不同灌溉方法对保护地土壤供氮特征影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于多年连作、盲目施用化肥及不合理的灌溉管理措施,保护地土壤氮素积累、硝态氮淋失以及氨态氮挥发现象严重,不但造成了肥料氮的大量浪费,同时也产生了一系列的土壤退化及环境保护问题。本文从当前生产实际出发,用保护地长期定位灌溉试验的方法,深入系统地研究渗灌、滴灌和沟灌三种灌溉方法对保护地土壤各形态氮素含量、有机氮的矿化特点以及番茄产量和植株吸氮量的影响,探讨了各灌溉处理保护地土壤的供氮能力及其供氮后效。长期定位灌溉试验于1998年开始,灌溉控制上限和下限分别设定为土壤水吸力6.3KPa和40KPa,其中渗灌和滴灌处理一次灌水量为沟灌一次灌水量的1/2;每年春季栽培一茬番茄,各小区施肥量一致,每年的试验方案、试验方法完全相同。本文供试土壤样品采自2004年秋季(连续进行灌溉试验7年),作物样品番茄植株、果实采自2007年灌溉试验进行期间。主要研究结果如下:
     1.有机质、全氮及各形态氮的含量及其分布
     三种灌溉处理,土壤有机质、全氮含量在0~50cm层次随土层深度的增加而降低,至50cm以下其含量降到很低且基本不再随深度而发生改变。在0~20cm土层,渗灌处理土壤全氮、硝态氮、铵态氮的积累量最高,沟灌次之,滴灌最小。
     三种灌溉处理的各层次土壤有机氮含量占全氮的百分比大都在95%以上,只有渗灌处理0~10cm、10~20cm土层及沟灌处理0~10cm土层土壤有机氮占全氮的比例较低,分别为63.29%、77.87%及77.21%。
     各灌溉处理0~80cm土层内不同深度层次土壤有机态氮含量均以酸解氮为主,酸解氮中未知态氮、氨态氮、氨基酸态氮和氨基糖态氮的绝对含量和相对含量排列顺序均为未知态氮>氨态氮>氨基酸态氮>氨基糖态氮。三种灌溉方法相比较,各个层次土壤酸解氮中氨基酸态氮、氨基糖态氮及氨态氮占全氮的比例,总体上滴灌和渗灌处理高于沟灌处理,而酸解未知态氮和非酸解氮占全氮的比例,沟灌处理高于滴灌和渗灌处理。
     2.土壤有机氮矿化特点
     各灌溉处理0~50cm土层内不同层次土壤有机氮的矿化过程均以Two pool模型拟合效果最佳。Two pool模型拟合得出的矿化参数表明,与渗灌和沟灌处理相比,长期采用滴灌灌溉不但有利于表层土壤中氮矿化势(N_1+N_2)的增大,也有利于易矿化有机氮(N_1)的形成,使耕层土壤有机氮的品质得到改善。三种灌溉处理中以沟灌处理最不利于土壤有机氮的矿化,但利于其积累:渗灌处理各土层土壤有机质矿化的难易程度及其数量的多少介于滴灌与沟灌处理之间。
     温度和湿度是影响有机氮矿化的重要因子。温度和湿度与土壤氮素矿化速率之间呈显著的正相关关系,且二者影响土壤氮素矿化速率的交互作用明显。就耕层(0~20cm土层)土壤而言,有机氮矿化的适宜温度是35℃,适宜湿度为田间持水量的83%~100%。
     3.有机氮组分与土壤氮矿化势之间的关系
     各灌溉处理0~50cm土层内不同层次土壤的氮矿化势值(N_1+N_2)与相应土层各有机氮组分含量之间关系十分密切,总体上对土壤氮矿化势贡献最大的是氨基酸态氮。但在不同灌溉处理间各种土壤有机氮组分对其氮矿化势的贡献又表现出差异;渗灌处理不同深度层次土壤的氮矿化势与酸解氨基酸态氮和氨基糖态氮,滴灌处理与未知态氮,沟灌处理则与酸解氨基酸态氮、未知态氮含量关系密切。
     4.土壤供氮能力的全面评价
     由于不同灌溉处理各层次土壤中初始矿质态氮含量较高,因此,评价土壤供氮能力时就必须考虑这一部分氮素对土壤供氮能力的影响。本文以土壤起始无机态氮量(NH_4~+-N+N0_3~--N)与氮矿化势(N_1+N_2)二者之和作为土壤供氮能力指标。0~40cm土层土壤供氮能力明显高于其下层土壤。0~20cm土层土壤供氮能力以渗灌最强,沟灌其次,滴灌最小;20~30cm土层以沟灌最大,滴灌其次,渗灌最小。
     2007年测定番茄产量、生物量及植株吸氮量,结果表明滴灌处理番茄植株总生物量高于渗灌和沟灌处理,表现出增产、能够促进果实氮素吸收的效果。说明滴灌处理比沟灌和渗灌处理土壤供氮持久稳定。
     上述土壤氮素含量分布、形态组成及有机氮矿化特征是由于不同灌溉方法灌溉其水分含量剖面不同,导致土壤的热状况、通气状况不同造成的。水、气、热条件不同,既影响到土壤有机质的矿化分解,致使土壤有机质(氮)质量发生改变,又使土壤中水盐运动方向、数量相异,使无机态氮及一些低分子量的有机氮不断地进行着重新分配。试验过程中0~20cm土层水分含量观测结果表明,沟灌经历着全面湿润、全面干燥过程,渗灌经历的是相对干燥而且较为稳定的过程,而滴灌即使灌水后也总是处于部分湿润、部分相对干燥状态,这是造成不同灌溉方法灌溉多年后土壤氮素肥力特征不同的直接原因。
     总之,就现有灌水技术而言,从农业节水、提高氮肥利用率及防止土壤退化方面综合考虑,保护地长期使用滴灌灌水效果最佳。长期使用渗灌灌溉应注意防止盐分积累,并可以适量减少氮肥的用量。而沟灌灌溉不但浪费水源,同时降低氮肥利用率,进而影响着番茄产量的提高。
     本文首次对长期定位灌溉试验的保护地土壤供氮特性进行了研究,其结果丰富了我国保护地土壤氮素研究理论,对于保护地蔬菜栽培合理地进行水肥管理,防止土壤退化具有重要的理论与实际意义。
Soil N accumulation, nitrate leaching and ammonia volatilization were serious in protected field because of planting the same vegetable for many years, applying fertilizer and irrigation management measures unreasonably, which not only caused a lot of N fertilizer waste, but also had a series of soil degradation and environmental protection problems. According to the current actual situation, different irrigations were used in the protected field. The effect of different irrigation methods on N content, the mineralization of organic N, tomato yield and N absorption of plant were studied; N supplying capacity and N durative effect of protected field soil were discussed by chemical extraction and biological incubation methods. The experimentation began in 1998, and irrigation control upper and lower limits were seted to soil water suction for 6.3 KPa and 40 KPa. The water quantity of furrow irrigation was half of subsurface irrigation and drip irrigation's every time; tomato was cultivated in annual spring, fertilization amount was same in different plots, annual test scheme and test methods were exactly same. Soil samples were collected in the fall of 2004, the tomato fruit and plants were harvested in 2007 for the study. The results were showed as follows:
     1. The content and distribution of soil organic matter and total N
     At 0~50 cm layers, the content soil organic matter and total N were decreased with layers' depth. At 0~20 cm layers, subsurface irrigation was advantage to accumulate soil total N, nitrate N and ammonium N, and furrow irrigation was secondly, drip irrigation was the smallest.
