有机(g-C_3N_4)-无机(BiOI)半导体光催化剂的制备及其在模拟太阳光下降解内分泌干扰物—双酚A的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双酚A(BPA,2,2-bis(4-hydroxyphenyl)propane)是一种化工原料,主要用于聚碳酸酯和环氧树脂等产品的合成。由于广泛的生产和使用,大量的BPA被释放到自然水体中。同时,研究发现BPA具有内分泌干扰效应,可诱导女性乳腺癌,男性前列腺炎等疾病的发生,还可以导致婴幼儿性早熟。因此关于BPA有效降解技术(包括物理、化学和生物)的研究受到了普遍关注。TiO2光催化技术由于操作简便、能耗低、反应条件温和、高效而又无毒等优点而具有较好的应用前景。但是由于TiO2吸收的紫外光仅占太阳光谱的不到5%,为了更好的利用太阳能,开发具有可见光响应的光催化剂具有重要的意义。
     本文首先使用热缩合联合液相还原法合成了具有可见光响应的光催化剂——金属钯掺杂介孔石墨相氮化碳,并将其应用于水中BPA的降解。金属钯的掺杂增强了材料对光的吸收,抑制了光生电子和空穴的复合,从而促进催化剂对BPA的光催化降解,最佳掺杂量为1.5%。研究结果显示:0.5g L-1的1.5%-Pd/mpg-C3N4在模拟太阳光照射下,经过6h将20mg L-1的BPA全部降解;金属钯的掺杂同时也增强了催化剂的光电性能,1.5%-Pd/mpg-C3N4的光电流强度是mpg-C3N4的2倍;1.5%-Pd/mpg-C3N4光催化剂在较宽的pH值范围(3.08-11.00)内保持良好的光催化降解效果;并具有很好的抗光腐蚀性,循环反应十次依然具有很好的光催化活性。通过ESR-DMPO捕获以及各种捕获剂的验证实验,表明在1.5%-Pd/mpg-C3N4光催化降解BPA起作用的活性物种为羟基自由基,空穴和超氧自由基,并且以超氧自由基为主。
     其次,通过一步溶剂热反应合成了一种新的复合材料Bi/BiOI,并采用XRD、 FE-SEM、HR-TEM、FT-IR、UV-vis DRS、XPS、比表面积及孔径分布等测试手段对合成材料进行表征。实验结果显示通过控制溶剂热反应温度和时间可以调控产物的化学组成、结晶度以及形貌。在180℃溶剂热反应24h合成出的催化剂(金属铋含量约12.5%)在模拟太阳光照射下对BPA具有最好的光催化降解活性,对40mg L-1的BPA光催化降解90min后,去除率可以达到92.8%,在同样实验条件下,TOC去除率可以达到79.0%。光催化剂的用量、污染物初始浓度以及溶液初始pH值等实验条件均对BOI-180-24降解BPA产生不同程度的影响。通过向反应体系投加不同活性基团捕获剂,确定在BOI-180-24光催化降解BPA过程中起主要作用的活性物种为:光生空穴、超氧自由基以及单线态氧。通过LC/MS/MS检测降解中间产物(m/z=133),推测BPA的降解历程为:BPA经活性物种氧化分解成4-异丙基苯酚以及对苯二酚或苯酚,进一步被矿化为C02和H2O。
     最后,通过溶剂热法合成了n型有机聚合物半导体MCN/p型无机半导体BiOI异质结光催化剂,通过XRD, FE-SEM, HR-TEM, FT-IR, UV-vis DRS, XPS,比表面积测试等对合成样品的晶体结构,形貌,组成,光吸收性能等进行了相关表征。MCN和BiOI两种半导体形成异质结后伴随着产生从n-MCN到p-BiOI的内电场,它促进了光生电子和空穴的有效分离。这使得所合成MCN/BiOI复合材料的光催化和光电化学性能都比单独的MCN和BiOI要好,且在MCN掺入量为10%时所合成催化剂具有最佳的活性。1.0g L-1的10%-MCN/BiOI经可见光照射240min能够对20mg L-1BPA去除率可达90%;所合成MCN, BiOI以及MCN/BiOI复合光催化剂,在可见光激发下都可以产生光电流,10%-MCN/BiOI产生的光电流是纯BiOI的1.5倍,是纯MCN的2倍。实验结果表明MCN/BiOI光催化降解机理以光生电子与表面氧反应生成的超氧自由基有关,超氧自由基在降解过程中其主要作用。
Bisphenol A (BPA,2,2-bis(4-hydroxyphenyl)propane) is an important building block material and used extensively as the monomer to manufacture polycarbonate plastic and epoxy resins. Due to its large production and wide application, a large amount of BPA has been released into the aquatic environment. Unfortunately, it could cause adverse effects to human beings, such as the occurrence of breast cancer for female and prostatitis for male and so on. It could also result in the sexual precocity of infants. Thus, a great concern has been raised to remove BPA from water by different techniques, such as physical absorption, chemical remediation, and microbial degradation. Among these methods, photocatalytic degradation with TiO2is attracting widespread attention due to its simplicity, low energy consumption, mild reactive conditions, effective activity and low toxicity. However, TiO2could only use <5%solar energy for photodegradation due to its large bandgap energy, and this restricts its application. It is of significance to develop new photocatalysts to utilize solar energy efficiently.
