部分亚硝化耦合厌氧氨氧化的工艺控制及其垃圾渗滤液脱氮特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液含有高浓度的氨氮和有机物,水质水量波动性大,若采用传统硝化反硝化脱氮技术处理则能耗大和成本高。部分亚硝化(partial nitritation, PN)-厌氧氨氧化(anaerobic ammonium oxidation, ANAMMOX)耦合工艺因其显著的经济性和高效性,有潜力成为替代传统硝化反硝化处理垃圾渗滤液的生物脱氮技术。但目前PN-ANAMMOX技术尚不成熟,存在的主要障碍是:氨氧化菌(ammonia oxidation bacteria,AOB)和厌氧氨氧化菌(ANAMMOX bacteria, AnAOB)生长速率缓慢,易受水质和运行条件影响,从而导致该工艺在实际废水处理中呈现启动缓慢、工艺组合协调困难、稳定性欠缺等问题。
     为解决上述问题,本课题就PN-ANAMMOX技术在单级工艺的快速启动、负荷提高、工艺控制特点,串联运行的工艺衔接与控制规律及一步式耦合工艺的快速启动、工艺控制特性方面展开研究,取得如下成果。
     (1)采用序批式反应器(Sequencing batch reactor, SBR)以常规的定时曝气方式运行,分别在间歇和连续曝气下实现了部分亚硝化联合反硝化对垃圾渗滤液进行脱氮除碳处理。在这两种运行方式中,通过调控总供气量(TAF)与进水负荷(ILR)的比值可有效抑制硝氮生成,出水pH可指示PN-SBR的出水NO2--N/NH4+-N摩尔比。间歇曝气运行方式由于形成的颗粒污泥数量较多,获得的脱氮除碳效果优于连续曝气运行方式的脱氮除碳效果。
     (2)在PN-SBR絮状活性污泥系统中,也可实现部分亚硝化联合反硝化对垃圾渗滤液进行脱氮除碳处理。硝氮生成的抑制也可由调控TAF/ILR比值来实现,出水pH值也可指示出水NO2--N/NH4+-N摩尔比。SBR周期分析表明,反硝化在混合液中的脱氮除碳作用分别达28%和24%。同时硝化反硝化存在于SBR的第一个曝气阶段。
     (3)采用终点pH控制法可在PN-SBR长期运行中稳定实现部分亚硝化联合反硝化处理垃圾渗滤液。曝气量在0.8、1.2和1.6m3/h时对出水NO2--N/NH4+-N摩尔比几无影响。反应温度在30℃、33℃和36℃时对出水NO2--N/NH4+-N摩尔比也几无影响。每周期进水量的改变也并不明显影响出水NO2--N/NH4+-N摩尔比。
     (4)通过接种PN-SBR的活性污泥和少量低活性的ANAMMOX污泥,可快速启动ANAMMOX-UASB。pH、电导率和出水硝氮浓度可作为ANAMMOX脱氮效能的指示参数。进水基质比例和pH值均会明显影响ANAMMOX脱氮效率。因而在两步式PN-ANAMMOX单元之间应设置基质比例和pH调整单元,将基质比例调节为1.25-1.35,而pH调节为7.0-7.5。
     (5)以垃圾渗滤液原水为配水的低有机COD条件下,因渗滤液水质多变以及有机物的抑制作用,可使ANAMMOX脱氮效果波动,难以实现高效脱氮。而以PN单元的稀释出水作为进水时,则可实现高效高负荷脱氮和培养出红褐色的ANAMMOX颗粒污泥。在有机COD约为200mg/L的进水条件下,反应器仍能以高负荷稳定运行,最高脱氮负荷率达8.9kg N/m3/d,远高于同类其它研究的脱氮效果。其中pH、电导率和出水硝氮浓度仍可作为有机条件下ANAMMOX脱氮的指示参数,而电导率为最有效最精确的指示参数。
     (6) PN-SBR与ANAMMOX-UASB的串联运行试验表明,通过动态调整终点pH值可使PN-SBR获得稳定的部分亚硝化效果,ANAMMOX-UASB处理100%的PN单元出水时可获得高效和高负荷脱氮。但由于受高进水pH抑制后,其脱氮效果波动较大,难以在100%的PN出水下以高负荷稳定地运行。随后ANAMMOX-UASB可在100%的PN出水下以低负荷稳定运行。PN-SBR活性污泥中的功能菌AOB较为多样,其中一个OTU与Nitrosomonas sp. IWT514相似度高达99%;另一OTU与Nitrosomonas eutropha(NR_027566)相似度为96%;还有两个OTU和Nitrosomonas eutropha (CP000450)相似度为96%。未检测出NOB,检出其它多种不可培养的微生物。PN-SBR的活性污泥中AOB只占总细菌的0.24%,还存在少量(0.04%)的AnAOB。 ANAMMOX-UASB颗粒污泥的主要脱氮功能菌为Kuenenia stuttgartiensis (CT573071)。ANAMMOX-UASB颗粒污泥中AnAOB占总细菌的8.34%,不存在NOB,存在少量(0.1%)的AOB。
     (7)采用絮状AOB污泥和颗粒状AnAOB污泥作为CANON反应器的接种污泥,并于试验前45d在进水中添加少量亚硝氮,可实现CANON反应器的快速启动。随后逐步提高垃圾渗滤液在配水中的比例直至添加100%的垃圾渗滤液(C/N比为0.80-0.95),CANON反应器脱氮负荷也能稳步上升。至第101d,反应器的NRR达1.32kg N/m3/d,脱氮效率为81%。CANON活性污泥细菌中,AOB仅占总细菌的1%-3%,而AnAOB含量更低,低于0.3%,还存在其它多种多样的微生物。
Leachate generated from landfill contains high concentrations of ammonium and organic compounds, varies significantly in composition and flow rate, thus making its treatment energy-gobbling and highly expensive when using conventional nitrification and denitrification processes. Due to the high cost-effectiveness and efficiency, combined partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) process, is a promising alternative to conventional nitrification and denitrification for nitrogen removal from landfill leachate. However, the PN-ANAMMOX technology has not yet been fully investigated; there have still been some barriers remained to be solved. Both ammonia oxidation bacteria (AOB) and ANAMMOX bacteria (AnAOB) are slow growers, and are susceptible to the variation in wastewater compositions and operational conditions, thus resulting in a slow reactor startup and a difficult process control and a frequent instability in operation.
