剩余污泥作为低碳氮比生活污水补充碳源的脱氮试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国城市污水普遍存在的碳氮比偏低的问题逐渐成为城市污水处理达标的瓶颈;同时,作为目前生活污水处理中运用最普及的活性污泥技术,其产生的大量剩余污泥的处理与处置费用在污水厂运行成本中所占的比例也越来越大。本课题针对低碳氮比生活污水脱氮以及剩余污泥处理的问题,分别从工艺和碳源两方面入手进行研究。在工艺方面,为提高低碳氮比污水中易生物降解有机物的含量,并对现有污水处理厂进行工艺优化,设计了水解酸化/缺氧悬浮填料移动床/好氧组合工艺(简称H/AMBBR/O工艺),进行实验室中试研究,并探索该工艺应用于城市污水高效脱氮和污泥减量的可行性。在碳源方面,通过对A/O工艺的二沉池剩余污泥进行碱解发酵,提取上清液作为反硝化碳源,考察上清液的反硝化效率,利用阶段比反硝化率的概念,提出上清液回用量的确定方法,并将上清液回用到实际运行的A/O系统中,考察上清液碳源的反硝化速率及其回用对A/O系统的影响。最后,分别从处理效能和投资运行费用(预估)方面综合比较了H/AMBBR/O工艺和上清液回用的A/O工艺的最佳运行工况。试验研究的主要结论如下:
     ①H/AMBBR/O工艺的试验结果
     首先,在10.9~13℃,通过反硝化预试验对比了悬浮填料两相污泥和纯缺氧污泥的反硝化性能。结果表明,悬浮填料两相污泥对COD、氨氮、硝酸盐和TN的去除率分别达到74.37%、10.48%、60.86%和21.42%,远高于纯缺氧污泥的58.89%、3.71%、41.58%和13.75%;且生物膜的活性良好。因此,在缺氧池投加悬浮填料有利于增加污泥量,改善反硝化污泥活性,减弱冬季气温的影响。
     其次,研究了H/AMBBR/O组合工艺的启动方式。采取接种污泥、单池分别启动的方式对水解酸化池、AMBBR和好氧池同时进行培养驯化。其中水解酸化池采用连续进出水、逐渐增大负荷的方式,在15d内启动成功;AMBBR采用好氧曝气挂膜、缺氧转换的方式,历时20d,挂膜成功。组合工艺启动后,处理效果在两周时间内达到稳定。
     再次,通过单因素对比试验,筛选出H/AMBBR/O工艺的最优工况。结果表明:1)水解酸化池水力停留时间以2.5h为宜,过长的停留时间会消耗更多的碳源;2)AMBBR水力停留时间越长,反硝化反应进行得越充分,试验最佳停留时间为3h;3)硝化液回流比越大对反硝化越有利,但是动力消耗也大,试验选取合适的硝化液回流比为300%;4)当平均水温高于18.0℃时,硝化和反硝化过程不受抑制,工艺处理效果较理想,当水温低于18.0℃时,硝化反应不完全,工艺处理效果明显变差,尤其是TN出水浓度远不能达到试验预期目标,建议经济条件较好的污水处理厂可以考虑在好氧池投加填料,增强低温下的硝化效果。因此,在进水流量Q=50L/h,好氧池HRT为6.0h,二沉池HRT为1.2h,且填料投配率为30%的情况下,最优工况的条件是:水解酸化池水力停留时间为2.5h,AMBBR水力停留时间为3h,硝化液回流比300%,平均水温高于20.0℃,此时,组合工艺获得最佳处理效果:COD、氨氮和TN的平均去除率分别达到90.35%、98.24%和71.92%,对应出水浓度分别为22.6mg/L、0.89mg/L和16.35mg/L。
     最后,对比分析了水解酸化池分别作为纯污水和污泥污水同时预处理反应器的效能,结果表明,将二沉池污泥回流至水解酸化池,既可以改善与增加碳源,为后续反硝化提供有利条件,也可以同时实现污泥的资源化和减量化,污泥减量率可达到56%以上。
     ②剩余污泥碱解上清液的回用到A/O工艺的试验结果
     首先,通过试验研究了剩余污泥碱解发酵的较优条件以及碱解对污泥的减量作用。确定了碱解pH值、以及搅拌条件,并在此基础上,通过静态连续试验的指标分析、反硝化速率对比以及污泥破解后的扫描电镜照片,确定较优的SRT为9d;同时,计算得出剩余污泥在碱解过程中的污泥减量率达到56.3%。
     其次,分别考察了碱解上清液、乙酸钠和生活污水三种碳源的反硝化效能及其反硝化动力学,进行综合比较,确定碱解上清液可以作为反硝化脱氮的碳源。
     进一步的研究考察了剩余污泥碱解上清液作为反硝化碳源的反硝化速率,并据此初步确定上清液的回用量。采用不同的VFA/N比值进行批式试验,考察硝酸盐的反硝化情况,选择出试验硝酸盐浓度下的较优比值,并应用于实际生活污水中,与纯生活污水脱氮对照,考察回用的可行性,以及回用量的确定。结果显示,VFA/N比值的增加能加快反硝化反应,且比值越高,出现亚硝酸盐峰值越大,时间越滞后,硝酸盐的降解和亚硝酸盐的变化情况跟pH值能够较好地吻合;将上清液以一定比例投入生活污水,反硝化速率明显提高,平行组6h反硝化量分别达到47.02和33.95mg/L,为单纯生活污水反硝化量的2~3倍。试验进一步根据不同反应时间段的反硝化速率提出阶段比反硝化率的概念,并结合初始VFA/N比值以及反应过程中pH值的变化粗略判断出上清液的回用量,对生产实践具有一定的指导意义。