     Firstly, palladium modified mesoporous graphitic carbon nitride polymer (Pd/mpg-C3N4) was fabricated by thermal condensation coupled with liquid phase reduction and used for the degradation of bisphenol A (BPA) in water. Doping Pd on the surface of mpg-C3N4enhanced the light absorbance in the range of UV-Vis region. Most of the embedded Pd was present as Pd0and could act as electron traps and reduce the recombination of photogenerated holes and electron pairs. As a result, the photocatalytic performance was improved significantly. The reaction rate constant (Kobs) increased with the Pd loading on the surface of mpg-C3N4and the maximum was achieved with1.50%Pd. Almost100%of BPA (20mg·L-1) was photodegraded by the solids of0.5g·L-1Pd/mpg-C3N4after irradiation with simulated solar light for360min, meanwhile, the photocurrent intensity generated by1.5%-Pd/mpg-C3N4electrode was also enhanced and was about2.0times of that induced by mpg-C3N4under visible light irradiation. The Pd/mpg-C3N4exhibited very stable and high efficient photocatalytic activity to BPA in a wide range of pH (3.08-11.00). It also displayed high photocatalytic activity without photocorrosion after reuse for many times. Hydroxyl radicals, photogenerated holes, and superoxide radical species were responsible for the photodegradation while the superoxide radical species were more predominant in the Pd/mpg-C3N4reaction system.
     Secondly, a novel3D Bi/BiOI composite was synthesized by a facile one-step solvothermal method. The resultant catalysts were comprehensively characterized by means of XRD、FE-SEM、HR-TEM、FT-IR、UV-vis DRS、XPS、and N2adsorption/desorption. The solvothermal temperature and reaction time affected the chemical compositions, crystallinity and morphology of the prepared materials. The photocatalyst prepared at180℃for24h (BOI-180-24) contained approximate12.5%metallic Bi and displayed the best photocatalytic performance to BPA under simulated solar light irradiation. About92.8%of40mg L-1BPA was degraded after90min reaction using1g L-1BOI-180-24as catalyst under simulated solar irradiation, while79.0%of TOC was removed at the same time. The photocatalytic efficiency was affected by many factors, such as the amount of photocatalyst, the initial concentration of BPA and pH and so on. Photogenerated holes, superoxide radical species and singlet oxygen were responsible for the photodegradation while the superoxide radical species were more predominant in the Bi/BiOI photocatalytic reaction system. Only one intermediate (m/z133) was observed by LC-MS/MS and a simple degradation pathway of BPA was proposed:BPA was first oxidized to4-isopropenyphenol and hydroquinone or phenol which was further transfer to CO2and H2O.
     Finally, a novel organic-inorganic3D mesoporous graphite carbon nitrogen/BiOI (MCN/BiOI) heterojunction photocatalyst was synthesized by a facile solvothermal method. The crystal phase, morphology, constituent and light absorbance of the resultant was characterized by XRD, FE-SEM, HR-TEM, FT-IR, UV-vis DRS, XPS, and N2adsorption/desorption. After hybridization with MCN, a heterojunction would be formed and then photogenerated carriers could be effectively separated by the internal electric field built at the heterojunction interface. The photocatalytic and photoelectrochemical performance of BiOI was improved and was much higher than pure BiOI and MCN. The composite with10%MCN displayed the highest photocatalytic performance, and about90%of BPA (20mg-L-1) was photodegraded by the solids of1.0g·L-110%-MCN/BiOI after irradiation with visible light for240min. The photocurrent intensity generated by10%-MCN/BiOI electrode was about1.5and2.0times of those induced by BiOI and MCN under visible light irradiation, respectively. The superoxide radical species were predominant in the reaction system.
引文
[1]C.A. Staples, P.B. Dome, G.M. Klecka, et al. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere,1998,36:2149-2173.
    [2]I. Bautista-Toledo, M.A. Ferro-Garcia, J. Rivera-Utrilla, et al. Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environmental Science & Technology,2005,39:6246-6250.
    [3]马少波,王坤.双酚a技术进展及市场前景.第六届全国工业催化技术及应用年会论文集,2009,3.
    [4]王春英.铋钨氧化物的制备及其在模拟太阳光下催化降解典型内分泌干扰物的研究:[博士学位论文].天津:南开大学,2011
    [5]J.G. Hengstler, H. Foth, T. Gebel, et al. Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Critical Reviews in Toxicology,2011,41:263-291.
    [6]Y.B. Wetherill, B.T. Akingbemi, J. Kanno, et al. In vitro molecular mechanisms of bisphenol A action. Reproductive Toxicology,2007,24:178-198.