     The overarching goal of this research was to solve the above issues:to investigate the fast startup, loading enhancement and process control of the PN and ANAMMOX units, to examine the rules of the process control on combining PN-ANAMMOX by means of two-stage and one-stage modes. The results are listed as follows.
     (1) By using conventional fixed-time control in a sequencing batch reactor (SBR), partial nitritation of landfill leachate was achieved under both intermittent and continuous aeration modes. The adjustment of total air flux (TAF)/influent loading rate (ILR) ratio was observed to be effective to inhibiting nitrate formation. The effluent pH was found to be an indicator for effluent NO2--N/NH4+-N molar ratio. Due to more granules formed in the reactor operated under intermittent aeration mode, the nitrogen and COD removal performance were superior to those observed in continuous aeration mode.
     (2) During the PN experiment in an SBR with a10times bigger volume (50L), combiantion of partial nitritation and denitrification was achieved by using flocculent activated sludge. Inhibition of nitrate formation can also be achieved by adjusting the TAF/ILR ratio; effluent pH was also observed as an effective indicator for effluent NO2--N/NH4+-N molar ratio. The analysis of the state in an SBR cycle showed that simultaneous nitrification and denitrification occurred in the first aeration stage.
     (3) Endpoint pH control technique was used in the PN-SBR system for landfill leachate treatment by combination of partial nitritation and denitrification, resulting in a stable performance during long-term operation. Dynamically setting a suitable endpoint pH was the key to achieving optimal effluent NO2--N/NH4+-N molar ratio. Air flow rates at0.8,1.2and 1.6m3/h had unnoticeable effect on effluent NO2--N/NH4+-N molar ratio. Reaction temperatures at30℃,33℃and36℃had also unnoticeable effect on effluent NO2--N/NH4+-N molar ratio. Influent flow rate had no obvious effect on effluent NO2--N/NH4+-N molar ratio as well.
     (4) By using the activated sludge in the PN-SBR and a small amount of ANAMMOX sludge from a UASB, fast startup of ANAMMOX reactor with NRR of6.2kg N/m3/d on day91was achieved. The pH, conductivity and effluent nitrate concentration can be the performance indicators of ANAMMOX reactor. Influent pH and NO2--N/NH4+-N molar ratio were found to significantly affect the ANAMMOX performance. Therefore, it is necessary to impose an equalization tank between the PN and ANAMMOX units for two-stage PN-ANAMMOX process. The optimal influent pH was7.0-7.5and NO2--N/NH4+-N molar ratio was1.25-1.35.
     (5) The effect of organic compounds on AnAOB was investigated by adding raw landfill leachate as organic compounds in the ANAMMOX feed. The results showed that ANAMMOX performance was fluctuated and it was unable to achieve high rate nitrogen removal owing to the inhibition of organic compounds in the leachate. In contrast, it is successful to attain high rate nitrogen removal from the diluted PN-treated leachate, leading to development of reddish ANAMMOX granules. When the organic COD in the influent was around200mg/L, the NRR reached8.9kg N/m3/d, which is much higher than that reported in other related studies. Moreover, pH, conductivity and effluent nitrate can be used as indicators of performance of ANAMMOX reactor fed with diluted PN-treated leachate.
