硅酸盐催化剂制备及其催化臭氧氧化水中氯代硝基苯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规的饮用水处理工艺对水体中有机污染物的去除效果甚微。目前国内外虽然已经采取一些强化去除技术去除水体中的有机污染物,如吸附技术、膜分离技术、生物强化技术和零价金属还原技术等,这些技术的去除能力通常比较弱、工艺造价比较高。因此寻找一种新型的处理技术去除水体中的有机污染物是十分必要的。
     论文以实验室制备的四种金属硅酸盐作为催化剂,分别对它们的物理性质和表面性质进行了表征。在实验室静态实验和连续流实验等不同工艺条件下,分别考察了四种催化剂催化臭氧氧化去除模拟水体中痕量氯代硝基苯(Chloronitrobenzenes)的催化活性,筛选出催化活性最高的催化剂,并对其在不同工艺条件下催化臭氧氧化水体中痕量氯代硝基苯的活性进行了详细的研究;并考察了该催化剂催化臭氧氧化的机理。
     实验室成功的制备了硅酸铁、硅酸锰、硅酸铜和硅酸锌四种金属硅酸盐。四种硅酸盐材料结构中包含了很多纳米级的氧化物颗粒。通过检测发现四种催化剂对气体均具有一定的吸附能力和容量,其中硅酸锌的吸附能力最大,依次为硅酸铁、硅酸锰和硅酸铜。四种催化剂表面均含有大量的表面羟基和吸附水,其中硅酸锌表面羟基密度最大,四种催化剂的零电荷电位均在中性范围内。
     无论在去离子水模拟配水的静态实验中,还是在自来水模拟配水的连续流实验中,硅酸铁、硅酸锰、硅酸铜和硅酸锌均具有良好的催化活性,其中硅酸锌的催化活性最高,反应1min可以使CNBs的去除率达到90%以上。四种催化剂对氯代硝基苯的吸附去除能力均较差,吸附24 h后,硅酸锰和硅酸铜对氯代硝基苯没有任何去除效果,硅酸铁对氯代硝基苯的去除效果为9%,硅酸锌的吸附去除效果为15%。四种催化剂的酸碱稳定性均较好。
     分别研究了硅酸锌在静态实验(去离子水模拟配水)和连续流实验(自来水模拟配水)中催化臭氧氧化水中氯代硝基苯的效能和反应过程的影响因素。结果表明,无论在静态实验或者连续流实验中,氯代硝基苯的去除率均随着臭氧浓度和催化剂投加量的增加而增大;在静态实验中,在臭氧投加量为0.8 mg/L时、硅酸锌投加量为300 mg/L时,反应体系对初始浓度为200μg/L的氯代硝基苯的去除率最高,反应15min后,硝基氯苯的去除率达到99%以上;而在连续流实验中,在臭氧化气体浓度为3.2 mg/L、气体流速0.4 L/min时,硅酸锌催化臭氧氧化对初始浓度50μg/L的氯代硝基苯的去除率最高,在水力停留时间为20 min时,可以使硝基氯苯的去除率达到85%以上;随着水体背景趋于复杂,催化剂促进氯代硝基苯降解的能力均显著下降;水体中Ca~(2+)、Mg~(2+)、Na~+、K~+和NO3-对硅酸锌催化臭氧氧化去除氯代硝基苯有微弱的影响,能够使硝基氯苯的去除率降低10%左右;水中无机阴离子对硅酸锌催化臭氧氧化降解氯代硝基苯的效果有不同程度的影响,其中,氯离子和磷酸根离子对硅酸锌臭氧氧化去除氯代硝基苯的抑制作用明显,可以使硝基氯苯的去除率降低60%左右;HCO_3~-离子浓度和腐植酸含量对催化臭氧氧化去除氯代硝基苯均有影响,但与静态实验(去离子水模拟配水)相比,连续流实验(自来水模拟配水)中氯代硝基苯的去除率受HCO_3~-和腐植酸浓度的影响较小可以忽略不计;随着硅酸锌烘制温度的升高,催化剂的催化活性不断下降;硅酸锌在多次连续使用后仍可保持较高的催化活性。
     通过自由基抑制实验和电子自旋共振(ESR)分析,证明羟基自由基是硅酸锌催化臭氧氧化氯代硝基苯过程中产生的重要活性物种。溶液pH值对硅酸锌催化臭氧氧化过程的影响证明,硅酸锌表面的羟基能够加速臭氧分解产生羟基自由基。络合性无机阴离子对硅酸锌催化臭氧氧化过程的影响进一步证明,在硅酸锌催化臭氧氧化过程中表面羟基起着非常重要的作用。对硅酸锌中主要成分的催化性能进行了对比研究,认为硅酸锌中的ZnO和Zn-O-Si络合体在催化臭氧氧化去除氯代硝基苯的过程中起着重要的作用。
In the traditional water treatment process, the trace organic pollutants in aqueous solution is difficult to be removed. Many strategies such as, adsorption, membrane seperation, bioaugmentation, zero-valent metal reduction and so on, have been carried out to solve the pollutants problem in aqueous solution. However, many drawbacks of these strategies such as low removal efficiency, high cost, make them difficult to be utilized in the practical water treatment. So, exploring new strategy in drinking water treatment to resolve trace organic pollutants problem in aqueous solution is necessary.
     Four kinds of common transitional metal silicate, prepared in laboratory, were used in the paper as ozone catalyst. Physical structure and surface properties of the four kinds of catalysts were characterized in the study. Static experiments and continuous flow experiments were conduct to study the catalytic activity of the four kinds of catalysts for ozonation of chloronitrobenzenes (CNBs). Then, the highest catalytic activity catalyst was used to study the catalytic properties in the catalytic oxidation of CNBs in aqueous solution.