    [7]钱伯章.双酚a的国内市场分析(上).上海化工,2010,35-37.
    [8]王光辉.浅谈双酚a的生产技术及其下游产品的发展趋势.中国科技信息,2013,96-97.
    [9]钱伯章.双酚a的技术进展与市场分析(下).上海化工,2011,35-37.
    [10]钱伯章.环氧树脂新品与市场分析.国外塑料,2010,28:36-44.
    [11]胡建英,杨敏.自来水及其水源中的内分泌干扰物质.净水技术,2001,03:3-6.
    [12]J.-y. Hu, T. Aizawa, S. Ookubo. Products of Aqueous Chlorination of Bisphenol A and Their Estrogenic Activity. Environmental Science & Technology,2002,36:1980-1987.
    [13]张长.内分泌干扰物双酚a在多介质水环境中的典型行为研究:[博士学位论文].湖南:湖南大学,2007
    [14]Y.Q. Huang, C.K.C. Wong, J.S. Zheng, et al. Bisphenol A (BPA) in China:A review of sources, environmental levels, and potential human health impacts. Environment International, 2012,42:91-99.
    [15]D. Mackay, S. Paterson. Calculating fugacity. Environmental Science & Technology,1981, 15:1006-1014.
    [16]A.V. Krishnan, P. Stathis, S.F. Permuth, et al. Bisphenol-A:an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology,1993,132:2279-2286.
    [17]S.C. Nagel, F.S. Vom Saal, K.A. Thayer, et al. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environmental Health Perspectives,1997,105:70-76.
    [18]F.S. Vom Saal, P.S. Cooke, D.L. Buchanan, et al. A Physiologically Based Approach To the Study of Bisphenol a and Other Estrogenic Chemicals On the Size of Reproductive Organs, Daily Sperm Production, and Behavior. Toxicology and Industrial Health,1998,14:239-260.
    [19]吴.詹.邓茂先。环境雌激素双酚a的生殖毒理研究.环境与健康杂志,2001,134-136+150.
    [20]T. Takeuchi, O. Tsutsumi, Y. Ikezuki, et al. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocrine Journal,2004,51:165-169.
    [21]C.M. Markey, P.R. Wadia, B.S. Rubin, et al. Long-term effects of fetal exposure to low doses of the Xenoestrogen bisphenol-A in the female mouse genital tract. Biology of Reproduction, 2005,72:1344-1351.
    [22]张志劬,詹平.双酚a对大鼠睾丸支持细胞的功能影响及机制.环境与健康杂志,2009,1096-1098+1145.
    [23]Y. Takai, O. Tsutsumi, Y. Ikezuki, et al. Estrogen Receptor-Mediated Effects of a Xenoestrogen, Bisphenol A, on Preimplantation Mouse Embryos. Biochemical and Biophysical Research Communications,2000,270:918-921.
    [24]S. Iwamuro, M. Sakakibara, M. Terao, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. General and Comparative Endocrinology, 2003,133:189-198.
    [25]端正花,郑敏,朱琳.五氯酚和双酚A联合作用对斑马鱼胚胎发育的毒性.中国环境科学,2006,S1:121-124.
    [26]端正花,张斌田,朱琳.双酚A对斑马鱼胚胎发育阶段的毒性及生物蓄积.中国环境科学,2008,03:260-263.
    [27]端正花,朱琳,赵娜,et al.双酚A暴露对斑马鱼胚胎期代谢作用的影响.中国环境科学,2009,12:1318-1322.
    [28]林勇,张浩,王文东,et al.围生期双酚A暴露对雄性子代大鼠中脑多巴胺神经细胞凋亡的影响.四川大学学报(医学版),2006,04:570-573.
    [29]X.-h. Xu, J. Zhang, Y.-m. Wang, et al. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-d-aspartate receptors of hippocampus in male offspring mice. Hormones and Behavior,2010,58:326-333.
    [30]Y.-H. Tian, J.-H. Baek, S.-Y. Lee, et al. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse,2010,64:432-439.
    [31]洪星,徐晓虹,杨宇杰,et al.生命早期双酚A暴露对子代成年小鼠焦虑和抑郁行为的影响及其神经机制.心理学报,2012,02:570-573.
    [32]王文娟,王军,钱文溢,et al.双酚A对大鼠背根神经节神经元钙离子通道电流影响.中国公共卫生,2012,02.
    [33]S. Kitamura, N. Jinno, S. Ohta, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochemical and Biophysical Research Communications,2002,293:554-559.
    [34]K. Moriyama, T. Tagami, T. Akamizu, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. Journal of Clinical Endocrinology & Metabolism,2002,87: 5185-5190.
    [35]R.T. Zoeller, R. Bansal, C. Parris. Bisphenol-A, an Environmental Contaminant that Acts as a Thyroid Hormone Receptor Antagonist in Vitro, Increases Serum Thyroxine, and Alters RC3/Neurogranin Expression in the Developing Rat Brain. Endocrinology,2005,146: 607-612.