     (6) Two-stage PN-SBR and ANAMMOX-UASB process was able to achieve efficient nitrogen removal from landfill leachate. Despite the significant variation in composition of landfill leachate, stable PN performance was witnessed in the PN-SBR using dynamic endpoint pH control technique. During the treatment of100%of PN-treated leachate in the ANAMMOX-UASB, high rate nitrogen removal can be achieved. Later on, after shock of high influent pH due to lack in reactor operation, the reactor performance is fluctuated and unstable during treatment of100%of PN effluent. Finally,85±1%of nitrogen removal and0.75±0.12kg N/m3/d of NRR were achieved when the ANAMMOX-UASB was operated under lower nitrogen load. Cloning analysis of the activated sludge in the PN-SBR indicated that one operational taxa unit (OTU) was99%related to the AOB species of Nitrosomonas sp. IWT514, one OTU was96%related to Nitrosomonas eutropha (NR_027566) and two OTUs were96%related to Nitrosomonas eutropha (CP000450). A variety of uncultured bacteria, however, no nitrobacter were found in the PN-SBR. AOB only accounted for0.24%of the total bacteria, surprisingly, AnAOB accounted for0.04%of the total bacteria, but no nitrobacter were found. The AnAOB in the ANAMMOX-UASB were highly related to Kuenenia stuttgartiensis (CT573071), and accounted for8.34%of total bacteria, while AOB accounted for0.1%of total bacteria, no nitrobacter were observed.
     (7) By using floc-like AOB and granular AnAOB as seeds for the completely autotrophic nitrogen removal over nitrite (CANON) reactor, and adding a small amount of nitrite in the feed during the first45days, fast startup of CANON reactor was achieved. Proportion of addition of landfill leachate in the feed was then gradually increased till100%of raw leachate (C/N ratio of0.80-0.95); the nitrogen removal performance was stepwise improved. On day101, NRR reached1.32kg N/m3/d, and the nitrogen removal efficiency was81%. The qPCR analysis showed that AOB accounted for only1%-3%of the total bacteria in the CANON system, AnAOB accounted for a lower proportion (0.3%) of total bacteria. There were a variety of other bacteria in the CANON sludge, indicating the great bacterial diversity in the system.
引文
[1]我国城市生活垃圾处理行业2011年发展综述[J].中国环保产业,2012,10:20-26.
    [2]Renou S., Givaudan J.G., Poulain S., et al. Landfill leachate treatment:Review and opportunity [J]. Journal of Hazardous Materials,2008,150(3):468-493.
    [3]Li H.S., Zhou S.Q., Sun Y.B., et al. Advanced treatment of landfill leachate by a new combination process in a full-scale plant[J]. Journal of Hazardous Materials,2009, 172(1):408-415.
    [4]易伟,高翔,刘青,等.垃圾渗滤液处理工艺及发展趋势探讨[J].中国环保产业,2012,11:44-46.
    [5]Wu Y.Y., Zhou S.Q., Ye X.Y., et al. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology [J]. Process Safety and Environmental Protection,2011,89(2): 112-120.
    [6]Yang Z.Q., Zhou S.Q. The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system[J]. Chemosphere,2008,72(11): 1751-1756.
    [7]Fan H.J., Shu H.Y., Yang H.S., et al. Characteristics of landfill leachates in central Taiwan[J]. Science of the Total Environment,2006,361(1-3):25-37.
    [8]Tatsi A.A., Zouboulis A.I., Matis K.A., et al. Coagulation-flocculation pretreatment of sanitary landfill leachates[J]. Chemosphere,2003,53(7):737-744.
    [9]Lo I.M.C. Characteristics and treatment of leachates from domestic landfills[J]. Environment International,1996,22(4):433-442.
    [10]Baig S., Coulomb I., Courant P., et al. Treatment of landfill leachates:Lapeyrouse and Satrod case studies[J].1999,21(1):1-22.
    [11]Chian E.S.K., DeWalle F.B. Sanitary landfill leachates and their leachate treatment[J]. Journal of the Environmental Engineering Division,1976,102(2):411-431.
    [12]陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理[J].环境保护,2001,9:19-21.
    [13]孙艳波.Anammox的“放大模式”启动及其与反硝化的协同作用研究[D].华南理工大学,2010.
    [14]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [15]曾自扬.合成氨厂氨氮排放水处理技术[J].川化,2001,3:21-23.
    [16]Kurniawan T.A., Lo W.H., Chan G.Y.S. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate[J]. Journal of Hazardous Materials,2006, 129(1-3):80-100.
    [17]Wu Y.Y., Zhou S.Q. Improving the prediction of ammonium nitrogen removal through struvite precipitation[J]. Environmental Science and Pollution Research,2012,19(2): 347-360.
    [18]周少奇.环境生物技术[M].科学出版社,2003.
    [19]Vos P., Garrity G., Jones D., et al. Bergey's Manual of Systematic Bacteriology:Volume 3: The Firmicutes[M]. Springer,2009.
    [20]Leininger S., Urich T., Schloter M., et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature,2006,442(7104):806-809.
    [21]Bai Y.H., Sun Q.H., Wen D.H., et al. Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems [J]. FEMS Microbiology Ecology,2012,80(2):323-330.