     最后,根据上清液回用量的确定方法进行了实际A/O工艺的回用试验研究。分别于冬季和春季不同温度条件下进行了两次上清液的回用试验。冬季试验,A/O工艺产泥量较低,上清液回用量受限,为50ml/min左右,小于理论回用量;春季试验,上清液的回用量为85ml/min左右,与理论回用量相当。分别对两次上清液回用前后系统对COD、氨氮和TN的去除效能,以及上清液回用过程中引入的氮磷对系统脱氮除磷的影响进行了分析。结果表明:1)冬季试验情况下,实际TN去除量接近42mg/L,远高于理论计算值28mg/L;2)春季试验结情况下,基于阶段比反硝化速率计算的理论TN去除量为50.4mg/L,和实际的55mg/L较为接近,TN的平均出水浓度满足GB18918-2002的一级A标准;3)两次回用过程中引入系统的总氮占原污水总氮的10.55%和21.27%,结合TN的去除情况分析,认为该比例对系统脱氮的影响不明显,可忽略;上清液回用过程中引入总磷占原污水总磷的20.86%和79.60%,对应的出水TP浓度分别为2.84和3.52mg/L,由于系统没有设置专门的除磷装置,磷在系统中的循环可能会造成累积,因此,长时间的回用可考虑在上清液中投加盐类形成磷沉淀后进行回收。
     ③H/AMBBR/O工艺和剩余污泥碱解上清液回用的A/O工艺的最优工况对比分析
     两工艺最佳工况的污染物去除效能对比结果表明:1)两工艺对COD和氨氮均有较好的去除效果,COD和氨氮的出水浓度均能满足GB18918-2002的一级A排放标准;2)上清液回用的A/O工艺出水TN浓度低于15mg/L,能够满足GB18918-2002一级A排放标准,而H/AMBBR/O工艺出水TN仅能满足GB18918-2002的一级B排放标准;3)上清液回用的A/O工艺反硝化能力以及灵活性更强,而H/AMBBR/O工艺能够实现污水污泥处理以及内碳源回用的一体化,运行管理更简便。
     两工艺运行费用预测结果表明,费用差别产生于AMBBR中的悬浮填料和用于调节上清液pH值的酸碱试剂。其中,悬浮填料使用寿命较长(长达数十年之久),且为一次性投资材料,而酸碱试剂为日常运行材料,其消耗费用约为悬浮填料的7倍。因此,实际应用时还需综合考虑污水的处理要求和当地的经济水平。
In most cities of our country, the widespread problem of domestic sewage being low carbon and nitrogen ratio gradually becomes the bottleneck of domestic sewage to attain the treatment standard. Meanwhile, as the most widely used technology in sewage wastewater treatment, activated sludge technique has produced lots of waste activated sludge (WAS), while the expenses of WAS disposal take a more larger proportion in sewage plant operation costs. This topic for denitrification of low carbon and nitrogen ratio sewage and disposal of WAS has been studied from two aspects. In process, a new combined process—hydrolysis acidification/anoxic moving bed biofilm reactor /aerobic process (H/AMBBR/O process for short) was employed to improve the content of biodegradable carbon source in sewage wastewater, and to optimize the present wastewater treatment process. Laboratory pilot study of H/AMBBR/O and its feasiblility to remove nitrogen, as well as to reduce WAS were also explored. In carbon source, WAS was digested under alkaline condition to prepare high carbon source supernatant, and which was used to remove more nitrogen. Further study was to investigate the denitrification rate of supernatant, then a new method to determine recycling dosage was proposed according to the specific stage denitrification rate. Besides, supernatant was recycled to the real A/O process to test its denitrification rate and its influent to the A/O process. Finally, the optimum operation conditions of H/AMBBR/O and A/O process with supernatant were compared in treatment efficiency and cost of investment (for estimate).