    [36]R.A. Heimeier, Y.-B. Shi. Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development:Effect of bisphenol A on thyroid hormone action. General and Comparative Endocrinology,2010,168:181-189.
    [37]Z.-G. Sheng, Y. Tang, Y.-X. Liu, et al. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism. Toxicology and Applied Pharmacology,2012,259:133-142.
    [38]杨淋清,龚春梅,吴德生,et a1.双酚A与苯并[a]芘联合作用对三种乳腺上皮细胞的DNA损伤效应.环境与职业卫生,2012,12.
    [39]张江华,李华文,石丹,et al.双酚A对人胚肝细胞DNA损伤和修复功能的影响.环境与职业卫生,2005,03:197-199.
    [40]J.D. Meeker, S. Ehrlich, T.L. Toth, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reproductive Toxicology,2010,30: 532-539.
    [41]R. Bhandari, J. Xiao, A. Shankar. Urinary Bisphenol A and Obesity in US Children. American Journal of Epidemiology,2013,177:1263-1270.
    [42]A. Shankar, S. Teppala. Relationship between Urinary Bisphenol A Levels and Diabetes Mellitus. Journal of Clinical Endocrinology & Metabolism,2011,96:3822-3826.
    [43]R.A. Keri, S.M. Ho, P.A. Hunt, et al. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reproductive Toxicology,2007,24:240-252.
    [44]李君君,李力军,徐惠诚,et al.双酚a的健康影响以及各国对其在塑料制品中的限量要求.环境与健康杂志,2012,379-382.
    [45]秦定霞,崔毓桂,刘嘉茵.双酚A对生殖系统的影响及其作用机制国际生殖健康/计划生育杂志2010,01.
    [46]盛磊,朱焰,曹霖.双酚a作用机制的研究进展.国际生殖健康/计划生育杂志,2012,417-421.
    [47]杨丹,李丹丹,刘珊珊,et al.双酚A对机体的影响及其作用机制.现代预防医学,2008,17:3280-3282+3287.
    [48]曹娜.双酚A对斑马鱼的毒性以及内分泌干扰作用:[硕士学位论文].上海:上海海洋大学,2011
    [49]郭永梅.双酚a的危害及相关限制法规.现代食品科技,2012,549-551.
    [50]欧盟双酚a禁令出台出口企业面临洗牌危机.中国石油和化工标准与质量,2011,40-41.
    [51]法国拟发布法律暂停制造、进口、销售含有双酚a的包装材料.化学分析计量,2013,69.
    [52]瑞典禁止婴幼儿食品包装涂料和涂层含BPA.当代化工,2013,07:930.
    [53]王燕春,刘启凯,赵庆祥.双酚a的活性炭吸附特性.华东理工大学学报(自然科学版),2006,431-433+479.
    [54]刘桂芳,马军,关春雨,et al.改性活性炭对水溶液中双酚-A 的吸附研究.环境科学,2008,2349-2355.
    [55]G Liu, J. Ma, X. Li, et al. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials,2009,164: 1275-1280.
    [56]J. Xu, L. Wang, Y. Zhu. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir,2012,28:8418-8425.
    [57]倪.郝.孙.孙卫玲.泥沙对双酚a的吸附及其影响因素研究.环境科学学报,2004,975-981.
    [58]赵俊明,李咏梅,周琪,et al.双酚a在厌氧污泥上吸附行为的研究.环境科学,2008,1681-1686.
    [59]李靖,吴敏,毛真,et al.热解底泥对两种氟喹诺酮类抗生素和双酚a的吸附.环境化学,2013,613-621.
    [60]Y. Dong, D. Wu, X. Chen, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite. Journal of Colloid and Interface Science,2010,348:585-590.
    [61]唐文清,曾荣英,冯永兰等.合成碳羟基磷灰石对水中双酚A的吸附性能研究.环境工程学报,2009,3:1961-1964.
    [62]唐琼瑶,何品晶,邵立明,et al.双酚a和邻苯二甲酸二正丁酯在纸类上的吸附特性研究.环境科学,2008,2282-2286.
    [63]G. Xiao, L. Fu, A. Li. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent:Effect of the cross-linked bridge. Chemical Engineering Journal,2012,191:171-176.
    [64]李睿,刘玉,谭凤仪,et al.微小小环藻对双酚a的富集与降解.环境科学学报,2006,1101-1106.
    [65]房芳,张兰英,杨雪梅,et al.双酚A高效降解菌的筛选与降解特性.吉林大学学报(理学版),2005,06:181-184.
    [66]A. Omoike, T. Wacker, M. Navidonski. Biodegradation of bisphenol A by Heliscus lugdunensis, a naturally occurring hyphomycete in freshwater environments. Chemosphere, 2013,91:1643-1647.
    [67]袁理,曾光明,张长,et al.双酚a降解菌的分离鉴定及其降解特性.环境科学,2006,2095-2099.
    [68]G. Li, L. Zu, P.-K. Wong, et al. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB:Kinetics, mechanism and estrogenic transition. Bioresource Technology,2012,114:224-230.