     The catalysts prepared in the laboratory were iron silicate, manganese silicate, copper silicate and zinc silicate. TEM analysis shown that all of them contain many nano-sized oxide. Most materials have certain ability and capacity for the adsorption of gas, moreover, zinc silicate have the maximum adsorption capacity, followed by iron silicate, manganese silicate and copper silicate. FTIR analysis results shown that, hydroxyl groups was the mainly functional groups on the surface of the four catalysts. Zinc silicate has the maximum hydroxyl density. In addition, the zero charge of four catalysts are in the neutral range.
     Iron silicate, manganese silicate, zinc silicate, copper silicate exhibited good catalytic activity in the continuous flow experiments and static experiments. However, no matter in what process, the zinc silicate also exhibited highest catalytic activity. The adsorption capacity of four catalysts were very poor. After 24h adsorption, the CNBs removal efficiency were less than 5%. The pH stability of the four catalysts was well.
     The efficiency and affecting factors of zinc silicate catalytic ozonation of CNBs were studied in the preocesses of static experiments and continuous flow experiments, respectively. Experiment results showed that no matter in what process, the removal of CNBs increased with the increasing of initial concentration of ozone, catalyst dosage, water purity. In the static experiments, under the condition of ozone dosage 0.8mg/L, zinc silicate dosage 300mg/L, the initial concentration of CNBs was 200μg/L, the removal efficiency of CNBs in deionized water was best. However, in the continuous flow experiments, when the initial concentration of CNBs was 50μg/L, the removal efficiency of CNBs in tap water was best.
     Effect of Ca~(2+)、Mg~(2+)、Na~+、K~+ and NO3-on the catalytic ozonation of CNBs were very less. The removal efficiency of CNBs was decreased with the increase of the Cl- and PO43-. The ozonation of CNBs were slightly inhibited by the SO42-. For the HCO_3~- was the hydroxyl inhibitors, so in aqueous solution, it could inhibit the zinc silicate catalytic ozonation of CNBs. The ramoval efficiency of CNBs increased with the decrease concentration of humic acid, moreover, compared the process of static experiments in deionized water, the effect of HCO_3~- and humic acid were much less in the process of continuous flow experiments in tap water. With the increasing of the calcinated temperature, the catalytic activity of zinc silicate get weaker. After successive recycles, the catalytic activity of the zinc silicate kept stable.