     ①Results of H/AMBBR/O process:
     Firstly,denitrification performance of both suspended biofilm with two phase and pure anoxic sludge were compared through preliminary experiments under 10.9~13℃, results showed that, removal efficiency of COD, ammonia notrogen, nitrate and total nitrogen (TN) in two phase sludge system were 74.37%, 10.48%, 60.86% and 21.42%, respectively, higher than those in suspended sludge system of 58.89%, 3.71%, 41.58% and 13.75%, respectively, and the activity of biofilm was better. So adding suspended fillers to the anoxic reactor increased sludge quantity and improved sludge activity, as well as enhanced low-temperature resistance.
     Secondly, the start-up of the combined process was studied. Sludge inoculation and domestication by signal reactor was adopted for hydrolysis acidification reactor, AMBBR and aerobic reactor at the same time. The hydrolysis acidification reactor was started within 15 days by increasing hydrolic loading from small amount influent, while the AMBBR was better to started-up by aerobic means and operated under anoxic condition, and the biofilm grew well within 20 days. As the combined process was started-up, pollutants removal efficiency got stable in two weeks.
     Thirdly, through Single factor experiment, the optimum running condition of H/AMBBR/O was screened. Results showed that, 1) the best hydraulic retention time of hydrolysis acidification reactor was 2.5h, and longer HTR would consume more carbon source, 2) the longer the HRT of AMBBR, the better for the denitrification, so the optimum ratio was 3h, 3)the larger of nitrifying liquid reflux ratio the better for denitrification, while larger reflux ratio means more power consumption, and the optimum ratio was 300%, 4) while the water temperature was below 18℃, incomplete nitrification resulted in poor TN removal efficiency, so adding fillers to aerobic reactor was proposed to enhance the effect of nitrification under low temperature, especially in wastewater treatment plant with good economic conditions. So when the flow was 50L/h, HRT of aerobic reactor was 6.0h and HRT of secondary sedimentation was 1.2h, and filler packing rate was 30%, the optimum running condition for the combind process was: when the HRT of acidification reactor and AMBBR were 2.5h and 3.0h, respectively, as well as nitrifying liquid reflux ratio was 300% and T≥20.0℃, and the optimum treatment efficiency was obtained: the average removal efficiency of COD, ammonia nitrogen and TN were 90.35%、98.24% and 71.92%, respectively, and the concentrations of these parameters in the outflow were 22.6mg/L、0.89mg/L and 16.35 mg/L, respectively.
     Finally, comparison of pretreatment performance for hydrolysis acidification reactor between pure wastewater and the mixture of wastewater and sludge was done. And results showed that when WAS from the second sedimentation reactor was returned back to the hydrolysis acidification reactor, the carbon source can be improved and increased to provide advantage to the following denitrification, and, meanwhile, realize the resources reuse and sludge reduction, which reached 56%.
     ②Results of alkaline hydrolysis sludge supernatant reused in A/O process as carbon source:
     Firstly, the optimum condition of WAS alkaline hydrolysis and sludge reduction were studied throgh experiments. pH value and mixing condition were first determined, and the optimum SRT of 9 days was determine through parameter analysis from static continuous tests, denitrification rate and electron micrograph of cracked sludge. Besides, the sludge reduction rate attained 56.3% during WAS alkaline hydrolysis.
     Secondly, denitrification efficiency and denitrification dynamics of three kinds of carbon source such as alkaline hydrolysis supernatant, acetic acid sodium and sewage were investigated and compared. Results showed that alkaline hydrolysis supernatant could be carbon source for denitrification.
     Denitrification rate of alkaline supernatant of WAS as carbon sources for denitrification were further investigated, hereby the recycling dosage was determined preliminarily. First, WAS was digested under alkaline conditions, and batch tests were conducted under different VFA/N ratio, to examine the change of nitrate concentration and choose the optimum ratio. Then the chosen ratio was applied in pure sewage wastewater compared with the pure sewage wastewater, to study its feasibility in recycle and to determine the recycling dosage. Results showed that, the denitrification rate increased obviously with the increasing VFA/N ratio, and the higher ratio the longer time needed for nitrite peak, besides, the degradation of nitrate and change of nitrite were consistent with the pH curve. Further research showed that when the supernatant was added to the sewage wastewater to certain degree, denitrification rate increased significantly, and the nitrate removal amount of two parallel tests attained 47.02 and 33.95mg/L, respectively, which was twice to triple to that of pure sewage wastewater. In addition, the definition of specific phase denitrification rate was proposed to define different reaction period, and the initial VFA/N, as well as pH value were used to judged supernertant dosage, which had instructive meanings to practical operation.