    [69]邓伟光,谌建宇,李小明,et al.壬基酚和双酚a降解菌株的分离、鉴定和特性研究.环境科学学报,2013,700-707.
    [70]陈健华,黄霞,李舒渊,et al.膜-生物反应器对双酚A的去除.清华大学学报(自然科学 版),2008,06:999-1003.
    [71]曾湘梅,李咏梅,赵俊明.SBR工艺去除模拟城市污水中双酚A的研究.环境污染与防治,2008,10:23-27.
    [72]徐斌,高乃云,芮旻,et al.饮用水中内分泌干扰物双酚a的臭氧氧化降解研究.环境科学,2006,294-299.
    [73]M. Deborde, S. Rabouan, P. Mazellier, et al. Oxidation of bisphenol A by ozone in aqueous solution. Water Research,2008,42:4299-4308.
    [74]高娜,于志强,廖汝娥,et al.二氧化锰氧化降解双酚A的动力学.生态环境学报,2009,02:431434.
    [75]董金华,张盼月,曾光明,et al.高铁酸钾氧化降解水中双酚A的研究.安全与环境学报,2009,05:51-54.
    [76]别继艳,陈建孟,王家德.声化学氧化在污水净化中的研究进展.浙江工业大学学报,2002,05:109-113.
    [77]张可佳,高乃云,黎雷,et al.超声对水中双酚A的降解动力学及影响因素.同济大学学报(自然科学版),2011,11:1652-1656.
    [78]M. Inoue, Y. Masuda, F. Okada, et al. Degradation of bisphenol A using sonochemical reactions. Water Research,2008,42:1379-1386.
    [79]林海波.电化学氧化法处理难生物降解有机工业废水的研究:[博士学位论文].吉林:吉林大学,2005
    [80]H. Kuramitz, Y. Nakata, M. Kawasaki, et al. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode. Chemosphere,2001, 45:37-43.
    [81]M. Murugananthan, S. Yoshihara, T. Rakuma, et al. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. Journal of Hazardous Materials, 2008,154:213-220.
    [82]S. Tanaka, Y. Nakata, T. Kimura, et al. Electrochemical decomposition of bisphenol A using Pt/Ti and SnO2/Ti anodes. Journal of Applied Electrochemistry,2002,32:197-201.
    [83]Y.-h. Cui, X.-y. Li, G Chen. Electrochemical degradation of bisphenol A on different anodes. Water Research,2009,43:1968-1976.
    [84]刘延湘,张旭,吴峰,et al.环糊精对Fe(Ⅲ)引发双酚A光降解的影响.环境科学,2008,638-642.
    [85]刘延湘,彭章娥,杨小秋.土壤悬浮液中双酚A的光降解研究.化学研究与应用,2009,02:193-197.
    [86]刘延湘,吴峰,邓南圣.低分子有机羧酸对累托石悬浮液中双酚a光降解的影响.环境化学,2009,675-678.
    [87]刘延湘,A. Vu Thi Thu,吴峰.草酸促进双酚a在黏土矿物悬浮液中光降解研究.环境科学学报,2009,2585-2590.
    [88]杨.展.张.杨洪生.双酚A在Suwannee富里酸溶液中的光解.环境科学,2005,4044.
    [89]杨洪生,杨曦,展漫军,et al.双酚A在硝酸根和Suwannee富里酸溶液中的光解.第二 届全国环境化学学术报告会论文集,2004,3.
    [90]Y. Ohko, I. Ando, C. Niwa, et al. Degradation of Bisphenol A in Water by TiO2 Photocatalyst. Environmental Science & Technology,2001,35:2365-2368.
    [91]S. Fukahori, H. Ichiura, T. Kitaoka, et al. Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets. Applied Catalysis B:Environmental,2003, 46:453-462.
    [92]N. Watanabe, S. Horikoshi, H. Kawabe, et al. Photodegradation mechanism for bisphenol A at theTiO2/H2O interfaces. Chemosphere,2003,52:851-859.
    [93]K. Chiang, T.M. Lim, L. Tsen, et al. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Applied Catalysis A:General,2004,261:225-237.
    [94]S. Kaneco, M.A. Rahman, T. Suzuki, et al. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and PhotobiologyA:Chemistry,2004,163:419-424.
    [95]G Sivalingam, G Madras. Photocatalytic degradation of poly(bisphenol-A-carbonate) in solution over combustion-synthesized TiO2:mechanism and kinetics. Applied Catalysis A: General,2004,269:81-90.
    [96]G Wang, F. Wu, X. Zhang, et al. Enhanced TiO2 photocatalytic degradation of bisphenol E by P-cyclodextrin in suspended solutions. Journal of Hazardous Materials,2006,133:85-91.
    [97]G Wang, F. Wu, X. Zhang, et al. Enhanced TiO2 photocatalytic degradation of bisphenol A by P-cyclodextrin in suspended solutions. Journal of Photochemistry and Photobiology A: Chemistry,2006,179:49-56.