    [22]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [23]McCarty P.L. Stoichiometry of biological reactions[M].1972.
    [24]彭永臻,孙洪伟,杨庆.短程硝化的生化机理及其动力学[J].环境科学学报,2008,28(5):817-824.
    [25]McCarty P.L., Beck L., Amant P.S. Biological denitrification of wastewaters by addition of organic materials [M].1969.
    [26]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-19.
    [27]Rittmann B.E., Langeland W.E. Simultaneous denitrification with nitrification in single-channel oxidation ditches[J]. Journal (Water Pollution Control Federation),1985, 57(4):300-308.
    [28]Broda E. Two kinds of lithotrophs missing in nature[J]. Z AllgMicrobiol,1977,17(6): 491-493.
    [29]Mulder A., Van de Graaf A.A., Robertson L.A., et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995, 16(3):177-183.
    [30]Van de Graaf A. A., Mulder P., de Bruijn P., et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology,1995,61(4): 1246-1251.
    [31]郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):75-77.
    [32]Strous M., Heijnen J.J., Kuenen J.G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [33]Kartal B., Maalcke W.J., de Almeida N.M., et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature,2011,479(7371):127-130.
    [34]Terada A., Zhou S., Hosomi M. Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment:a review[J]. Clean Technologies and Environmental Policy,2011,13(6):759-781.
    [35]郑平,张蕾.厌氧氨氧化菌的特性与分类[J].浙江大学学报(农业与生命科学版),2009,35(5):473-481.
    [36]Kuypers M.M.M., Sliekers A.O., Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature,2003,422(6932):608-611.
    [37]Amano T., Yoshinaga I., Okada K., et al. Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in japan[J]. Microbes and Environments,2007,22(3):232-242.
    [38]Galan A., Molina V., Thamdrup B., et al. Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography,2009,56(16):1125-1135.
    [39]Risgaard-Petersen N., Meyer R.L., Schmid M., et al. Anaerobic ammonium oxidation in an estuarine sediment[J]. Aquatic Microbial Ecology,2004,36(3):293-304.
    [40]Dalsgaard T., Canfield D.E., Petersen J., et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature,2003,422(6932): 606-608.
    [41]Devol A.H. Solution to a marine mystery[J]. Nature,2003,422(6932):575-576.
    [42]Dale O.R., Tobias C.R., Song B.K. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary [J]. Environmental Microbiology,2009,11(5):1194-1207.
    [43]Humbert S., Tarnawski S., Fromin N., et al. Molecular detection of anammox bacteria in terrestrial ecosystems:distribution and diversity[J]. ISME Journal,2010,4(3):450-454.
    [44]Zhang Y., Ruan X.H., den Camp H., et al. Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China) [Jj. Environmental Microbiology,2007,9(9):2375-2382.
    [45]Zhu G.B., Wang S.Y., Wang Y., et al. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. ISME Journal,2011,5(12):1905-1912.
    [46]Siegrist H., Reithaar S., Koch G., et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J]. Water Science and Technology,1998,38(8-9):241-248.
    [47]Zhu G, Wang S., Feng X., et al. Anammox Bacterial Abundance, Biodiversity and Activity in a Constructed Wetland[J]. Environmental Science & Technology,2011, 45(23):9951-9958.
    [48]孙红芳.短程硝化-厌氧氨氧化联合工艺处理含氨废水的试验研究[D].西安建筑科技大学,2008.
    [49]Kartal B., Kuenen J.G., van Loosdrecht M.C.M. Sewage Treatment with Anammox[J]. Science,2010,328(5979):702-703.
    [50]曹建平,杜兵,刘寅,等.常温亚硝化-厌氧氨氧化工艺对淀粉废水生物脱氮的研究[J].给水排水,2008,34(11):175-179.
    [51]廖德祥,吴永明,李小明,等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J].环境科学,2006,27(9):1776-1780.
    [52]孙红芳,吕永涛,白平,等.短程硝化-厌氧氨氧化联合工艺处理含氨废水的研究[J].中国给水排水,2009,25(3):37-41.
    [53]Joss A., Salzgeber D., Eugster J., et al. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR[J]. Environmental Science & Technology,2009,43(14):5301-5306.
    [54]Vlaeminck S.E., Terada A., Smets B.F., et al. Nitrogen Removal from Digested Black Water by One-Stage Partial Nitritation and Anammox[J]. Environmental Science & Technology,2009,43(13):5035-5041.
    [55]Vilar A., Eiroa M., Kennes C., et al. The SHARON process in the treatment of landfill leachate[J]. Water Science and Technology,2010,61(1):47-52.
    [56]Feng Y.J., Tseng S.K., Hsia T.H., et al. Aerated membrane-attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process[J], Journal of Chemical Technology and Biotechnology,2008, 83(1):6-11.
    [57]Feng Y.J., Tseng S.K., Hsia T.H., et al. Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration Bioreactor[J]. Journal of Bioscience and Bioengineering,2007,104(3): 182-187.