     Finally, the method of how to determine supernatant recycling dosage was applied to real A/O process. Two tests both in winter and spring under different temperature have been studied. During winter test, there was not so much WAS, so the recycling dosage was about 50ml/min, which is below theoretical recycling dosage, while during spring test the amount was about 85ml/min, which equal to the theoretical recycling dosage. The removal efficiency of COD, ammonia nitrogen and TN before and after recycling in both tests were analysed, as well as the influence of nitrogen and phosphrus to the system. Results showeed that: 1)during winter test, real TN removal amount was 42mg/L, 14mg/L more than the calculated value, 2) during spring test, the calculated value according to the specific phase denitrification rate was 50.4mg/L, close to the real value of 55mg/L, and the effluent TN concentration met standard A of GB18918-2002 level. 3) during the two recycling tests, the ratio between import TN and TN of raw wastewater were 10.55% and 21.27%, respectively, considering TN removal efficiency, the effect was ignored; while the import total phosphorus ratio was 20.86% and 79.60%, respectively, and the corresponding effluent concentration of TP was 2.84 and 3.52mg/L, as there was no special phosphorus removal reactor, phosphorus would accumulated to affect the normal operation, further research should try to recover phosphate through precipitation by adding metal salt.
     ③Comparison of the best conditions between the H/AMBBR/O process and supernatant recycling A/O process Results of pollutants removal efficiency under their optimum condition show that,
     1) both of the two processes has good COD and ammonia nitrogen removal efficiencies, and the effluent COD and ammonia concentration met the standard A of GB18918-2002 level. 2) effluent TN concentration of supernatant recycling A/O process was below 15mg/L, which met the standard A of GB18918-2002 level, while in H/AMBBR/O process, the effluent TN concentration could only met the standard B of GB18918-2002 level. 3) the A/O process with recycling supernatant had stronger denitrifying ability and flexibility, while H/AMBBR/O process can achieve integration of wastewater and sewage sludge treatment, as well as carbon sources recycling, so its operation and management were more easily.
     The operational cost prediction between two processes showed that, the difference of operational costs between the two processes were suspended filler in AMBBR and acid-base reagents used to adjust pH of supenertant. The longer service life of suspended filler (more than 10 yeas) and its characteristic as one-time investment material made the filler more cheaper than that of acid-base reagents, and its cost were 15% of acid-base reagents. So in practical, both wastewater treatment requirements and local economic level should be considerd when the processes were chosen.
引文
[1] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J]. Water Research, 1996, 30(7): 1702-1710.
    [2]彭永臻,马斌.低C /N比条件下高效生物脱氮策略分析[J].环境科学学报, 2009. 29(2)225-230.
    [3]周少奇,范家明,吴宋标等.氧化沟同时硝化反硝化的生物脱氮机理[J].环境科学与技术, 2002, 25(6):3-4, 19, 47.
    [4] G. T. Daigger, H. X. Littleton. Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水1999, 15(3): 1-7.
    [5] Chudoba J, Ottovd V. Madera V.Control of activated sludge filamentous bulking-I.Effect of the hydraulic regime or degree of mixing in all aeration tank[J].Water Res, 1973, 7:1163-1182.
    [6] Chudoba J, Gran P, Ottavd V.Control of activated sludge filamentous bulking-II.Selection of microorganism by meansof a selector[J].Water Res, 1973, 7:1389-1406.
    [7] Cenens C, Smets J Y, Ryckaert V, et al. Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems-I. Evahation of mathematical modelsn based on kinetic selection theory[J].Water Res, 2000, 34(9): 2525~ 2534.
    [8] Rusten Bjorn, Kolkinn Odd, Odegaard Hallvard. Moving bed bilfilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities[J]. Water Science and Technology, 1997, 35(6):71-79.
    [9] Pastorelli Giuseppe, Canziani Roberto, Pedrazzi Luca, Rozzi Alberto. Phosphorus and nitrogen removal in Moving-Bed sequencing batch bilfilm reactors[J]. Water Science and Technology, 1999, 40(45):169-176.