     The mechanism of zinc silicate catalyzed ozonation of CNBs were carried out. Based on the tert-butanol inhibition test and ESR analysis, we conclused that in the process of zinc silicate catalytic oznation ,·OH was the activity species . The effect of anions concentration and solution pH on the catalytic ozonation confirmed that in the zinc silicate catalyzed ozonation of CNBs, hydroxyal groups which were on the surface of zinc silicate were the activity site.
引文
[1]叶少帆,王志伟,吴志超.微污染水源水处理技术研究进展和对策分析[J].水处理技术,2010,36(6): 22-28.
    [2] Weber J H, Wilson S A. The Isolation and Characterization of the Fulvic Acid and Humic Acid from River Water [J]. Water Research, 1975, 9(7): 1079-1084.
    [3] Pirbazari M. Physical chemical characterization five earthy-musty-smelling compounds [J]. Water Science and Technology, 1992, 25(2): 177-184.
    [4]刘晓茹,冯慧华,张燕.我国水环境有机污染现状及对策[J].水力技术监督, 2005,3(5): 58-60.
    [5]张焕坤,曹鹏,王潇潇.硝基芳烃化合物分析的现状及研究进展[C].河北省环境科学学会环境与健康论坛暨2008年学术年会论文集,2008: 334-338.
    [6]樊金红,徐文英,高廷耀.铁内电解法处理硝基苯类废水的机理与展望[J].水污染防治,2004,3(123):9-12.
    [7]郎佩珍,龙凤山,袁星,等.松花江中游(哨口-松花江村段)水中有毒有机物污染研究[J].环境科学进展,1993,6: 47-55.
    [8]赵珏,傅大放,曾苏.硝基芳香烃废水处理技术研究进展[J].环境污染治理技术与设备,2002,3: 31-35.
    [9]郎朗,张光明.饮用水水源及水厂内分泌干扰物污染分析[J].环境工程,2008,26(4): 60-63.
    [10] Trussel R R. Endocrine disruptors [J]. Journal of the American Water Works Association, 2001, 93(2): 58-65.
    [11]李小玥,赵宗升,葛士建,等.活性炭在不同浓度NaNO3溶液中对硝基苯的吸附[J].环境污染与防治,2010,2: 13-17.
    [12]沈渊玮,陆善忠.活性炭在水处理中的应用[J].工业水处理,2007,27(4): 13-16.
    [13]戴爱丽,徐玲,胡正信,等.应用粉末活性炭处理微污染原水的探讨[J].工业水处理,2005,25(12): 53-55.
    [14] LI L, Quinlivan A P. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon, 2002, 40: 205-210.
    [15]王生辉,张晓健李勇等.硝基苯污染源水的粉末活性碳处理技术研究[J].中国给水排水,2007,23: 1-5.
    [16] Rauthula M S, Srivastava V C. Studies on adsorption/desorption of nitrobenzene and humic acid onto/from activated carbon [J]. Chemical Engineering Journal, 2011, 168(1): 35-43.
    [17] Haghseresht F, Nouri S, Lu G Q M. Effects of carbon surface chemistry and solution pH on the adsorption of binary aromatic solutes [J]. Carbon, 2003, 41(5): 881-892.
    [18]罗春香.零价铁/厌氧微生物联合体系降解硝基苯及原理[D].湘潭市:湘潭大学市政工程学科硕士学位论文, 2010:8.
    [19] Newcombea G, Morrisona J, Hepplewhitea C.et al. Simultaneous adsorption of MIB and NOM onto activated carbon: II. Competitive effects[J]. Carbon, 2002, 40(1):2147-2156.
    [20] Ayranci E, Hoda N. Studies on removal of metribuzin, bromacil, 2,4- and atrazine from water by adsorption on high area carbon cloth[J]. Journal of Hazardous Materials, 2004, 112(1-2): 163-168.
    [21] Duan J, Wilson F, Graham N.et al. Adsorption of humic acid by powdered activated carbon in saline water conditions[J]. Desalination and Water Treatment, 2003, 151(1): 53-66.