    [58]Ganigue R., Gabarro J., Sanchez-Melsio A., et al. Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process[J]. Bioresource Technology,2009,100(23):5624-5632.
    [59]Ganigue R., Lopez H., Balaguer M.D., et al. Partial ammonium oxidation to nitrite of high ammonium content urban land fill leachates[J]. Water Research,2007,41(15): 3317-3326.
    [60]马富国,张树军,曹相生,等.部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液[J].中国环境科学,2009,29(2):219-224.
    [61]刘成良,郑祖芬,李春来.厌氧氨氧化工艺处理高盐含氮废水的研究[J].桂林电子科技大学学报,2009,29(4):303-307.
    [62]Qiao S., Yamamoto T., Misaka M., et al. High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation-anammox process[J]. Biodegradation,2010,21(1):11-20.
    [63]Shinohara T., Qiao S., Yamamoto T., et al. Partial nitritation treatment of underground brine waste with high ammonium and salt content[J]. Journal of Bioscience and Bioengineering,2009,108(4):330-335.
    [64]Yamamoto T., Takaki K., Koyama T., et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox [J]. Bioresource Technology,2008,99(14):6419-6425.
    [65]李松良,林华东,王鹏.生物脱氮的短程硝化反硝化及影响因素[J].能源环境保护,2007,21(4):16-19+22.
    [66]齐京燕,李旭东,曾抗美,等.基于ANAMMOX的养猪场废水亚硝化过程研究[J].中国给水排水,2007,23(21):10-14.
    [67]邱钰棋.匹配厌氧氨氧化的亚硝化工艺处理养猪废水的试验研究[D].西南交通大学,2008.
    [68]de Graaff M.S., Zeeman G, Temmink H., et al. Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide[J]. Water Research, 2010,44(7):2171-2178.
    [69]Yoo H. Nitrogen removal from synthetic wastewater by simultaneus nitrification and denitrifieation via nitrite in an irrtemittently-aerated reaetor[J]. Water Research,1999, 33(1):146-149.
    [70]王志盈,刘超翔,彭党聪.高浓度下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(1):1-7.
    [71]Ganigue R., Lopez H., Ruscalleda M., et al. Operational strategy for a partial nitritation-sequencing batch reactor treating urban landfill leachate to achieve a stable influent for an anammox reactor[J]. Journal of Chemical Technology and Biotechnology, 2008,83(3):365-371.
    [72]夏文文.好氧颗粒污泥短程硝化反硝化脱氮研究[D].南京;南京理工大学,2007.
    [73]Furukawa K., Inatomi Y., Qiao S., et al. Innovative treatment system for digester liquor using anammox process[J]. Bioresource Technology,2009,100(22):5437-5443.
    [74]康淑琴.短程硝化—厌氧氨氧化工艺处理高氮废水的研究[D].2008.
    [75]曹建平.基于亚硝化和厌氧氨氧化的新型生物脱氮技术的应用研究[D].北京市环境保护科学研究院,2007.
    [76]李斌.序批式活性污泥SBR系统内的短程硝化及特性试验研究[D].西安建筑科技大学,2004.
    [77]Li H., Zhou S., Huang G, et al. Achieving stable partial nitritation using endpoint pH control in an SBR treating landfill leachate[J]. Process Safety and Environmental Protection,2013,91(4):285-294.
    [78]金仁村,阳广凤,马春,等.乙酸钠和无机盐对部分亚硝化反应器运行性能的影响[J].环境科学学报,2010,30(3):504-512.
    [79]王欢,裴伟征,李旭东,等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J].环境科学,2009,30(3):815-821.
    [80]Li H., Zhou S., Huang G, et al. Partial nitritation of landfill leachate with varying influent composition under intermittent aeration conditions[J]. Process Safety and Environmental Protection,2012, http://dx.doi.Org/10.1016/j.psep.2012.05.009.
    [81]Liang Z., Liu H.X. Control factors of partial nitritation for landfill leachate treatment[J]. Journal of Environmental Sciences-China,2007,19(5):523-529.
    [82]Xu Z.Y., Zeng G.M., Yang Z.H., et al. Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification[J]. Bioresource Technology,2010,101(1):79-86.
    [83]宋学起,彭永臻,王淑莹,等.化学物质对硝化细菌的选择性抑制[J].北京工业大学学报,2005,31(3):293-297.
    [84]Jubany I., Lafuente J., Baeza J.A., et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements[J]. Water Research,2009,43(11): 2761-2772.
    [85]Tsushima I., Ogasawara Y., Kindaichi T., et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Research,2007,41(8): 1623-1634.
    [86]Tang C.J., Zheng P., Mahmood Q., et al. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge [J]. Journal of Industrial Microbiology & Biotechnology,2009,36(8):1093-1100.
    [87]Li H., Zhou S., Ma W., et al. Fast start-up of ANAMMOX reactor:Operational strategy and some characteristics as indicators of reactor performance[J]. Desalination,2012,286: 436-441.