    [10]吴一平,刘莹,王旭东,彭党聪,王志盈.初沉污泥厌氧水解/酸化产物作为生物脱氮除磷系统碳源的试验研究,西安建筑科技大学学报(自然科学版), 2004, 36(4):421-423.
    [11] Kim Y K, Kwak M S, Lee S B, Lee W H, Choi J W, 2002. Effects of pretreatments on thermophilic aerobic digestion. Journal of Environmental Engineering, 128(8): 755–763.
    [12] Rajan R V, Lin J G, Ray B T. Low-level chemical pretreatment for enhanced sludge solubilization [J]. J WPCF, 1989, 61:1678-1683.
    [13] Kim J S, Park C W, Kim T H, Lee Y, Kim S, Kim S W, Lee J. Effects of various pretreatmentfor enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering 2003, 95(3):271-275.
    [14]李敏,郭静,罗晶.化学前处理改善城市污水污泥厌氧消化处理的有效途径[J].城市环境与城市生态, 1997, 10(4):60-62.
    [15] Valo A, Carrère H, Philippe Delgenès J. Thermal chemical and thermo-chemical pre- treatment of waste activated sludge for anaerobic digestion[J]. Chemic Technol Biotechnol, 2004, 79:1197-1203.
    [16] Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J]. Bioresour Technol, 2004, 91:201-206.
    [17] Chiu Y C, Chang C N, Lin J G, Huang S J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11): 155–162.
    [18]盛宇星,曹宏斌,李玉平,张懿.预处理对废弃活性污泥中细胞破碎和有机物质溶出的影响[J].化工学报, 2008, 59(6): 1496-1501.
    [19]杨虹,王芬,季民,张元玲.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备. 2006, 7(5): 78-81.
    [20]佟娟.剩余污泥碱性发酵产生的短链脂肪酸作为生物脱氮除磷碳源的研究[D].上海:同济大学, 2008.
    [21]刘道广.表面活性剂促进污泥产生的酸作为生物脱氮除磷碳源的研究[D].上海:同济大学, 2008.
    [22]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学, 2006, 27 (2): 319-323.
    [23] Alexandre V, Hélène C, Jean P D. Thermal, chemical and thermal-chemical pre-treatment of
    [24] waste activated sludge for anaerobic digestion[J]. Chem technol and Biotechnol, 2004, 79:1197-1203.
    [25] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermal pre-treatment of surplus
    [26] sludge[J]. Adv Envir Res, 2003, (7):715-720.
    [27] Bougrier C, Albasi C, Delgenès J P, Carrère H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J].
    [28] Chem Eng Pro, 2006. .
    [29] Nevim G, Sems Y, Levent Dagasanb, et al. Wet oxidation:a pre-treatment procedure for sludge [J]. Waste Management, 2002, 22:611-616.
    [30] Lafitte-Trouque S, Forster C F. The use of ultrasound and c-irradiation as pre-treatments for
    [31] the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures[J]. Bioresource Technol, 2002, 84:113-118.for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering 2003, 95(3):271-275.
    [14]李敏,郭静,罗晶.化学前处理改善城市污水污泥厌氧消化处理的有效途径[J].城市环境与城市生态, 1997, 10(4):60-62.
    [15] Valo A, Carrère H, Philippe Delgenès J. Thermal chemical and thermo-chemical pre- treatment of waste activated sludge for anaerobic digestion[J]. Chemic Technol Biotechnol, 2004, 79:1197-1203.
    [16] Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J]. Bioresour Technol, 2004, 91:201-206.
    [17] Chiu Y C, Chang C N, Lin J G, Huang S J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11): 155–162.
    [18]盛宇星,曹宏斌,李玉平,张懿.预处理对废弃活性污泥中细胞破碎和有机物质溶出的影响[J].化工学报, 2008, 59(6): 1496-1501.
    [19]杨虹,王芬,季民,张元玲.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备. 2006, 7(5): 78-81.
    [20]佟娟.剩余污泥碱性发酵产生的短链脂肪酸作为生物脱氮除磷碳源的研究[D].上海:同济大学, 2008.
    [21]刘道广.表面活性剂促进污泥产生的酸作为生物脱氮除磷碳源的研究[D].上海:同济大学, 2008.
    [22]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学, 2006, 27 (2): 319-323.
    [23] Alexandre V, Hélène C, Jean P D. Thermal, chemical and thermal-chemical pre-treatment of
    [24] waste activated sludge for anaerobic digestion[J]. Chem technol and Biotechnol, 2004, 79:1197-1203.
    [25] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermal pre-treatment of surplus
    [26] sludge[J]. Adv Envir Res, 2003, (7):715-720.