    [22] Guo Z, Zheng S, Zheng Z.et al. Selective adsorption of p-chloronitrobenzene from aqueous mixture of p-chloronitrobenzene and o-chloronitrobenzene using HZSM-5 zeolite[J]. Water Research, 2005, 39(6): 1174-1182.
    [23] Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment[J]. Chemical Engineering Journal and the Biochemical Engineering Journal, 2010, 156(1): 11-24.
    [24] Salvestrini S, Sagliano P, Iovino P.et al. Atrazine adsorption by acid-activated zeolite-rich tuffs[J]Applied Clay Science 2010, 49(3): 330-335.
    [25] Dong Y, Wu D, Chen X.et al. Adsorption of bisphenol A from water by surfactant-modified zeolite[J].Journal of Colloid and Interface Science, 2010, 348(2): 585-590.
    [26]谭平华,林金清,肖春妹,等.膜技术在废水处理中的应用[J].江西化工, 2003,3(4): 33-37.
    [27] Jiri F, Smetana, John L, et al. Separation of methyl ethyl ketone from water by pervaporation using a silicalite membrane [J]. Journal of Membrane Science, 1996, 114(2): 127-130.
    [28] Park D, Nishiyam N, Egashira Y, et al. Separation of organic/water mixtures with silylated MCM-48 silica membranes [J]. Microporous and Mesoporous Materials, 2003, 66(2): 69-76.
    [29] Ma N, Quan X, Zhang Y, et al. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification [J]. Journal of Membrane Science, 2009, 335(1-2): 58-67.
    [30] Bowen W R, Teodora A, Doneva, et al. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes [J]. Journal of Membrane Science, 2002, 206: 417-429.
    [31] Mosqueda-Jimenez D B, Huck P M. Characterization of membrane foulants in drinking water treatment [J]. Desalination, 2006, 198(1-3): 173-182.
    [32] Ma N, Zhang Y, Quan X, et al. Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties[J]. Water Research, 2010, 44(20): 6104-6114.
    [33]杨居川,杨健.生物强化技术在废水处理中的研究进展[J].中国资源综合利用,2006,24(10): 24-26.
    [34] Britt M W, Jeppe L N, Kristian K. Influence of microbial activity on the stability of activated sludge flocs [J]. Colloids and Surfaces B: Biointerfaces, 2000, 18(2): 145-156.
    [35] Lafi W K, Al-Qodah Z. Combined advanced oxidation and biological treatment processes for removal of pesticides from aqueous solutions [J]. Journal of Hazardous Materials, 2006, B137(1): 489-497.
    [36] Gunnarsson L, Adolfsson-Erici M, Bj?rlenius B, et al. Comparison of six different sewage treatment processes—reduction of estrogenic substances and effects on gene expression in exposed male fish [J]. Science of the Total Environment, 2009, 4057(2): 5235-5242.
    [37]项硕,叶敏,徐向阳,等.氯代硝基苯类生产废水厌氧-好氧序列生物处理研究[J].浙江大学学报(农业与生命科学版), 2003, 2003(6): 195-200.
    [38] Orshansky F, Narkis N. Evaluation of toxic organics removal by simultaneous adsorption and hiodegradation [C]. Proceedings of the Industrial Waste Conference, 1997: 159-171.
    [39] Terauchi N, Ohtani T, Yamanaka K.et al. Studies on a Biological Filter for Musty Odor Removal in drinking Water Treatment Processes [J].Water Science and Technology, 1995, 1997(36): 12.
    [40] Mantzavinos D, Kassinos D, Parsons S A. Applications of advanced oxidation processes in wastewater treatment [J]. Water Research, 2009, 43 ( 16 ): 3901-3901.
    [41]张腾云,钟理,詹怀宇.污染治理中的高级氧化技术[J].南京师范大学学报(工程技术版),2004, 4(1): 16-19.
    [42]张旋,王启山.高级氧化技术在废水处理中的应用[J].水处理技术,2009,35(3): 18-22.