     At all layer levels, the percentage of soil organic N to total N was more than 95%, while soil inorganic N was generally less than 5% under three irrigation treatments. But the proportion of soil organic N to total N was lower at 0~10 cm , 10~20 cm of subsurface irrigation and 0~10 cm of furrow irrigation, the content were respectively 63.29%, 77.87 % and 77.21%.
     At 0~80 cm layers, acidic hydrolysable N was the main components of the organic N, the order of the content of Acidic hydrolysable N forms and the proportion to total N were unknown N>ammonia N>amino acid N>amino sugar N. Compared with three irrigation methods, except for a few layers, the proportion of amino acid N, amino sugar N and ammonia N to total N in various layers of drip irrigation and subsurface irrigation were higher than furrow irrigation; but the proportion of unknown N and Non-acidic hydrolysable N to total N of furrow irrigation were higher than drip irrigation and subsurface irrigation.
     2. The characteristics of soil organic N mineralization
     Two-pool model was fitted to describe the process of organic N mineralization, and it was optimal. N mineralization parameters showed that drip irrigation treatment not only could increase N mineralization potential but also could promote active organic N amount. For the three irrigation methods, furrow irrigation was advantage to accumulate organic N, drip irrigation could improve the quality of soil organic N and increase the capacity of organic N mineralization at 0~20 cm layers. organic N mineralization of subsurface irrigation was higher than furrow irrigation' and lower than drip irrigation'.
     Temperature and moisture were important factors to organic N mineralization. There had significant positive correlation between N mineralization rate and temperature or moisture, and had a significant interaction. At 0~20 cm layers, temperature of 35℃and the water content of 83% to 100% field capacity were appropriate temperature and moisture levels for protected field soil.
     3. The relationship between organic N forms and N mineralization potential, soil N supplying capacity
     At 0~50 cm layers, there had closely relationship between organic N forms and N mineralization potential. Amino acid N had important contribution to mineralized N. The source of N mineralization potential was different under different irrigation treatments. For subsurface irrigation, N mineralization potential and amino acid N and amino sugar N had a close relationship; for drip irrigation, N mineralization potential was correlative to unknown N, while furrow irrigation, N mineralization potential was closely correlative to amino acid N and unknown N.
     4. A comprehensive evaluation for soil N supplying capacity
     The content of initial mineral N was high at various layers under different irrigation methods, so this part of inorganic nitrogen must be considered in evaluation of soil nitrogen supplying capacity. The sum of initial inorganic nitrogen in the soil and nitrogen mineralization potential was considered as index of soil nitrogen supplying capacity. At 0~40 cm layers, soil N supplying capacity was stronger in protected field. At 0~20 cm layers, subsurface irrigation treatment had the largest soil N supplying capacity, furrow irrigation was Secondly, drip irrigation was the smallest under Long-term different irrigation treatments. At 20~30 cm layers, the order of soil N supplying capacity was furrow irrigation>drip irrigation>subsurface irrigation.
     Tomato production, biomass and plant N absorption was measured in 2007. The result showed that dry matter weight under drip irrigation was more than subsurface irrigation's and furrow irrigation's; Tomato yield and N absorption of fruit were increased under drip irrigation treament. The process of soil N supply had lasting stability under drip irrigation than furrow irrigation and subsurface irrigation.