    [27] Bougrier C, Albasi C, Delgenès J P, Carrère H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J].
    [28] Chem Eng Pro, 2006. .
    [29] Nevim G, Sems Y, Levent Dagasanb, et al. Wet oxidation:a pre-treatment procedure for sludge [J]. Waste Management, 2002, 22:611-616.
    [30] Lafitte-Trouque S, Forster C F. The use of ultrasound and c-irradiation as pre-treatments for
    [31] the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures[J]. Bioresource Technol, 2002, 84:113-118.
    [53] Weemaes M P, Verstraete J. Evaluation of current wet sludge disintegration techniques[J]. Journal of Chemical Technology and Biotechnology, 1998, 73(2): 83–92.
    [54] Navia R, Soto M, Vidal G, Bornhardt C, Diez M C. Alkaline pretreatment of kraft mill sludge to improve its anaerobic digestion[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(6): 869–876.
    [55] Neyens E, Baeyens J, Dewil R, De Heyder B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106(2-3): 83–92.
    [56] Cassini S T, Andrade M C E, Abreu T A, Keller R, Goncalves R F. Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: Effect on total EPS and fractions[J]. Water Science and Technology, 2006, 53(8): 51-58.
    [57] Huan Li, Yiying Jin, Rasool Bux Mahar, Zhiyu Wang, Yongfeng Nie. Effects and model of alkaline waste activated sludge treatment [J]. Bioresource Technology, 2008, 99: 5140-5144.
    [58] Erdincler, A. , Vesilind, P. A. . Effect of sludge cell disruption on compactibility of biological sludge [J]. Wat Sci. Technol., 2000, 42:119-126.
    [59]徐静,王三反.超声波预处理改善污泥性能研究[J].净水技术, 2009, 28(1): 51-53.
    [60] Banerjee A, Elefsiniotis P, Tuhtar D. The effect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature[J]. Biotechnol, 1999, 72(3):203-212.
    [61] Lin C Y. Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion[J]. Water Res, 1992, 26:177-183.
    [62] Alleman J. E. , Kim B. J., Quivey D. M. , Wquihua L. O. Alkaline hydrolysis of munition -garde nirtocellulose[J]. War. Sci. Tech, 1994, 30(3):63~72.
    [63] Woodard S. E. , Wukasch R. F. A hydrolysis/thickening/filtration process for the treatment of waste activated sludge [J]. Wat. Sci. Tech, 1994, 30(3):29~38
    [64] Chang C. N. , MaY S. , Lo C. W. Appilcation of oxidaiton-reduciton potential as a controlling parameter in waste activated sludge hydrolysis[J]. Chemical Eng. , 2002, 90(3):273-281.
    [65] Ray, B. T. , Rajan, R. V. , and Lin, J. G. Low-level alkaline solubilization for enhanced anaerobic digestion. Res. J. Water Pollut. Control Fed. , 1990, (62):81-87.
    [66]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].上海:同济大学. 2006.
    [67]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素[J].环境科学, 2005, 26(2):98-101.
    [68] Cai M L, Liu J, Wei Y S. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environ Sci Technol, 2004, 38:3195-3202.
    [69]肖本益,刘俊新. pH对碱处理污泥厌氧发酵产氢的影响[J].科学通报, 2005, 50(24):
    [70] Yinguang Chen, Su Jiang, Hongying Yuan, Qi Zhou, Guowei Gu. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41:683- 689.
    [71] Leiyu Feng, Hua Wang, Yinguang Chen, Qin Wang. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors[J]. Bioresource Technology 2009, 100:44–49.
    [72] Penaud, V., Delgenes, J. P., and Moletta R. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegrability [J]. Enzyme Microb. Technol. , 1999, (25):258-263.
    [73] Jih-Gaw Lin, Ying-Shih Ma and Chun-Chih Huang [J]. Alkaline hydrolysis of the sludge generated from a high-strength, nitrogenous-wastewater biological-treatment process. Bioresource Technology, 1998, 65: 35-42.
    [74] Zhang, H. Biochemistry Tutorial, third ed. Sichuan University Publishing Company, Chengdu, China, 2002: 22–23, 33–34, 103 and 124.
    [75] Dignac, M. F., Urbain, V., Rybacki, D. , et al.. Chemical description of extracellular polymers: implication on activated sludge floc structure [J]. Water Sci. Technol. 1998(38): 45–53.
    [76]王宝泉,方正.厌氧酸化法的启动及控制因素的探讨[J].西安建筑科技大学学报, 1997, 29(2):142-146.