    [43]赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展[J].能源环境保护,2004,18(3): 5-8.
    [44] Caprio V, Insola A, Volpicelli G. Ozonation of Aqueous-Solutions of Nitrobenzene [J]. Ozone Science and Engineering, 1984, 6(2): 115-121.
    [45] Shen J , Chen Z , Xu Z, et al. Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation [J]. Journal of Hazardous Materials, 2008, 152: 1325-1331.
    [46] Ye M, Chen Z, Liu X, et al. Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene[J]. Journal of Hazardous Materials, 2009, 167: 1021-1027.
    [47] Zhang T, Li C, Ma J, et al. Surface hydroxyl groups of synthetic a-FeOOH in promoting·OH generation from aqueous ozone: Property and activity relationship [J]. Applied Catalysis B: Environmental, 2008, 82: 131-137.
    [48] Merle T, Pic J S, Manero M H, et al. Influence of activated carbons on the kinetics and mechanisms of aromatic molecules ozonation [J]. Catalysis Today, 2010, 151: 166-172.
    [49] Contreras S, Rodr′?guez M, Chamarro E, et al. UV- and UV/Fe (III)-enhanced ozonation ofnitrobenzene in aqueous solution[J]. Journal of Photochemistry and Photobiology A: Chemistry 2001, 142: 79-83.
    [50] Momani F A, Shawaqfah M, Shawaqfeh A. Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds Mohammad Al-Shannag [J]. Journal of Environmental Sciences, 2008, 20: 675-682.
    [51] Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal [J]. Environmental Science and Technology, 1996, 30: 153-160.
    [52] Dong J, Zhao Y, Zhao R, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. Journal of Environmental Sciences, 2010, 22(11): 1741-1747.
    [53] Kim Y H, Elizabeth R C. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons [J]. Environmental Science and Technology, 2000, 34(3): 2014-2017.
    [54] Tratnyek P G, Scherer M M, Deng B, et al. Effect of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminantsby zero-valent iron [J]. Water Research, 2001, 35(18): 4435-4443.
    [55] Keum Y S, Li Q X. Reduction of nitroaromatic pesticides with zero-valent iron [J]. Chemosphere, 2004, 54(3):255-263.
    [56] Thomas J M, Hernandez R, Kuo C-H. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation[J]. Journal of Hazardous Materials, 2008, 155( 1-2): 193-198.
    [57] Wang Z, Huang W, Fennell D E, et al. Kinetics of reductive dechlorination of 1, 2, 3, 4-TCDD in the presence of zero-valent zinc [J]. Chemosphere, 2008, 71(2): 360-368.
    [58] Choi H, Kim H. Reduction of 2, 4, 6-trichlorophenol with zero-valent zinc and catalyzed zinc[J]. Journal of Hazardous Materials, 2009, 166(2-3): 984-991.
    [59] Singer P C, Fiessinger F, Lepage W, et al. Trends in Ozonation [J]. Journal American Water Works Association, 1985, 77(8): 19-23.
    [60]王小丹.纳米粉体的化学沉淀法及溶胶凝胶法制备研究进展[J].广州化工, 2004,32(4): 5-8.
    [61]葛建华,王迎军,郑裕东,等.溶胶凝胶法在聚合物/无机纳米复合材料中的应用[J].材料科学与工程学报,2004,22(3): 442-445.
    [62]金云舟,钱君律,伍艳辉.溶胶-凝胶法制备催化剂的研究进展[J].工业催化, 2006,14(11): 60-63.
    [63]吕志果,郭振美.负载型非晶催化剂制备及应用技术新进展[J].工业催化, 2003,11(2): 46-49.
    [64] Ma J, Graham N J D. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances [J]. Water Research, 1999, 33(3): 785-793.
    [65] Ma J, Graham N J D. Prelomonary investigation of manganese-catalysed ozonation for the destruction of atrazine [J]. Ozone Science and Engineering, 1997, 19(3): 227-240.
    [66] Ma J, Graham N J D. Degradation of arazine by manganese-catalysed ozonation-influence of radical scavengers [J]. Water Research, 2000, 34(15): 3822-3828.
