan SK, et al. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages. J Biol Chem[J].2008;283:33183-90.
    [12]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J[J].2011; 187:23-32.
    [13]Patterson AR, Opriessnig T. Epidemiology and horizontal transmission of porcine circovirus type 2 (PCV2). Anim Health Res Rev[J].2010;11:217-34.
    [14]Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J[J].2003; 166:251-6.
    [15]Rosell C, Segales J, Ramos-Vara JA, et al. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec[J].2000; 146:40-3.
    [16]Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction:disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev[J].2011;12:47-65.
    [17]Jensen TK, Vigre H, Svensmark B, Bille-Hansen V. Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol[J].2006;135:176-82.
    [18]Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q[J].2002;24:109-24.
    [19]Chen X, Ren F, Hesketh J, et al. Reactive oxygen species regulate the replication of porcine circovirus type 2 via NF-kappaB pathway. Virology[J].2012;426:66-72.
    [20]Pan Q, Huang K, He K, Lu F. Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro. J Trace Elem Med Biol[J].2008;22:143-8.
    [21]Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys[J].1985;240:500-8.
    [22]郎洪武,张广川,吴发权,张创贵.断奶猪多系统衰弱综合征血清抗体检测.中国兽医科技[J].2000:3-5.
    [23]乔翠,高凤山,许崇波.猪圆环病毒2型分子致病机理及相关疾病研究进展.中国畜牧兽医[J].2012:170-3.
    [24]许立华,芦银华,王玲,陈溥言.猪圆环病毒研究进展.中国病毒学[J].2004:82-4.
    [25]刘俊平,庄金山,孙志,张建武,陶琦,袁世山.检测猪圆环病毒2型TaqMan荧光定量PCR方法的建立.上海交通大学学报(农业科学版)[J].2007:483-8.
    [26]Zhao K, Han F, Zou Y, et al. Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR. Virol J[J].2010;7:374.
    [27]Cline G, Wilt V, Diaz E, Edler R. Efficacy of immunising pigs against porcine circovirus type 2 at three or six weeks of age. Vet Rec[J].2008;163:737-40.
    [1]Grau-Roma L, Fraile L, Segales J. Recent advances in the epidemiology, diagnosis and control of diseases caused by porcine circovirus type 2. Vet J[J].2011;187:23-32.
    [2]Patterson AR, Opriessnig T. Epidemiology and horizontal transmission of porcine circovirus type 2 (PCV2). Anim Health Res Rev[J].2010;11:217-34.
    [3]Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J[J].2003; 166:251-6.
    [4]Rosell C, Segales J, Ramos-Vara JA, et al. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Vet Rec[J].2000; 146:40-3.
    [5]Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev[J]. 2011;12:47-65.
    [6]Jensen TK, Vigre H, Svensmark B, Bille-Hansen V. Distinction between porcine circovirus type 2 enteritis and porcine proliferative enteropathy caused by Lawsonia intracellularis. J Comp Pathol[J].2006;135:176-82.
    [7]Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet Q[J].2002;24:109-24.
    [8]Harding JC. The clinical expression and emergence of porcine circovirus 2. Vet Microbiol[J]. 2004;98:131-5.
    [9]Krakowka S, Ellis JA, Meehan B, Kennedy S, McNeilly F, Allan G Viral wasting syndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet Pathol[J].2000;37:254-63.
    [10]Chae C. A review of porcine circovirus 2-associated syndromes and diseases. Vet J[J]. 2005;169:326-36.
    [11]Darwich L, Segales J, Mateu E. Pathogenesis of postweaning multisystemic wasting syndrome caused by Porcine circovirus 2:An immune riddle. Arch Virol[J].2004; 149:857-74.
    [12]Darwich L, Segales J, Domingo M, Mateu E. Changes in CD4(+), CD8(+), CD4(+) CD8(+), and immunoglobulin M-positive peripheral blood mononuclear cells of postweaning multisystemic wasting syndrome-affected pigs and age-matched uninfected wasted and healthy pigs correlate with lesions and porcine circovirus type 2 load in lymphoid tissues. Clin Diagn Lab Immunol[J].2002;9:236-42.
    [13]Darwich L, Balasch M, Plana-Duran J, Segales J, Domingo M, Mateu E. Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol[J]. 2003;84:3453-7.
    [14]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxid Redox Signal[J].2011;14:1337-83.
    [15]Lu J, Holmgren A. Selenoproteins. J Biol Chem[J].2009;284:723-7.
    [16]Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr[J]. 2003;133:1463S-7S.
    [17]Beck MA, Kolbeck PC, Rohr LH, Shi Q, Morris VC, Levander OA. Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol[J].1994;43:166-70.
    [18]Nelson HK, Shi Q, Van Dael P, et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J[J].2001;15:1846-8.
    [19]常瑞雪,颜天华,王秋娟,郭青龙.白细胞介素-2及其相关药物的应用研究进展.药学进展[J].2011:1-7.
    [20]刘佳,单安山,孙进华.白细胞介素-2的研究进展与应用.黑龙江畜牧兽医[J].2009:19-20.
    [21]李卫,刘佳,白家媛,et al.α肿瘤坏死因子的研究进展.动物医学进展[J].2010:108-11.
    [22]秦卫松.肿瘤坏死因子α拮抗剂的研究进展.国外医学(免疫学分册)[J].2005:24-7.
    [23]司兴奎,郭鑫,杨汉春.猪圆环病毒2型感染后猪外周血淋巴细胞IL-2、IL-4、IL-10、 IL-12p40、IFN-γ和TNF-α mRNA转录的变化.畜牧兽医学报[J].2009:78-82.
    [24]陈耿,张书霞,华利忠.PCV2对仔猪胸腺IL-2、IL-6和IL-10及其受体mRNA的影响及NO-NOS系统的调控.南京农业大学学报[J].2011:101-6.
    [25]He SX, Wu B, Chang XM, Li HX, Qiao W. Effects of selenium on peripheral blood mononuclear cell membrane fluidity, interleukin-2 production and interleukin-2 receptor expression in patients with chronic hepatitis. World J Gastroenterol[J].2004;10:3531-3.
    [26]Piasecki E, Inglot AD, Zielinska-Jenczylik J, Mlochowski J, Syper L. Simultaneous induction of interferon gamma and tumor necrosis factor alpha by different seleno-organic compounds in human peripheral blood leukocytes. Arch Immunol Ther Exp (Warsz)[J].1992;40:229-34.
    [27]Safir N, Wendel A, Saile R, Chabraoui L. The effect of selenium on immune functions of J774.1 cells. Clin Chem Lab Med[J].2003;41:1005-11.
    [28]Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G Selenium and immune cell functions. I. Effect on lymphocyte proliferation and production of interleukin 1 and interleukin 2. Proc Soc Exp Biol Med[J].1990; 193:136-42.
    [29]袁施彬,余冰,陈代文.硒添加水平对氧化应激仔猪生产性能和免疫功能影响的研究.畜牧兽医学报[J].2008:677-81.
    [30]秦顺义,黄克和,高建忠.富硒益生菌对小鼠免疫功能及抗氧化能力的影响.营养学报[J].2006:423-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700