    [77] Li, Y. Y. , Noike, T. . Upgrading of anaerobic of waste activated sludge by thermal pretreatment[J]. Water Sci. Technol. , 1992, 26(3-4):857-866.
    [78]杨洁,季民,刘卫华,杨虹.污泥超声预处理促进厌氧消化反应试验[J].天津大学学报, 2006, 39(10):1205-1208.
    [79] Sakai, S. , Imabayashi, S. , Iwabuchi, C. , Kitagawa, Y. , Okumura, Y. , Kawamura, H. . Solubilization of excess activated sludge by self-digestion [J]. Water Res. , 1999, 33(8):1864-1870.
    [80] Tiehm, A. , Nickel, K. , Neis, U. . The use of ultrasound to accelerate the anaerobic digestion of sewage sludge [J]. Water Sci. Technol. , 1997, 36(11): 121-128.
    [81]杨洁,季民,韩育宏,刘卫华,张绪强.污泥碱解和超声破解预处理的效果研究[J].环境科学, 2008, 29(4): 1002-1006.
    [82]吕凯,季文芳,韩萍芳,吕效平.超声、臭氧处理石化污水厂剩余活性污泥研究[J].环境工程学报, 2009, 3(5): 907-910.
    [83] Montgomery, H. A. C. , Dymock, J. F. , Thom, N. S. The Rapid Colorimetric Determination of Organic Acids and their Salts in Sewage-sludge Liquor[J]. The Analyst, 1962, 87:949-955.
    [84]朱南文,闵航,陈美慈,赵宇华. TTC一脱氢酶测定方法的探讨[J].中国沼气, 1996, 14(2): 3-5.
    [85] Mike S. M. Jetten, Mare Strous, T. van de Pas-Schoonen et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews. 1999, 22: 421-437.
    [86] Van de Graaf A A et al. Metabolic pathway of anaerobic ammonium oxidization on the base of 15N studies in a fluidized bed reactor[J]. Microbiology. 1997, 143: 2415-2421.
    [87] Marc Strous et al. Ammonium removal from concentrated wastestream with the anaerobic ammonium oxidizatio process in different reactors configurations [J]. Water Research. 1997, 31 (8): 1955-1962.
    [88]刘军,郭茜,瞿永彬.厌氧水解生物法处理城市污水的研究[J].给水排水, 2000, 26(7): 10-13.
    [89]朱成辉,李秀芬,陈坚,王洪春.好氧悬浮填料移动床挂膜启动过程[J].食品与生物技术学报, 2005, 24(4):92-96.
    [90]刘媛,屠唯华. MBBR中生物膜和悬浮微生物特性的研究[J].内蒙古水利, 2007, 1:112- 113.
    [91]贾磊,陈洪斌,王建翔,何群彪,屈计宁.低浓度污水条件下MBBR启动及处理效果的中试[J].水处理技术, 2007, 33(7):57-60.
    [92]马建勇,张兴文,杨凤林,张捍民,刘毅慧,古川宪治.悬浮填料移动床处理低浓度污水的性能[J].大连理工大学学报, 2003, 43(1):46-50.
    [93]张景丽,幸福堂.移动床生物膜工艺特点、研究现状及发展[J].工业安全与环保, 2003, 29(4): 13-15.
    [94]杨玉旺.悬浮填料移动床处理污水的研究应用进展[J].工业水处理, 2004, 24(2):12-15.
    [95]柴社立,蔡晶,芮尊元.悬浮填料移动床及其应用[J].上海环境科学, 2004, 23(6): 257- 261.
    [96] Liu W, Howell J A, et al. A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics:application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt[J]. Journal of Membrane Science, 2001, 181(1):127-140.
    [97]王晓东,钱轶超,曹朝霞,田平.膜生物反应器在污水脱氮中的研究进展[J].杭州师范学院学报(自然科学版)[J], 2007, 6(1):51-55.
    [98]郑义,孟祥荣,武剑,曹晓梅. A/O生物脱氮回流液中溶解氧影响因素的研究[J].燃料与化工, 2003, 34(5):263-265.
    [99]肖社明,张永祥,丰锴斌. A/O工艺生物脱氮效果研究[J].山西建筑, 2008, 34(16):20-21.
    [100]杜赦林.软性填料膜法A/O脱氮系统处理腈纶废水[J].给水排水, 1996, 22(6):23-25.
    [101] Yeom Ick-Tae, Nah Yoo-Mi, Ahn Kyu-Hong. Treatment of house-hold wastewater using an intermittently aerated membrane biore-actor[J]. Desalination, 1999, 124:193-204.