    [67] Andreozzi R, Insola A, Caprio V, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution [J]. Applied Catalysis A:general, 1996, 138(1): 75-81.
    [68] Andreozzi R, Insola A, Caprio V, et al. The kinetics of Mn (II)-catalysed ozonation of oxalic acid in aqueous solution [J]. Water Research, 1992, 26(7): 917-922.
    [69] Andreozzi R, Insola A, Caprio V, et al. The ozonation of pyruvic acid in aqueoussolutions catalyzed by suspended and dissolved manganese [J]. Water Research, 1998, 32(5): 1492-1496.
    [70] Andreozzi R, Caprio V, Marotta R, et al. Kinetic modeling of pyruvic acid ozonation in aqueous solutions catalyzed by Mn (II) and Mn (IV) ions [J]. Water Research, 2001, 35(1): 109-120.
    [71] Andreozzi R, Casale M S L, Marotta R, et al. N-methyl-p-aminophenol (metol) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples [J]. Water Research, 2000, 34(18): 4419-4429.
    [72] Mohammad A, Alsheyab, Aurelio H M. Comparative study of ozone and MnO2/O3 effects on the elimination of TOC and COD of raw water at the Valmayor station [J]. Desalination, 2007, 207(1-3) :179-183.
    [73] Tong S, Liu W, Leng W, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water [J]. Chemosphere, 2003, 50(10): 1359-1364.
    [74] Jung H, Kim J-W, Choi H, et al. Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation [J]. Applied Catalysis B: Environmental, 2008, 83: 208–213.
    [75] Beltra′n F J, Rivas F J, Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water [J]. Water Research, 2005, 39(15): 3553-3564.
    [76] Bradua C, Frunzab L, Mihalchea N, et al. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3 [J]. Applied Catalysis B: Environmental, 2008, 96(3-4): 548–556.
    [77] Jung H, Choi H. Catalytic decomposition of ozone and para-Chlorobenzoic acid (pCBA) in the presence of nanosized ZnO [J]. Applied Catalysis B: Environmental, 2006, 66(3-4): 288–294.
    [78] Huang W, Fang G, Wang C. A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water [J]. Colloids and Surfaces A: Physicochem, 2005, 260(1-3): 45-51.
    [79] Dong Y M, Wang G L, Jiang P P, et al. Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water [J]. Chinese Chemical Letters, 2011, 22(2): 209-212.
    [80] Sui M H, Sheng L, Lu K X, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activityApplied Catalysis B-Environmental, 2010, 96(1-2): 94-100.
    [81] Dong Y M, Jiang P P, Zhang A M. Catalytic Ozonation Degradation of Phenol inWater by Mesoporousα-FeOOH [J]. Chinese Journal of Inorganic Chemistry, 2009, 25(9): 1595-1600.
    [82]徐贞贞.过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士论文, 2009: 44.
    [83] Sui M, Sheng L, Lu K, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B: Environmental, 2010, 96(1-2): 94-100.
    [84] Nilesh N. oxidation of chlorobenzene by ozone and heterogeneous catalytic ozonation [C]. Hazardous and industrial wastes: proceeedings of the Twenty-seventh Mil-Atlantic Industrial Wastes conference, 1995: 371-382.
    [85] Yang L, Hu C, Nie Y, et al. Surface acidity and reactivity ofβ-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies[J]. Applied Catalysis B: Environmental, 2010, 97(3-4): 340-346.
    [86] Xu Z, Chen Z, Joll C, et al. Catalytic efficiency and stability of cobalt hydroxide for decomposition of ozone and p-chloronitrobenzene in water [J]. Catalysis Communications, 2009, 10(8): 1221-1225.
    [87] Xu Z, Chen Z, Ben Y, et al. Synthesis of hexagonalβ-Co(OH)2 nano-platelets with high catalytic activity via a low-temperature precipitation method [J]. Materials Letters, 2009, 63(13-14): 1210-1212.