     The difference of content, distribution, composition of Soil N and characteristics of organic N mineralization were due to the difference of distribution of soil water, the temperature, the pore of soil under different irrigation methods. Different water, gas, heat conditions affected not only the decomposition of soil organic matter but also the movement of salinity. So that inorganic N and some of low molecular organic N were continuously re-allocated. At 0~20 cm layers, furrow irrigation had a total moist, full drying process; subsurface irrigation was relatively dry and stable process, and drip irrigation was always in part of moist, relatively dry state, which were the direct causes for the difference of soil fertility characteristics.
     In short, according to irrigation technology, drip irrigation was best for protect field soil in saving water, improving the utilization of N and preventing soil degradation. We should be pay attention to preventing salt accumulation, and reducing the amount of applying nitrogen fertilizer under long-term subsurface irrigation. Irrigation water was wasted, the utilization of N fertilizer and tomato production were decreased under furrow irrigation treatment.
     N mineralization characteristics of protected field soil under long-term irrigation were discussed firstly. The results enriched the theoretical study of protect field soil N, and had great theoretical and practical significance for optimizing water and fertilizer management and preventing soil degradation.
引文
[1]蔡贵信,张绍林.1979.测定稻田土壤氮素矿化过程的淹水密闭培养法的条件试验[J].土壤,(6):234-240.
    [2]陈秋.1999.保护地土壤氮素状况循环研究[D].沈阳:沈阳农业大学,博士学位论文.
    [3]程励励,等.1986.有机肥和化学氮肥配合施用时氮素的供应和转化.见《中国土壤氮素工作会议论文集》[A].104-115,科学出版社.
    [4]丁新利,张玉玲.1999.喷灌条件下冬小麦最佳水肥管理模式试验研究[J].干旱地区农业研究,17(1):63-66.
    [5]付会芳,李生秀.1992.土壤氮素矿化与土壤供氮能力.Ⅳ.土壤有机氮组分及其矿化[J].西北农业大学学报,20(增刊)63-67.
    [6]付会芳,张兴昌.1997.早地土壤氮素矿化的动力学研究[J].干旱区资源与环境,11(1):53-57.
    [7]傅高明.1996.黑麦有机氮在土壤中矿化与淋洗的研究[J].土壤肥料,(3):1-6.
    [8]高弼模,于淑芳,高贤彪,等.2000.山东省大棚土壤养分调查.“平衡施肥与可持续优质蔬菜生产”(李晓林,张福锁,米国华主编)[M].中国农业大学出版社,48-51.
    [9]高亚军,黄东迈,朱培立,等.2000.稻麦轮作条件下长期不同土壤管理对氮素肥力影响[J].土壤学报,37(4):456-463.
    [10]郭大应,谢成春,熊清瑞,等.喷灌条件下土壤中的氮素分布研究[J].灌溉排水,2000,19(2):76-77.
    [11]郭维东,黄毅,郑金华,等.2003.温室内节点渗灌条件下土壤水分运动规律的试验研究[J].节水灌溉,(6):1-3.
    [12]韩晓日.1995.长期施肥对作物产量及土壤氮素肥力的影响[J].土壤通报,26(60):244-246.
    [13]胡田田,李生秀.1993.土壤供氮能力测试方法的研究Ⅳ.土壤剖面中的起始NO_3-N可靠的土壤氮素有效性指标[J].干旱地区农业研究,11(3):74-82.
    [14]胡田田,李生秀,郝乾坤.早地土壤矿质氮和可矿化氮与土壤供氮能力的关系[J].水土保持学报.2000,14(4):83-86,103.
    [15]黄东迈,朱培立.1986.有机氮各化学组分在土壤中的转化[J].江苏农业学报,2(2):17.
    [16]黄绍文,余继运.2000.农业土壤养分平衡状况及其评价的试点研究[J].土壤肥料,(6):14-19.
    [17]巨晓棠,李生秀.1993.早地土壤供氮能力研究的进展[J].干旱地区农业研究,11(3):43-48.
    [18]巨晓棠,李生秀.1996.旱地土壤氮素矿化强度及数量预报模式的检验[J].西北农业大学学报,24(4):25-29.
    [19]巨晓棠,李生秀.1998.土壤氮素矿化的温度水分效应[J].植物营养与肥料学报,4(1):37-42.
    [20]巨晓棠,边秀举,刘学军,等.2000.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报,6(3):251-259.
    [21]巨晓棠,刘学军,张福锁.2004.长期施肥对土壤有机氮组成的影响[J].中国农业科学,37(1):87-91.
    [22]李慧琳,韩勇,蔡祖聪.2004.上海地区水稻土氮素矿化及其模拟[J].土壤学报,41(4):503-510.
    [23]李菊梅,李生秀.2003a.可矿化氮与各有机氮组分的关系[J].植物营养与肥料学报,9(2):158-164.
    [24]李菊梅,王朝辉,李生秀.2003b.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,40(2):232-238.
    [25]李俊良,朱建华,张晓展,等.2001.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报,7(2):126-129.
    [26]李润,李絮花,袁亮.2006.设施栽培土壤有机质和氮素含量的积累规律[J].山东农业科学,(2):64-67.
    [27]李生秀,K.A.Smith.1988.关于土壤氮素矿化势作为有效氮指标的研究[J],西北农林科技大学(自然科学版)(03).
    [28]李生秀,付会芳,哀虎林,等.1990.几种测氮方法在反映土壤供氮能力方面的效果[J].土壤,22(4):194-197.
    [29]李生秀,付会芳,肖俊璋,等.1992a.几种测氮方法在反映旱地土壤供氮能力方面的效果[J].干旱地区农业研究,10(2):72-81.
    [30]李生秀,李和生.1992b.EUF析滤出的矿质氮源及其反映土壤供氮能力方面的效果[J].西北农业大学学报,20(增刊):32-39.