    [88]Strous M., vanGerven E., Kuenen J.G., et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
    [89]Fux C., Boehler M., Huber P., et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J]. Journal of Biotechnology,2002,99(3):295-306.
    [90]李伙生,周少奇,孙艳波.2种UASB的ANAMMOX与反硝化协同作用对比研究[J].环境工程学报,2010,4(2):247-252.
    [91]孙艳波,周少奇,李伙生,等.氮素负荷及高温冲击对UASB-ANAMMOX反应器的运行影响[J].化工进展,2009,28(9):1672-1676.
    [92]Cema G., Szatkowska B., Plaza E., et al. Nitrogen removal rates at a technical-scale pilot plant with the one-stage partial nitritation/Anammox process[J]. Water Science and Technology,2006,54(8):209-217.
    [93]赵志宏.厌氧氨氧化微生物颗粒化的启动研究及因素分析[D].湖南大学,2007.
    [94]Kuenen J.G., Jetten M.S.M. Extraordinary anaerobic ammonium oxidizing bacteria [J]. ASM News,2001,67(9):456-463.
    [95]Dapena-Mora A., Van Hulle S.W.H., Campos J.L., et al. Enrichment of Anammox biomass from municipal activated sludge:experimental and modelling results [J]. Journal of Chemical Technology and Biotechnology,2004,79(12):1421-1428.
    [96]唐崇俭,郑平,陈建伟,等.基于基质浓度的厌氧氨氧化工艺运行策略[J].化工学 报,2009,60(3):718-725.
    [97]an der Star W.R.L., Abma W.R., Blommers D., et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163.
    [98]van Dongen U., Jetten M.S.M., van Loosdrecht M.C.M. The SHARON(?)-Anammox(?) process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001,44(1):153-160.
    [99]唐崇俭,郑平,陈建伟,等.不同接种物启动Anammox反应器的性能研究[J].中国环境科学,2008,28(8):683-688.
    [100]唐崇俭,郑平,汪彩华,等.高负荷厌氧氨氧化EGSB反应器的运行及其颗粒污泥的ECP特性[J].化工学报,2010,61(3):732-7397
    [101]唐崇俭,郑平,陈建伟,等.中试厌氧氨氧化反应器的启动与调控[J].生物工程学报,2009,25(3):406-412.
    [102]吴永华,王劲,崔力明.硝化-厌氧氨氧化组合反应器的运行和评价[J].工业用水与废水,2004,35(2):10-13.
    [103]陈旭良,郑平,金仁村,等.味精废水厌氧氨氧化生物脱氮的研究[J].环境科学学报,2007,27(5):747-752.
    [104]Liang Z., Liu J.X., Li J. Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere,2009, 74(10):1315-1320.
    [105]郑平,吴明生,金仁村.有机物对ANAMMOX反应器运行性能的影响[J].环境科学学报,2006,26(7):1087-1092.
    [106]Guven D., Dapena A., Kartal B., et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2005,71(2):1066-1071.
    [107]吕永涛,陈祯,吴红亚,等.有机物浓度对厌氧氨氧化脱氮性能影响试验研究[J].环境工程学报,2009,3(7):1189-1192.
    [108]Liang Z., Liu J.X. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system[J]. Journal of Hazardous Materials,2008,151(1):202-212.
    [109]Ni S.-Q., Sung S., Yue Q.-Y., et al. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor[J]. Ecological Engineering,2012,38(1):30-36.
    [110]Chen J.W., Ji Q.X., Zheng P., et al. Floatation and control of granular sludge in a high-rate anammox reactor[J]. Water Research,2010,44(11):3321-3328.
    [111]Ma B., Zhang S., Zhang L., et al. The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage[J]. Bioresource Technology,2011,102(17): 8331-8334.
    [112]宫玥,吴立波.厌氧氨氧化工艺在废水脱氮领域中的应用进展[J].中国沼气,2007,25(5):3-7.
    [113]宋国梁.SHARON-ANAMMOX工艺处理高氨氮猪场废水厌氧消化液[D].2007.
    [114]王欢,李旭东,曾抗美.猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究[J].环境科学,2009,30(1):114-119.
    [115]陈亮.厌氧氨氧化处理低碳高氮废水研究[D].湖南农业大学,2008.
    [116]Ahn Y.H., Hwang I.S., Min K.S. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste[J]. Water Science and Technology,2004,49(5-6): 145-153.
    [117]冯国光.城市生活垃圾老龄填埋场渗滤液的脱氮研究[D].2006.
    [118]何岩,周恭明,赵由才,等.亚硝酸型硝化—厌氧氨氧化联合工艺处理“中老龄”垃圾渗滤液[J].给水排水,2006,32(10):43-46.
    [119]赵宗升,李炳伟,刘鸿亮,等.高氨氮渗滤液处理的ANAMMOX A2/O工艺研究[J].环境科学,2003,24(6):121-124.
    [120]郭勇,杨平,伍勇.生物流化床厌氧氨氧化脱氮处理垃圾渗滤液的研究[J].环境污染治理技术与设备,2004,5(8):19-22.