    [88] Wang J, Zhou Y, Zhu W, et al. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC [J]. Journal of Hazardous Materials, 2009, 166(1): 502-507.
    [89] Legube B, Leitner N K V. Catalytic ozonation: a promising advanced oxidation technology for water treatment [J]. Catalysis Today, 1999, 53(1): 61-72.
    [90] Li L, Ye W, Zhang Q, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon [J]. Journal of Hazardous Materials, 2009, 170(411-416).
    [91] Villase?or J, Reyes P, Pecchi G. Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts [J]. Catalysis Today, 2002, 76(2-4): 121-131.
    [92] Rosal R, Gonzalo M S, Rodríguez A.et al. Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor [J]. Chemical Engineering Journal and the Biochemical Engineering Journal, 2010, 165(3): 806-812.
    [93] Pocostales P,álvarez P, Beltrán F J. Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water [J]. Chemical Engineering Journal, 2011, 168(3): 1289-1295.
    [94] Sano N, Yamamoto T, Yamamoto D, et al. Degradation of aqueous phenol by simultaneous use of ozone with silica-gel and zeolite [J]. Chemical Engineering and Processing, 2007, 46: 513-519.
    [95] Tong S, Shi R, Zhang H, et al. Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy)propionic acid, nitrobenzene and oxalic acid in water [J]. Journal of Environmental Sciences, 2010, 10: 1623-1628.
    [96] Komaguchi K, Sano T, Takehira K. Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite [J]. Applied Clay Science, 2006, 33(3): 247-259.
    [97]尹琳. Zn-粘土催化剂对染料废水的O3氧化降解性能的影响高效地质学报, 2000,6(2): 260-264.
    [98]曾庆福,李施夏.天然锰矿催化臭氧氧化降解水中4-氯酚的研究[J].环境污染与防治, 2004,26(4): 256-258.
    [99]关春雨,马军,唐升卿,等.蜂窝陶瓷催化臭氧氧化处理饮用水中试[J].中国给水排水,2006,22(5): 13-17.
    [100]鲁金凤,张涛,刘艳芳,等.负载型FeOOH催化臭氧氧化对HAAsFP的控制效果[J].中国给水排水,2010,26(19): 49-53.
    [101] Bader H, HoignéJ. Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4): 449-459.
    [102]徐贞贞.过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士论文, 2009: 24.
    [103] Rakness K, Gordon G, Langlais B, et al. Guideline for Measurement of Ozone Concentration in the Process Gas From an Ozone Generator [J]. Ozone Science and Engineering, 1996, 18: 209-229.
    [104] Munch J W, WinslowM, Wendelken S D, et al. EPA Method 556:Determination of Carbonyl Compounds in Drinking Water by Penta fluoro benzyblydroxylamine Derivatisation and Capillary Gas Chromatography with Electron Capture Detection. 1998: 1-37.
    [105]徐贞贞.过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士论文, 2009: 25-26.
    [106]徐贞贞.过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士论文,2009: 29.
    [107] Swedlund P J, Webster J G. Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption [J]. Water Research, 1999, 33(16): 3413-3422.
    [108] Xing S, Hu C, Qu J, et al. Characterization and Reactivity of MnOx Supported on Mesoporous Zirconia for Herbicide 2,4-D Mineralization with Ozone[J]. Environmental Science and Technology, 2008, 42(3-4): 3363-3368.
    [109] Owusu A Y. Physical-chemistry study of sodium silicate as a foundry sand binder [J]. Advances in Colloid and Interface Science, 1982, 18(1-2): 57-91.
    [110] Ali M, Zakaria E S, Ibrahim M M, et al. Synthesis, structure, dehydration transformations and ion exchange characteristics of iron-silicate with various Si and Fe contents as mixed oxides [J]. Polyhedron, 2008, 27(1): 429-439.
    [111] Muruganandham M, Wu J J. Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles [J]. Applied Catalysis B: Environmental, 2008, 80(1-2): 32-41.
    [112] Sing K S W, Everett D H, Haul R A, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 609-619.
    [113]魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式[J].地球科学进展,2000,15(1): 90-96.