    [98]N. Venkatachalam, M. Palanichamy, B. Arabindoo, et al. Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A. Catalysis Communications,2007,8:1088-1093.
    [99]S. Horikoshi, F. Sakai, M. Kajitani, et al. Microwave frequency effects on the photoactivity of TiO2:Dielectric properties and the degradation of 4-chlorophenol, bisphenol A and methylene blue. Chemical Physics Letters,2009,470:304-307.
    [100]W.-T. Tsai, M.-K. Lee, T.-Y. Su, et al. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. Journal of Hazardous Materials,2009,168:269-275.
    [101]P. Fu, P. Zhang. Uniform dispersion of Au nanoparticles on TiO2 film via electrostatic self-assembly for photocatalytic degradation of bisphenol A. Applied Catalysis B: Environmental,2010,96:176-184.
    [102]B. Gao, T.M. Lim, D.P. Subagio, et al. Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A. Applied Catalysis A:General,2010,375:107-115.
    [103]K. Su, Z. Li, B. Cheng, et al. Studies on the carboxymethylation and methylation of bisphenol A with dimethyl carbonate over TiO2/SBA-15. Journal of Molecular Catalysis A: Chemical,2010,315:60-68.
    [104]D.P. Subagio, M. Srinivasan, M. Lim, et al. Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental,2010,95:414-422.
    [105]X. Wang, T.-T. Lim. Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Applied Catalysis B:Environmental,2010,100:355-364.
    [106]P.-S. Yap, T.-T. Lim, M. Lim, et al. Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol-A using solar light. Catalysis Today,2010,151:8-13.
    [107]J. Yang, J. Dai, J. Li. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity. Applied Surface Science,2011,257: 8965-8973.
    [108]P.-S. Yap, T.-T. Lim. Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B:Environmental,2011,101:709-717.
    [109]J.W. Ng, X.P. Wang, D.D. Sun. One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Applied Catalysis B:Environmental,2011,110:260-272.
    [110]X.P. Wang, T.T. Lim. Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation:evaluation of photocatalytic mechanism and solution toxicity. Applied Catalysis A:General,2011,399:233-241.
    [111]Z. Cheng, X. Quan, J. Xiang, et al. Photocatalytic degradation of bisphenol A using an integrated system of a new gas-liquid-solid circulating fluidized bed reactor and micrometer Gd-dopedTiO2 particles. Journal of Environmental Sciences,2012,24:1317-1326.
    [112]D. Hou, R. Goei, X. Wang, et al. Preparation of carbon-sensitized and Fe-Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Applied Catalysis B:Environmental,2012,126:121-133.
    [113]A. Manassero, M.L. Satuf, O.M. Alfano. Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chemical Engineering Journal,2013,225:378-386.
    [114]N. Lu, Y. Lu, F. Liu, et al. H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA):Kinetics, toxicity and degradation pathways. Chemosphere,2013,91: 1266-1272.
    [115]V. Maroga Mboula, V. Hequet, Y. Andres, et al. Photocatalytic degradation of endocrine disruptor compounds under simulated solar light. Water Research,2013,47:3997-4005.
    [116]高乃云,芮旻,徐斌,et al. UV-H_2O_2工艺降解饮用水中内分泌干扰物-双酚A.哈尔滨工业大学学报,2008,02:328-332.
    [117]黎雷,高乃云,胡玲,et al.阴离子对UV/H_20_2/微曝气工艺降解双酚A的影响.中国环境科学,2008,03:233-236.
    [118]李海波,潘晶,张阳,et al. UV/H_2O_2工艺降解水中双酚A影响因素的研究.环境污染与防治,2008,05:22-25+54.
    [119]E. Felis, S. Ledakowicz, aw, et al. Degradation of Bisphenol A Using UV and UV/H2O2 Processes. Water Environment Research,2011,83: 2154-2158.
    [120]J.C. Kruithof, P.C. Kamp, B.J. Martijn. UV/H2O2 Treatment:A Practical Solution for Organic Contaminant Control and Primary Disinfection. Ozone:Science & Engineering,2007, 29:273-280.
    [121]F. Mendez-Arriaga, R. Almanza. Water remediation by UV-vis/H2O2 process, photo-Fenton-like oxidation, and zeolite ZSM5. Desalination and Water Treatment,2013, 1-11.
    [122]M. Molkenthin, T. Olmez-Hanci, M.R. Jekel, et al. Photo-Fenton-like treatment of BPA: Effect of UV light source and water matrix on toxicity and transformation products. Water Research,2013,47:5052-5064.
    [123]T.E. Agustina, H.M. Ang, V.K. Vareek. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2005,6:264-273.
    [124]T. Oyama, I. Yanagisawa, M. Takeuchi, et al. Remediation of simulated aquatic sites contaminated with recalcitrant substrates by Ti02/ozonation under natural sunlight. Applied Catalysis B:Environmental,2009,91:242-246.