    [121]陈旭良.短程硝化—厌氧氨氧化工艺处理味精废水的研究[D].浙江大学,2006.
    [122]刘杰,杨洋,左剑恶,等.亚硝化与厌氧氨氧化串联工艺处理高氮低碳废水的研究进展[J].中国沼气,2009,27(3):13-18.
    [123]吕艳丽,单明军,王旭,等.短程硝化-厌氧氨氧化处理焦化废水的研究[J].冶金能源,2007,26(5):55-58+62.
    [124]Wang C.C., Lee P.H., Kumar M., et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J]. Journal of Hazardous Materials,2010,175(1-3):622-628.
    [125]Kumar M., Lin J.G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues [J]. Journal of Hazardous Materials, 2010,178(1-3):1-9.
    [126]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [127]Laguna A., Ouattara A., Gonzalez R.O., et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge [J]. Water Science and Technology,1999,40(8):1-8.
    [128]Anthonisen A., Loehr R., Prakasam T., et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal (Water Pollution Control Federation),1976,48(5):835-852.
    [129]Hidaka T., Yamada H., Kawamura M., et al. Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2002,45(12):181-188.
    [130]Pellicer-Nacher C., Sun S.P., Lackner S., et al. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration[J]. Environmental Science & Technology,2010,44(19): 7628-7634.
    [131]Tang C.-J., Zheng P., Wang C.-H., et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research,2011,45(1):135-144.
    [132]Wett B. Development and implementation of a robust deammonification process[J]. Water Science and Technology,2007,56(7):81-88.
    [133]Ahn J.H., Yu R., Chandran K. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification Bioreactor[J]. Biotechnology and Bioengineering,2008,100(6):1078-1087.
    [134]Ahn J.H., Kwan T., Chandran K. Comparison of Partial and Full Nitrification Processes Applied for Treating High-Strength Nitrogen Wastewaters:Microbial Ecology through Nitrous Oxide Production[J]. Environmental Science & Technology,2011,45(7): 2734-2740.
    [135]Kim J.-H., Guo X., Park H.-S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation[J]. Process Biochemistry, 2008,43(2):154-160.
    [136]Liu Y.Q., Tay J.H. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors[J]. Enzyme and Microbial Technology,2007,41(4): 516-522.
    [137]Ganigue R., Gabarro J., Lopez H., et al. Combining partial nitritation and heterotrophic denitritation for the treatment of landfill leachate previous to an anammox reactor [J]. Water Science and Technology,2010,61(8):1949-1955.
    [138]Guo H.Y., Zhou J.T., Su J., et al. Integration of nitrification and denitrification in airlift bioreactor[J]. Biochemical Engineering Journal,2005,23(1):57-62.
    [139]Gabarro J., Ganigue R., Gich F., et al. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration[J]. Bioresource Technology,2012,126:283-289.
    [140]Ga C.H., Ra C.S. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment[J]. Journal of Hazardous Materials,2009,172(1):61-67.
    [141]Won S.G, Ra C.S. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)-and ORP-time profiles[J]. Water Research,2011, 45(1):171-178.
    [142]Gao D., Peng Y., Li B., et al. Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology,2009,100(7):2298-2300.
    [143]Rittmann B.E., McCarty P.L. Environmental biotechnology[M]. McGraw-Hill Boston, 2001.
    [144]Liang Z., Han Z., Yang S., et al. A control strategy of partial nitritation in a fixed bed biofilm reactor[J]. Bioresource Technology,2011,102(2):710-715.
    [145]Sinha B., Annachhatre A.P. Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM[J]. Bioresource Technology,2007,98(18):3602-3610.
    [146]Tokutomi T. Operation of a nitrite-type airlift reactor at low DO concentration[J]. Water Science and Technology,2004,49(5-6):81-88.
    [147]Akgul D., Aktan C., Yapsakli K., et al. Treatment of landfill leachate using UASB-MBR-SHARON-Anammox configuration [J]. Biodegradation,2012,1-14.
    [148]Holman J.B., Wareham D.G COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process [J]. Biochemical Engineering Journal, 2005,22(2):125-133.
    [149]Van Hulle S.W.H., Vandeweyer H.J.P., Meesschaert B.D., et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J]. Chemical Engineering Journal,2010,162(1):1-20.
    [150]Sri Shalini S., Joseph K. Nitrogen management in landfill leachate:Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process[J]. Waste Management,2012,32(12):2385-2400.
    [151]Strous M., Kuenen J.G., Jetten M.S.M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [152]van der Star W.R.L., Abma W.R., Blommers D., et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163.
    [153]Tang C.J., Zheng P., Zhang L., et al. Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents[J]. Chemosphere, 2010,79(6):613-619.