    [31]李世清,李生秀.1994.水肥配合对玉米产量和肥料效果的影响[J].干早地区农业研究,12(1):47-53.
    [32]李世清,李生秀,李东方.2002a.长期施肥对半干旱农田土壤氨基酸的影响[J].中国农业科学,35(1):63-67.
    [33]李世清,李生秀,杨正亮.2002b.不同生态系统土壤氨基酸氮的组成及含量[J].生态学报,22(3):379-386.
    [34]李世清,李生秀,邵明安,等.2004.半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J].中国农业科学,37(6):859-864.
    [35]李文庆,张民,李海峰,等.2002.大棚土壤硝酸盐状况研究[J].土壤学报,39(2):283-287.
    [36]梁成华.1996.蔬菜保护地土壤肥力特征及其调控研究[D].沈阳农业大学:博士学位论文.
    [37]梁国庆,林葆,林继雄,等.2001.长期施肥对石灰性潮土无机磷形态的影响[J].植物营养与肥料学报,7(3):241-248.
    [38]刘德,赵凤艳.1998.氮肥不同用量对保护地番茄生育及产量影响[J].北方园艺,(5):7-8.
    [39]刘晓宏,郝明德.2000.不同轮作施肥对土壤有机氮分解特征的影响[J].土壤与环境,9(2):129-131.
    [40]刘元生,刘方,何腾兵.1997.烤烟根标土壤特性研究Ⅱ.烤烟根际土壤有机氮各组分的变化[J].耕作与栽培,(3):36-38.
    [41]刘兆辉,李晓林,祝洪林,等.2001.保护地土壤养分特点[J].土壤通报,32(5):206-208.
    [42]鲁如坤.2000.土壤农业化学分析方法[M].中国农业科技出版社,150-156.
    [43]吕殿青,杨进荣,马林英.1999.灌溉对土壤硝态氮淋吸效应影响的研究[J].植物营养与肥料学报,5(4):307-315.
    [44]吕谋超,仵峰,彭贵芳,等.1996.地下和地表滴灌土壤水分运动的室内试验研究[J].灌溉排水,15(1):42-44.
    [45]罗锡文,李就好,俞龙.2000.滴灌条件下砖红壤水分入渗特性试验研究[J].华南农业大学学报,21(4):74-77.
    [46]马宏瑞,赵之重.1997.青海农区钙层土氮矿化势和供氮速率常数估测[J].青海大学学报(自然科学版),15(2):25-27.
    [47]孟兆江,贾大林.1998.黄滩豫东平原冬小麦节水高产水肥耦合合数学模型研究[J].农业工程学报,14(1):86-90.
    [48]莫会东.1984.农业试验统计(第二版)[M].上海:上海科学技术出版社,356-358.
    [49]穆兴民,樊小林.1999.土壤氮素矿化的生态模型研究[J].应用生态学报,10(1):114-118.
    [50]彭令发,郝明德,来璐.2003a.长期施肥对土壤有机氮影响研究Ⅰ氮肥及其配施下土壤有机氮组分变化[J].水土保持研究,10:(1):53-54.
    [51]彭令发,郝明德,来璐.2003b.土壤有机氮组分及其矿化模型研究[J].水土保持研究,10(1):46-49,70.
    [52]彭文瑜,李实烨.1991.多熟制稻田土壤氮的化学组成[J].土壤通报,22(3):122-124.
    [53]乔立文,陈友,齐红岩.1996.温室大棚蔬菜生产中滴灌带灌溉应用效果分析[J].农业工程学报,12(2):34-39.
    [54]申晓辉.1990.吉林省主要旱田土壤有机氮组份的研究[J].吉林农业大学学报,12(3):43-50.
    [55]沈其荣,史瑞和.1990.不同土壤有机氮的化学组分及其有效性的研究[J].土壤通报,21:54-57.
    [56]沈玉芳,李世清,邵明安.半湿润地区土垫旱耕人为土不同土层氮矿化的水温效应研究.植物营养与肥料学报,2007,13(1):8-14.
    [57]施书莲,文启孝.1992.耕垦对土壤氮素形态分布和氨基酸组成的影响.土壤,24(1):14.18.
    [58]孙文涛.2001.滴灌条件下温室番茄栽培水肥耦合效应的研究[D].沈阳农业大学:硕士学位论文.
    [59]孙羲主编.1997.植物营养原理[M].北京:农业出版社,71-72.
    [60]唐树梅,漆智平.1997.土壤水含量与氮矿化的关系[J].热带作物研究,4:54-60.
    [61]唐耀先,张继宏,须湘成,等.1986.土壤基础供氮能力和肥料氮素利用率及其应用的研究[J].土壤通报,27(5):204-208.
    [62]陶勤南,吴良欢,方萍.1993.稻田土壤氮矿化速率的研究[J].土壤学报,30:237-244.
    [63]田茂洁.2004.土壤氮素矿化影响因子研究进展[J].西华师范大学学报,25(3):298-303.
    [64]田秀萍,徐秋玲,高淑英,等.1997.北方淹育水稻土速效氮的研究[J].黑龙江八一农垦大学学报,9(4):8-12.
    [65]童有为,陈淡飞.1991.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,18(2):159-162.
    [66]汪德水,程宪国,姚晓晔,等.1994.半干早地区麦田水肥效应研究[J].土壤肥料,2:1-4.
    [67]汪建飞,邢素芝,崔静.2002.设施栽培条件下土壤氮素变化规律研究[J].安徽技术师范学院学报,16(1):32-35.