    [125]A. Colombo, G. Cappelletti, S. Ardizzone, et al. Bisphenol A endocrine disruptor complete degradation using TiO2 photocatalysis with ozone. Environ Chem Lett,2012,10:55-60.
    [126]程治良,全学军,熊彦淇,et al.循环式超声强化光催化降解双酚A.化工环保,2013,02:93-97.
    [127]R.A. Torres-Palma, J.I. Nieto, E. Combet, et al. An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol a mineralization. Water Research,2010,44:2245-2252.
    [128]X.Z. Li, C. He, N. Graham, et al. Photoelectrocatalytic degradation of bisphenol A in aqueous solution using a Au-TiO2/ITO film. Journal of Applied Electrochemistry,2005,35: 741-750.
    [129]Z. Frontistis, V.M. Daskalaki, A. Katsaounis, et al. Electrochemical enhancement of solar photocatalysis:Degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Research,2011,45:2996-3004.
    [130]B. Zhou, J. Qu, X. Zhao, et al. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode. Journal of Environmental Sciences, 2011,23:151-159.
    [131]V.M. Daskalaki, I. Fulgione, Z. Frontistis, et al. Solar light-induced photoelectrocatalytic degradation of bisphenol-A on TiO2/ITO film anode and BDD cathode. Catalysis Today,2013, 209:74-78.
    [132]Y.-B. Xie, X.-Z. Li. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. Journal of Hazardous Materials,2006,138:526-533.
    [133]A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37-38.
    [134]A.L. Linsebigler, G. Lu, J.T. Yates. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results. Chemical Reviews,1995,95:735-758.
    [135]储升.共轭聚合物半导体光催化材料的研制及构效关系研究:[博士学位论文].江苏:南京大学,2013
    [136]M.R. Hoffmann, S.T. Martin, W. Choi, et al. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews,1995,95:69-96.
    [137]T. Noguchi, A. Fujishima, P. Sawunyama, et al. Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 Film. Environmental Science & Technology,1998,32:3831-3833.
    [138]张浩,刘秀玉,朱庆明,et al.Cu掺杂TiO_2光催化降解室内甲醛气体的实验研究.过程工程学报,2012,696-701.
    [139]彭丽,李娟,吴燕.掺铁TiO_2薄膜光催化降解室内苯污染的实验研究.资源与人居环境,2008,16:70-72.
    [140]施明旻,周留煜.我国城市大气污染概况及防治对策研究.中山大学研究生学刊(自然科学.医学版),2012,04:62-69.
    [141]赵毅,韩静,赵莉,et a1.利用TiO_2光催化烟气同时脱硫脱硝的实验研究.动力工程,2007,03:411-414.
    [142]赵毅,赵莉,韩静,et al. TiO2光催化烟气同时脱硫脱硝方法及其机理研究.中国科学(E辑:技术科学),2008,05:755-763.
    [143]赵毅,韩静,马天忠.活性炭纤维负载Ti02同时脱硫脱硝实验研究.中国电机工程学报,2009,11:44-49.
    [144]陈建秋.光催化降解水体中有机污染物的研究:[硕士学位论文].山东:中国海洋大学,2006
    [145]H. Yoneyama, Y. Yamashita, H. Tamura. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature,1979,282:817-818.
    [146]贺艳,段海静,王广华,et al.3D介孔TiO_2微米球的制备及其光催化降解双酚A的研究.环境科学学报,2011,2179-2184.
    [147]吴少林,万诗贵.光催化氧化技术在环境保护中的应用.南昌航空工业学院学报(自然科学版),2002,02:21-24.
    [148]N.A.M. Barakat, M.M. Nassar, T.E. Farrag, et al. Effective photodegradation of methomyl pesticide in concentrated solutions by novel enhancement of the photocatalytic activity of TiO2 using CdSO4 nanoparticles. Environ Sci Pollut Res,2013,1-11.
    [149]S.N. Frank, A.J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society,1977,99: 303-304.
    [150]赵东旺,陈秀丽,赵爱娟TiO_2/5A光催化降解水中CN~-的催化活性.光谱实验室,2012,05:3055-3059.
    [151]林龙利,刘国光,吕文英.TiO_2光催化同步去除水体中重金属和有机物研究进展.科技导报,2011,23:74-79.
    [152]Q. Wang, X. Chen, K. Yu, et al. Synergistic photosensitized removal of Cr(VI) and Rhodamine B dye on amorphous TiO2 under visible light irradiation. Journal of Hazardous Materials,2013,246-247:135-144.
    [153]A.E. Giannakas, M. Antonopoulou, Y. Deligiannakis, et al. Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation. Applied Catalysis B:Environmental,2013,140-141:636-645.
    [154]张慧书,刘守新.TiO_2光催化杀菌机理及应用研究进展.科学技术与工程,2009,17:5049-5056+5064.
    [155]T. Matsunaga, R. Tomoda, T. Nakajima, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters,1985,29:211-214.
    [156]R. Wang, K. Hashimoto, A. Fujishima, et al. Light-induced amphiphilic surfaces. Nature, 1997,388:431-432.