    [102]孙锦宜.含氮废水处理技术与应用[J].北京:化学工业出版社, 2003.
    [103] C Perot. The effects of pH temperature and agitations speed on sludge anaerobic hydrolysis acidification [J]. Envir Teehnol Lett, 1998, 7:741-745.
    [104]孙美琴,彭超英,梁多.水酸酸化预处理工艺及应用[J].四川环境, 2003, 22(4):52-55.
    [105]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社, 2001.
    [106]穆军,黄翔峰,章非军,李彦生,吴志超.酸化工艺影响有机废水可生化性的评价指标及其应用[J].环境科学学报, 2005, 25(7):908-912.
    [107]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002:120.
    [108] ANDERSON G K, Yang G. Determination of biearbonate and total volatile aeid coneentration in anaerobic digesters using a simple tritration[J]. Water Environ Res, 1992, 13(4): 64-68.
    [109]贺延龄.废水厌氧生物处理[M].北京:中国轻工业业出版社, 1998:558-560.
    [110]秦智,任南琪,李建政.产酸相反应器的过酸状态及其控制[J].哈尔滨工业大学学报, 2003, 35(9): 1105-1108.
    [111] LEPISTOR, RINTALAJ. Extreme thermophilie(70℃), VFA-fed UASB reaetor: performance, temperature response, load potential and comparison with 35 and 55℃UASB reaetors[J]. Water Res, 1999, 33(14):3162-3170.
    [112]邓小林,王国华,任鹤云.上海城市污水处理厂的污泥处理途径探讨[J].中国给水排水, 2000, 16(5):19-22.
    [113]吴健波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向[J].中国给水排水, 2001, 17(11): 24-26.
    [114]胡天媛,徐伟.水解酸化-上向流曝气生物滤池工艺处理小城镇污水[J].给水排水, 2004, (10):
    [115] Parkin, G. F. , Owen, W. F. . Fundamentals of anaerobic digestion of wastewater sludge [J]. J. Environ. Eng. 1986, 112 (5), 867–920.
    [116] Elefsiniotis, P. , Wareham, D. G. , Oldham, W. K. . Particulate organic carbon solubilization in an acid-phase upflowanaerobic sludge blanket system [J]. Environ. Sci. Technol. 1996, 30 (5), 1508–1514.
    [117] Fang, H. H. P. , Yu, H. Q. . Mesophilic acidification of gelatinaceous wastewater [J]. J. Biotechnol. 2002, 93 (2), 99–108.
    [118] Yuan H. , Chen Y. , Zhang H. , et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions [J]. Environmental Science & Technology, 2006, 40(6):2025-2029.
    [119]苑宏英,员建,徐娟,池勇志,赵连梅,田素凤.碱性pH条件下增强剩余污泥厌氧产酸的研究[J].中国给水排水, 2008, 24(9):26-29.
    [120]张亚雷,李咏梅.活性污泥数学模型[M].上海:同济大学出版社, 2002.
    [121] Nyberg U, Aspegren H, Andersson B, et al. Full-scacle applications of nitrogen removal with methanol as carbon source [J]. Wat. Sci. Tech. , 1992, 26(5-6):1007-1086.
    [122] KATARZYNA KUJAWA, et al. A method to estimate denitrification potential for predenitrification systems using nur batch test [J]. Wat Res, 1999, 33:2291-2300.
    [123]马勇,彭勇臻. A/0生物脱氮工艺的反硝化动力学试验[J].中国环境科学, 2006, 26(4):466-468.
    [124] P. Elefsiniotis, D. G. Wareham, M. O. Smith. Use of volatile fatty acids from an acid-phase digester for denitrification [J]. Journal of Biotechnology, 2004, (114) ;289-297.
    [125] Third K. A. B. , Newland G. M. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor [J]. Wat. Res. , 2005, (3):8-17.
    [126]邵留,徐祖信,尹海龙.污染水体脱氮工艺中外加碳源的研究进展.工业水处理, 2007, 27(12): 10-15.
    [127]金春姬,余宗莲,高京淑,成乐昌,金秀生.低C/N比污水生物脱氮所需外加碳源量的确定.环境科学研究, 2003, 16(5): 37-40.
    [128]曹国民,赵庆祥,孙贤波,等.碳源循环单极生物脱氮技术研究[J].环境科学学报, 2001, 21(6): 705—709.
    [129]马勇,彭永臻,王淑莹. A/O脱氮工艺中外碳源投加控制器的建立与研究[J].高技术通讯, 2004, 14(9): 106—110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700