    [114] Wang L Z, Shi J L, Yu J, et al. Synthesis of nanostructured mesoporous silica materials containing manganese [J]. Nanostructured Materials and Hybrid Composites for Gas Sensors and Biomedical Applications, 1998, 10(8): 1289-1299.
    [115]黎先财,杨沂凤,赖志华,等. XPS法研究稀土对浸渍和溶胶-凝胶法制备催化剂的影响分析实验室,2010,125(1): 105-109.
    [116] Aramaki K. Synergistic inhibition of zinc corrosion in 0.5 M NaCl by combination of cerium (III) chloride and sodium silicate [J]. Corrosion Science, 2002, 44(1): 81-86.
    [117] Jung C. Surface properties of super paramagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil [J]. Magnetic Resonance in Chemistry, 1995, 13(1): 75-91.
    [118] Reddy B M, Chowdhury B, Smirniotis P G.. An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides [J]. Applied Catalysis A:general, 2001, 211(4): 19-30.
    [119] Xu Y, Lei B, Guo L, et al. Preparation, characterization and photocatalytic activity of manganese doped TiO2 immobilized on silica gel [J]. Journal of Hazardous Materials, 2008, 160(3): 78-82.
    [120] Jason F W, Gar B H. Surface Characterization Study of Thermal Decomposition of AgO [J]. Journal of Physical Chemistry, 1994, 98(34): 8519-8524.
    [121]张利文,于铁柱,王强,等. Ln0.5Sr0.5CoO3阴极薄膜材料的XRD和XPS研究[J].稀土,2008,29(5): 5-9.
    [122] Qi F, Xu B, Chen Z, et al. Ozonation catalyzed by the raw bauxite for the degradation of 2, 4, 6-trichloroanisole in drinking water[J]. Journal of Hazardous Materials, 2009, 168(3): 246-252.
    [123]梁诚.硝基氯苯生产现状与市场分析[J].石油化工技术经济,2007,23(2): 23-26.
    [124]陈忠林,徐贞贞,贲岳,等. ZnOOH/O3催化臭氧化体系去除水中痕量对氯硝基苯[J].环境科学,2007,28(11): 2550-2556.
    [125]叶苗苗,陈忠林,沈吉敏,等. La2O3和CeO2的制备及催化臭氧氧化对氯硝基苯[J].哈尔滨工业大学学报,2009,41(4): 77-80.
    [126] Kasprzyk-Hordern B, Zió?ek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669.
    [127]王凯雄.水化学[M].北京:化学工业出版社,2001: 43.
    [128] Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutions acting as promotes and inhibitors of radical chain reactions [J]. Environmental Science and Technology, 1985, 19(12): 1206-1213.
    [129] Xiong F, Graham N J D. Removal of atrazine through ozonation in the presence of humic substances [J]. Ozone Science and Engineering, 1992, 14(3): 263-268.
    [130]Beltran F J.水和废水的臭氧反应动力学[M].中国建筑工业出版社, 2007.
    [131]Li Z B, Xu X Y, Zhu L. Ozonation of chloronitrobenzenes in aqueous solution: kinetics and mechanism[J]. Society of Chemical Industry, 2009, 84(2): 167-175.
    [132]Qi F, Xu B B, Chen L Z, et al. Influence of aluminum oxides surface properties on catalyzed ozonation of 2,4,6-trichloroanisole[J]. Separation and Purification Technology, 2009, 66(2): 405-410.
    [133]Stumm W, Morgan J.水化学[M].汤鸿霄,译.北京:科学出版社,1987:460-465.
    [134]Leitner N K V, Fu H X. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts [J]. Topics in Catalysis, 2005, 33(1-4): 249-256.
    [135]Zhao L, Ma J, Sun Z Z. et al. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation[J]. Environmental Science Technology, 2008, 42(11): 4002-4007.
    [136]齐飞.铝氧化物催化臭氧氧化水中修为物质的实验研究[D].哈尔滨:哈尔滨工业大学市政工程学科博士论文,2008: 70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700