    [154]Van de Graaf A.A., de Bruijn P., Robertson L.A., et al. Autotrophic growth of anaer obic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology,1996. 142(8):2187-2196
    [155]Wang T., Zhang H.M., Gao D.W., et al. Enrichment of Anammox bacteria in seed sludges from different wastewater treating processes and start-up of Anammox process[J]. Desalination,2011,271(1-3):193-198.
    [156]Ni S.-Q., Gao B.-Y, Wang C.-C., et al. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules [J]. Bioresource Technology,2011,102(3):2448-2454.
    [157]Bagchi S., Biswas R., Nandy T. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR[J]. Journal of Industrial Microbiology & Biotechnology,2010,37(9):943-952.
    [158]Wang T., Zhang H.M., Yang F.L., et al. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor[J]. Bioresource Technology, 2009,100(9):2501-2506.
    [159]Tang C.J., Zheng F., Mahmood Q. The shear force amendments on the slugging behavior of upflow Anammox granular sludge bed reactor[J]. Separation and Purification Technology,2009,69(3):262-268.
    [160]Liu S.T., Yang F.L., Xue Y., et al. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor[J]. Bioresource Technology,2008,99(17):8273-8279.
    [161]Liu S.T., Yang F.L., Gong Z., et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal [J]. Bioresource Technology,2008,99(15):6817-6825.
    [162]Zhang L., Yang J.C., Ma Y.G., et al. Treatment capability of an up-flow anammox column reactor using polyethylene sponge strips as biomass carrier[J]. Journal of Bioscience and Bioengineering,2010,110(1):72-78.
    [163]Strous M., Pelletier E., Mangenot S., et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature,2006,440(7085): 790-794.
    [164]Kuenen J.G. Anammox bacteria:from discovery to application[J]. Nature Reviews Microbiology,2008,6(4):320-326.
    [165]Chen T.T., Zheng P., Tang C.J., et al. Performance of ANAMMOX-EGSB reactor[J]. Desalination,2011,278(1-3):281-287.
    [166]唐崇俭.厌氧氨氧化工艺特性与控制技术的研究[D].浙江大学,2011.
    [167]Tang C.-J., Zheng P., Hu B.-L., et al. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels[J]. Journal of Hazardous Materials, 2010,181(1-3):19-26.
    [168]Isaka K., Sumino T., Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions [J]. Journal of Bioscience and Bioengineering,2007,103(5):486-490.
    [169]Lotti T., van der Star W.R.L., Kleerebezem R., et al. The effect of nitrite inhibition on the anammox process[J]. Water Research,2012,46(8):2559-2569.
    [170]任宏洋,张代钧,丛丽影,等.厌氧氨氧化反应器启动及污泥产率系数测定[J].重庆大学学报,2008,31(1):88-92.
    [171]Rittmann B.E., McCarty P.L. Environmental biotechnology:principles and applications[M]. McGraw-Hill New York,2001.
    [172]Molinuevo B., Garcia M.C., Karakashev D., et al. Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance [J]. Bioresource Technology,2009,100(7):2171-2175.
    [173]Jin R.-C., Yang G.-F., Zhang Q.-Q., et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research,2013,47(3):1459-1469.
    [174]Jetten M.S.M., Strous M., van de Pas-Schoonen K.T., et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews,1998,22(5):421-437.
    [175]吴彦瑜Fenton氧化和MAP化学沉淀工艺深度处理垃圾渗滤液[D].华南理工大学,2011.
    [176]Wu Y, Zhou S., Chen D., et al. Transformation of metals speciation in a combined landfill leachate treatment[J]. Science of the Total Environment,2011,409(9): 1613-1620.
    [177]Ruscalleda M., Puig S., Mora X., et al. The effect of urban landfill leachate characteristics on the coexistence of anammox bacteria and heterotrophic denitrifiers[J]. Water Science and Technology,2010,61(4):1065-1071.
    [178]Chen T.-T., Zheng P., Shen L.-D., et al. Dispersal and control of anammox granular sludge at high substrate concentrations[J]. Biotechnology and Bioprocess Engineering, 2012,17(5):1093-1102.
    [179]Park H., Rosenthal A., Jezek R., et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities[J]. Water Research,2010,44(17):5005-5013.
    [180]Hermansson A., Lindgren P.E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR[J]. Applied and Environmental Microbiology,2001,67(2): 972-976.
    [181]Cebron A., Gamier J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria:Detection, quantification and growth along the lower Seine River (France)[J]. Water Research,2005,39(20):4979-4992.
    [182]邵军,孙海美,孙卫玲,等.垃圾渗滤液处理系统中微生物群落结构变化研究[J].北京大学学报(自然科学版),2010,46(3):435441.
    [183]刘杰.亚硝化—厌氧氨氧化处理垃圾渗滤液一级厌氧出水的研究[D].2010.
    [184]Liu J., Zuo J.E., Yang Y., et al. An autotrophic nitrogen removal process:Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachatee[J]. Journal of Environmental Sciences-China,2010, 22(5):777-783.
    [185]Cho S., Fujii N., Lee T., et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technology, 2011,102(2):652-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700