    [68]王常慧,邢雪荣,韩兴国.温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响.生态学报,24(11):2472-2476.
    [69]王家玉,王胜佳.1996.稻田土壤中氮素淋失的研究.土壤学报,33(1):28-36.
    [70]王瑞军,李世清,张兴昌,等.2004.西北地区不同生态系统几种土壤有机氮组分和微生物体氮的差异[J].干旱地区农业研究,22(4):21-27
    [71]王淑平,周广胜,姜亦梅,等.2003.施用玉米残体对土壤有机氮组分特征的影响[J].吉林农业大学学报,25(3):311-314.
    [72]王艳杰.2006.京郊保护地土壤氮素矿化过程[D].北京:首都师范大学,硕士学位论文.
    [73]王正银,青长乐.1994.紫色土氮素矿化与作物效应的研究[J].中国农业科学,27(2):13-23.
    [74]吴凤芝,刘德,王东凯,等.1998.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,4:5-8.
    [75]武冠云.1986.土壤有机氮的形态、分布及其易分解性[J].土壤通报,17(2):90-95
    [76]熊毅,李庆逵.中国土壤[M].北京:科学出版社,1988.464-482.
    [77]徐阳春,沈其荣,茹泽圣.2002.长期施用有机肥对土壤不同粒级中酸解有机氮含量的影响[J].中国农业科学,35(4):403-409
    [78]许春霞,吴守仁.1991.塿土有机氮的构成及其在施肥条件下的变化[J].土壤通报,22(2):54-56.
    [79]薛继澄,毕德义,李家金,等.1994.保护地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料,1:4-8.
    [80]薛继澄,李家金,毕德义.1995.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响[J].南京农业大学学报,18(1):53-57.
    [81]杨江龙,李生秀.2005.土壤供氮能力测试方法与指标[J].土壤通报,36(6):959-964.
    [82]杨丽娟.2000a.蔬菜栽培土壤水分调控理论和技术研究[D].沈阳:沈阳农业大学,博士学位论文.
    [83]杨丽娟,张玉龙,李晓安,等.2000b.灌水方法对塑料大棚土壤—植株硝酸盐分配影响[J].土壤通报,31(2):63-65.
    [84]杨丽娟,张玉龙.2001.保护地菜田土壤硝酸盐积累及其调控措施的研究进展[J].土壤通报,32(2):66-69.
    [85]杨路华,沈荣开,覃奇志.2003.土壤氮素矿化研究进展[J].土壤通报,34(6):569-571.
    [86]杨志谦,王维敏.1991.秸秆还田后碳、氮在土壤中的积累和释放[J].土壤肥料,(5):43-46.
    [87]叶优良,张福锁,李生秀.2001.土壤供氮能力指标研究[J].土壤通报.32(6):273-277.
    [88]殷永娴,曹利中.1994.设施土壤的微生物区系[J].土壤,26(3):143-145
    [89]余晓鹤,阮妙增,朱培立,等.1991.土壤表层管理对稻田土壤氮矿化势、固氮强度及铵态氮的影响[J].中国农业科学,24(1):73-79
    [90]於丽华,韩晓日,娄春荣,等.2005.不同灌溉方式和施肥处理对番茄氮素吸收及产量和品质的影响[J].沈阳农业大学学报,36(3):286-289.
    [91]袁新民,王周琼.2000.硝态氮的淋洗及其影响因素[J].干旱区研究,17(4):46-52.
    [92]岳兵.1997.渗灌技术存在的问题与建议[J].灌溉排水,16(2):40-44.
    [93]查春梅,颜丽,郝长红,等.2001.不同土地利用方式对棕壤有机氮组分及其剖面分布的影响[J].植物营养与肥料学报,13(1):22-26.
    [94]张伯泉,孙效文,关连珠,等.1987.施肥对土壤有机质和几种主要肥力性质的影响[J].土壤通报,18:156-160.
    [95]张光星,王靖华,薛亚明,等.2000.浅析我国设施蔬菜生产中存在的问题与对策[J].沈阳农业大学学报,31(1):140-143.
    [96]张恒明.2004.保护地渗灌灌水控制下限的研究[D].沈阳:沈阳农业大学,硕士学位论文.
    [97]张金波,宋长春.2004.土壤氮素转化研究进展[J].吉林农业科学,29(1):38-43,46.
    [98]张仁陟,李增风,陶永红.1993.河西灌漠土壤氮素矿化势的研究[J].甘肃农业大学学报,28(3):261-264.
    [99]张树森.雷勤明.1994.日光温室蔬菜渗灌技术研究[J].灌溉排水,13(2):30-33.
    [100]张腾福,郭来珍,张雪珍.1993.保护地蔬菜滴灌技术的应用[J].中国蔬菜,5:40-42.
    [101]张宪法,张凌云,于贤昌,等.2000.节水灌溉的发展现状与展望[J].山东农业科学,5:52-54.
    [102]张旭东,须湘成,陈恩凤.1989.施用猪粪培肥土壤后土壤氨基酸含量的变化[J].土壤通报,20(6):260-262.
    [103]张玉龙,张继宁,张恒明,等.2003.保护地蔬菜栽培不同灌水方法对表层土壤盐分含量的影响[J].灌溉排水学报,22(1):41-44.
    [104]张玉龙,张继宁,黄毅,等.2004.塑料大棚番茄栽培不同渗灌量对耕层土壤性质的影响[J].农业工程学报,20(2):105-108.
    [105]张真和.2005.当代中国蔬菜产业的回顾与展望(上)[J].长江蔬菜,2-6.
    [106]周才平,欧阳华a.长白山两种主要林型下土壤氮矿化速率与温度的关系.生态学报,2001,21(9):1469-1473.
    [107]周才平,欧阳华b.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响.植物生态学报,2001,25(2):204-209.
    [108]周克瑜,施书莲.1992.我国几种主要土壤中氮素形态分布及其氨基酸组成[J].土壤,6:285-288.
    [109]周鸣铮,于文涛,方樟法.1976.土壤速效氮的侧定方法[J].土壤,5:316-323.
    [110]周鸣铮.1985.土壤肥力学概论.浙江:科学技术出版社[M].205-226.
    [111]周鸣铮.1988.土壤肥力测定与测土施肥[M].北京:农业出版社.
    [112]朱德兰,李昭军,王健.2000.滴灌条件下土壤水分分布特性研究[J].水土保持研究,7(1):81-84.
    [113]朱建华.2002.蔬菜保护地氮素去向及其利用研究[D].北京:中国农业大学,博士学位论文.
    [114]朱兆良.1985.我国土壤供氮和化肥去向研究的进展[J].土壤,1:2-9.
    [115]朱兆良.1988.土壤氮素.见:中国土壤(熊毅,李庆逵编)[M].北京:科学出版社'464-486.
    [116]朱兆良.1989.关于土壤氮素研究中的几个问题[J].土壤学进展,2:1-9.
    [117]朱兆良,文启孝.1992.中国土壤氮素[M].南京:江苏科技出版社.
    [118]诸葛玉平.2001.保护地渗灌土壤水分调控技术及作物增产节水机理的研究[R].沈阳:沈阳农业大学,博士学位论文.
    [119]邹焱,苏以荣,路鹏.2006.洞庭湖区不同耕种方式下水稻土壤有机碳、全氮和全磷含量状况[J].土壤通报,37(4):671-674.
    [120]A l lison.F.E.1973.Soil organic matter and its role in crop production.Development in Soil Science (volume 3).New York:Elsevier Press,123-145.
    [121]Benjamin J.G,L.K.Porter,H.R.Duke,L.R.Ahuja,and G Buters.1998.Nitrogen movement with furrow irrigation method and fertilizer band placement.Soil Sci.Soc.Am.J.62:1103-1108.
    [122]Bertetin.L.1973.Comparison of drip and sprink irrigation.Soil Sci Am.,115:73-86.
    [123]Bonde TA,Rosswal T.1987.Seasonal variation of potentially mineralizable nitrogen in four cropping systems[J].Soil Sci Soc Am.,51:1508-1514.
    [124]Breland,T.A.,and S.Hansen.1996.Nitrogen mineralization and microbial biomass as affected by soil compaction.Soil Biology and Biochemistry.,28:655-663.
    [125]Brenmer J M.1949.Studies on soil organic matter:I.Chemical nature of soil organic nitrogen[J].J Agric Sci,39:183-193.
    [126]Bremner JM.1958.Amino sugars in soil[J].Sci Food and Agric.9:528-532.
    [127]Bremner JM.1965.Organic nitrogen in soil[A].In:WVBartholomew,FEClark,Eds.Soil Nitrogen[M].Madospn:Wise,Am.Soc.Agron.Inc.,93-149.
    [128]BremnerJM.1965.Organic forms of nitrogen[A].In:agronomy Methods of soil analysis[M].C.A.Black(ed).Madison:Wis.American Society of Agronomy,1238-1255.
    [129]Bugle C.R.1989.Comparison of subsurface trickle and furrow irrigation on plastic-mulched and bare soil for tomato production.J.Amer.Soc.Hurt.Sci,114(1):40-43.
    [130]Cabrera M L.Modeling the flush of nitrogen mineralization caused by drying and rewetting soils.Soil Sci.Soc.Am.J.,1993,57:63-66.
    [131]Canteralla H D,Mattos J R.1944.Lime effect on soil nitrogen availability indexes as measured by plant uptake[J].Comm.Soil Sci.Plant Anal.,25(7):989-1006.
    [132]Caterand Rennie.1982.Changes in soil quality under zero tillage system:Distribution of microbial biomass and mineralization C and N potentials.Can.I.Sod Sci.,62:587-597.
    [133]Cookson W.R.,I.S.Cornforth and J.S.Rowarth.2002.Winter soil temperature(2-15℃) effect on nitrogen transformations in clover green manure amended or unamended soils:a laboratory and field study.Soil Biol.Bioche,34:1401 - 1415.
    [134]Cornfield A H.1960.Ammonia released on treating soils with N sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soils[J].Nature,187:260-264.
    [135]Cumpbell C A,Schnitzer M,Stewart J w R,et al.,1986.Effect of manure and P fertilizer on properties of a Black Chernozem in southern Saskatchewan.Canadian Journal of Soil Science.,66:601-613.
    [136]Dalal.1989.Long-term effects of no-tillage,crop residue,and nitrogen application on properties of a vertical Soil Sc i.Am.J, 53:1511-1515.
    [137]Diez J .A .,R .C aballero, R .Roman,A .Tarquis, M .C .Cartagena, and A .Vallejo.2000.Integrated fertilizer and irrigation management to reduce nitrate leaching in Central Spain.J.Environ.Qual.29:1539-1547.
    [138]Donald R C, Mohammas B B.1998.Nitrogen mineralization in soils from Michigan's Saginaw valley and Thumb region.Communications in Soil Science and Plant Analysis, 29:2355-2363.
    [139]Dou Z X,John D T,Jalal D J.1995.Soil nitrogen mineralization during laboratory incubation:Dynamics and model fitting.Soil Biol.Biochem.,28:625-632.
    [140]F.Asmar.F.Eiland and N.Eiland and N.E.Nielsen.1994.Effects of extracellular-enzyme activities on solubilization rates of soil organic nitrogen.Boil.Fertil.17:32-38.
    [141]Fox R H,Piekielek W P.1978.Field Testing of Several Nitrogen Availability Indexes[J].Soil Sci.Soc.Am.J., 42:747-750.
    [142]Fox R H,PiekielekW P.1978.A rapid method for estimating the nitrogen-supplying capability of a soil[J].S.S.S.A.J.,5:751-753.
    [143]Franzluebbers,A.J.,R.L.Haney,F.M.Hons,and D.A.Zuberer.1996.Active fractions of organic matter in soils with different texture.Soil Biology Biochemistry.,28:1367-1372.
    [144]Gianello C,Bremner J M.1986.A simple method of assessing potentially available organic nitrogen in soils [J].Commn in Soil Sci.Plant.Anal., 17 (2): 195-214.
    [145]Goh K M,and Edmeades D C.1979.Distribution and partial characterization of hydrolysable organic nitrogen in six Newzerland soil.Soil Biol.Biochem.,11:127-132.
    [146]Goncalves,J.L.M.,and J.C.Carlyle.1994.Modeling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil.Soil Biology Biochemistry 26:1557-1564.
    [147]Goovaerts,P.,and C.N.Chiang.1993.Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties.Soil Sci.Soc.Am.J.57:372-381.
    [148]Griffin,D.M.1981 .Water potential as a selective factor in the microbial ecology of soils.141 -151.
    [149]Gupta J.P.,1983.Hydrothermal environment of soil and vegetable production with drip and furrow irrigation, Indian J.Agr.Sci.53(2):138-142.
    [150]H L,Han Y,Cai Z C.2004.Nitrogen mineralization in paddy soils of Shanghai region under anaerobic conditions: dynamics and model fitting.Acta Pedologica Sinica.,41(4):503-510.
    [151]Harmsen G W,D l.Lindenbergh.1949.Investigation on the nitrogen nutrition of plants.I .A new method for the determination of nitrogen requirement of soil [J].Plant and Soil., 2:1-29.
    [152]Herlihy,M.1979.Nitrogen mineralization in soils of varying texture, moisture and organic matter.Plant and Soil 53:255-267.
    [153]Houba V J G,Novozamsky I, Huybregata A W N.1986.Commparison of soil extractions by 0.01M CaCl_2,by EUF and by some conventional extraction Procedures [J].Plant and Soil., 96:433- 437.
    [154]Janssen B H.1996.Nitrogen mineralization in relation to C/N ratio and decomposability of organic materials.Plant and Soil.,181:39-45.
    [155]Jennifer D.Knoepp & WayneT.Swank.2002.Using soil temperature and moisture to predict forest soil nitrogen mineralization.Biol Fertil Soils,36:177~182.
    [156]Jenny,H.1938.Factorsof soil formation.MC.Graw-hill,NewYork.
    [157]Jorgensen,S.E.1986.Fundamentals of Ecological Modelling.Elsevier Science Publishing Company Inc., NewYork.pp.98-101.
    [158]Keeney D R, and Bremner J M.1964.Effect of cultivation in nitrogen distribution in soils[J].Soil Sci.Soc.Amer.Proc, 28:653-656.
    [159]Keeney D R,Bramner J M.1964.Effect of cultivation on the nitrogen distribution in solls.Soil Science Society of America Proceeding.,28:653-661.
    [160]Keeny D R, Bremner J M.1966.A chemical index of soil nitrogen availability[J].Nature.,211:892-893.
    [161]Keeny D R.J M Bremner.1966.5 comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability[J].Agron.J., 8:498-503.
    [162]Khan S .V.1971.Nitrogen fractions in a gray wooded soil as influenced by long time cropping systems and fertilizers.CanJ.Soil Sci.51:431-437.
    [163]Killham K.,A.Amato and J.N Ladd.1993.Effect of substrate location in soil and soil pore-water regime on carbon turnover.Soil Biol.Bioche.25:57-62.
    [164]Kresge C B.Merkele F G1957.A study of the validity of laboratory techniques in appraising the available nitrogen producing capacity of soils[J].Soil Sci.Soc.Am.Proc, 21 (5):516.
    [165]Kutsba-Lissberg P, Prillinger F.1982.Rapid determination of EUF exchangeable nitrogen and boron [J].Plant and Soil., 64:63-66.
    [166]L J.Research of theory and technology of soil water control in protected vegetable cultivation.Dissertation for Doctorate,Shenyang:Shenyang agriculture university, 2000.
    [167]Liaava V P,Waring S.1992.Comparison of the chemical methods of assessing potentially available organic nitrogen in soils [J].Comm.Soil Sci.Plant Anal., 23 (1):157-164.
    [168]MacDonald,N.W., D.R.Zak,and K.S.Pregitzer.1995.Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization.Soil Science Society of America Journal., 59:233-240.
    [169]Narteh L T,Sahrawat K L.2000.Ammonium in solution of flooded west African soils.Geoderma.,95:205-214.
    [170]Nemeth K,Makbdum L Q.1979.Determinnation of categories of soil nitrogen by electro-ultrafication (EFU) [J].Plant and Soil., 53:445-453.
    [171]Oele C,1995.Nitrogen fertilization in nursery stock in the open.MeststofFen.,6-74.
    [172]Pang X.P.,J.Letey,and L.Wu.1997.Irrigation quantity and uniformity and nitrogen application effects on crop yield and nitrogen leaching.Soil Sci.Soc.Am.J.61:257-261.
    [173]Peterson J A,Atto O J.OgdenW B.Correlation of nitrogen soil tests with nitrogen up take by the tobacco pi- ant [J].Soil.Sci.Soc.Am.Proc.,1960,24:205-209.
    [174]Power J.F.,and J.S.Schepers.1989.Nitrate contamination of ground water in North America.Agric.Ecosyst.Environ.26:165-187.
    [175]Quemada M , CabreraM L.Temperature and mo isture effects on C and N m ineralization from surface applied clover residue.Plant and soil, 1997,189:127-137.
    [176]R.D.Laura and M.Parshad.1992.Transformation of urea in sodic soi!s.Part3 Internal nitrogen cycle immobi- lization and priming effect.International Journal of Tropical.Agriculture.10(1):31-37.
    [177]Rox M,Nemeth K,Harrach T.1985.The EUF-N contents of arable soils as an indicator of their yield potential[J].Plant and Soil., 83:117-125.
    [178]S.Agehara and D.D.Warncke.2005.Soil moisture and temperature effect on nitrogen release from organic nitrogen sources.Soil Sci.Soc.Am.J., 69:1844-1855.
    [179]SchjOnning.P., I.K.Thomsen.P.Moldrup,et al.2003.Linking soil microbial activity to water-air-phrase contents and diffusivities.Soil Sci.Soc.Am.J.,67:156-165.
    [180]Scott,N.A.,C.V.Cole,E.T.Elliot,and S.A.Huffman.1996.Soil textural control on decomposition and soil organic matter dynamics.Soil Science Society of America Journal 60:1102-1109.
    [181]Sexton,B.T, J.F.Moncrief?C.l.Rosen,S.C.Gupta, and H.H.Cheng.1996.0ptimizing nitrogen and irrigation in puts for corn based on nitrate leaching and yield on a coarse-textured soil.J.Environ.Qual.25:982-992.
    [182]Sierra J.Relationship between mineral N content and N mineralization rete indistribed and undistribed soil sampies incubated under field and laboratory conditions.Aust.J.Soil Res., 1992, 30:477-492.
    [183]Smith S.J,and Young L.B.I975.Distribution of nitrogen forms in virgin and cultivated soils.Soil Sci.120(5):354-360.
    [184]Smith S J, G Stanford.1971.Evaluation of soil nitrogen availability[J].Soil Sci.,111:228-232.
    [185]Smith S J,Stanford G.1971.Evaluation of a chemical indexes of soil nitrogen availability[J].Soil Sci.,111l(4):228-232.
    [186]Sollins P,Spycher G,Glassmam C A.1984.Net nitrogen mineralization from light and heavy fraction of forest soil organic matter.Soil Biol Biochem.,16:31-37.
    [187]Stevenson F J.1982.Organic forms of soil nitrogen.In:Stevenson F J,ed.Nitrogen in Agricultural Soils.Madison,Wisconsin:America Society Agronomy., 22:67-122.
    [188]Stanford G, Legg J 0.1968.Correlation of soil N availability indexes with N uptake by plants[J].Soil Sci., 105(5):320-326.
    [189]Stanford G,Carter J N.Smith S J.Estimates of potentially mineralizable soil nitrogen based on short-term in cubations.Soil Sci.Soc.Am.Proc., 1974,38:99-102.
    [190]Stanford GExtractable organic nitrogen and nitrogen mineralization in soils[J].Soil Sci., 1968.106(5):345.
    [191]Stanford G, and Smith,S J.1972.Nitrogen mineralization potentials of soils.Soil Sci Soc Am.Proc.,36:465 -472.
    [192]Stanford GEpstain E.1974.Nitrogen mineralization water relations in soils.soil Sci Soc Am.proc, 38:103-106.
    [193]Stevenson F J, 1957.Distribution of the forms of nitrogen in some soil profiles[J].Soil Sci.Soc.Amer.Proc.21(3):283-287.
    [194]Stevenson F J.1982.0rganic forms of soil nitrogen[A],Stevenson F J.Nitrogen in agricultural soils [C].Madison Wis USA:Am Soc of Agron Inc., 67-122.
    [195]Stevenson F J.1986.Cycles of soil carbon,nitrogen,Phosphorus,sulfur,micronutrients[M].New York.USA:A Wiley-Inter-science Publication.John Wiley& Sons., 173-178.
    [196]Sygihara,S.,Konno,T.1986.Kinetic of mineralization of organric nitrogen.Sion.Bulletin of the National Institute of Agro-Environmental Science.,l:127-166.
    [197]Vanotti M B,Lederc SA and Bundy LGShort-term effects of nitrogen fertilization on soil organic nitrogen availability[J].Soil Sci Soc Am J,1995.59:1350-1359.
    [198]Verstraceten L M J,Vlassak K,Liens J.1970.Factors affecting the determination of available soil nitrogen by chemical methods: I comparison of extractable with mineralized nitrogen [J].Soil Sci., 110(5):299.
    [199]Waring S A,Bremner J MAmmonium production in soil under waterlogged conditions as an index of nitrogen availability [J].Nature.,1964.201:951.
    [200]Whitehead D C.1981.An improved chemical extraction method for predicting the supply of available soil nitrogen Sci Food Agric,32:359-365.
    [201]Yoshino,T.and Dei,T.1974.Patterns of nitrogen release in paddy.soils predicted by an incubation method.JARQ,8:137-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700