    [157]王晓俊,吴光辉,邹建平,et al.ZnO薄膜光催化亲水防雾.南昌大学学报(理科版),2011,05:450-452.
    [158]G Tian, Y. Chen, R. Zhai, et al. Hierarchical flake-like Bi2Mo06/Ti02 bilayer films for visible-light-induced self-cleaning applications. Journal of Materials Chemistry A,2013,1: 6961-6968.
    [159]W. Choi, A. Termin, M.R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry,1994,98:13669-13679.
    [160]R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293:269-271.
    [161]D. Chen, D. Yang, Q. Wang, et al. Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles. Industrial & Engineering Chemistry Research,2006,45:4110-4116.
    [162]刘成,陈卫,陶辉,et al.太阳光/硫掺杂TiO_2体系对双酚A的氧化性能研究.环境科学,2009,1653-1657.
    [163]C. Yu, W. Zhou, K. Yang, et al. Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic activity. J Mater Sci,2010,45:5756-5761.
    [164]钟福新,林莎莎,朱义年,et al. La/Fe共掺杂TiO_2纳米管阵列光催化降解制糖废水.环境科学学报,2011,1450-1455.
    [165]M. Bettinelli, V. Dallacasa, D. Falcomer, et al. Photocatalytic activity of TiO2 doped with boron and vanadium. Journal of Hazardous Materials,2007,146:529-534.
    [166]Y. Wang, Y. Wang, Y. Meng, et al. A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2. The Journal of Physical Chemistry C,2008, 112:6620-6626.
    [167]S. In, A. Orlov, R. Berg, et al. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts. Journal of the American Chemical Society,2007,129:13790-13791.
    [168]T. Sano, S. Kutsuna, N. Negishi, et al. Effect of Pd-photodeposition over TiO2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. Journal of Molecular Catalysis A:Chemical,2002,189:263-270.
    [169]B. Sun, A.V. Vorontsov, P.G. Smirniotis. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir,2003,19:3151-3156.
    [170]K. Awazu, M. Fujimaki, C. Rockstuhl, et al. Aplasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society,2008, 130:1676-1680.
    [171]A. Tanaka, S. Sakaguchi, K. Hashimoto, et al. Preparation of Au/TiO2 exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. Catalysis Science & Technology,2012, 2:907-909.
    [172]M. Yin, Z. Li, J. Kou, et al. Mechanism Investigation of Visible Light-Induced Degradation in a Heterogeneous TiO2/Eosin Y/Rhodamine B System. Environmental Science & Technology,2009,43:8361-8366.
    [173]赵占中,谢银德,张冰,et al.掺杂改性TiO_2可见光光催化剂研究的最新进展.硅酸盐通报,2012,01:92-95+105.
    [174]S. Sato. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters,1986,123:126-128.
    [175]高堃,傅敏.共掺杂改性TiO_2光催化材料的研究进展.重庆工商大学学报(自然科学版),2008,05:509-512.
    [176]K. Lv, H. Zuo, J. Sun, et al. (Bi, C and N) codoped TiO2 nanoparticles. Journal of Hazardous Materials,2009,161:396-401.
    [177]刘斌.二氧化钛光催化材料的掺杂改性及其对气体污染物净化性能的研究:[硕士学位论文].兰州大学,2010
    [178]肖奇,邱冠周,徐兢,et al.纳米TiO_2表面修饰理论与实践.功能材料,2002,01.
    [179]M. Hara, T. Kondo, M. Komoda, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications,1998,357-358.
    [180]H. Yan, J. Yang, G. Ma, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. Journal of Catalysis,2009,266:165-168.
    [181]Y. Zhang, B. Deng, T. Zhang, et al. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. The Journal of Physical Chemistry C,2010,114:5073-5079.
    [182]W. Chen, Z. Fan, Z. Lai. Synthesis of core-shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts. Journal of Materials Chemistry A,2013.
    [183]闫勇,俞海云,裴立宅,et al.多孔结构纺锤形a-Fe_2O_3的合成及光催化性能.中南大学学报(自然科学版),2013,02:487-492.
    [184]付霞,陈阳,余高奇,et al.超细钙钛矿型PrMnO3制备、表征及光催化.中国稀土学报,2011,01:49-54.
    [185]H. Zhang, G. Chen, X. He, et al. Electronic structure and photocatalytic properties of Ag-La codoped CaTiO3. Journal of Alloys and Compounds,2012,516:91-95.
    [186]J.-Q. Zheng, Y.-J. Zhu, J.-S. Xu, et al. Microwave-assisted rapid synthesis and photocatalytic activity of mesoporous Nd-doped SrTiO3 nanospheres and nanoplates. Materials Letters,2013,100:62-65.
    [187]J. Tang, Z. Zou, J. Ye. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie International Edition, 2004,43:4463-4466.
    [188]L.Z. Zhang, I. Djerdj, M. Cao, et al. Nonaqueous Sol-Gel Synthesis of a Nanocrystalline InNbO4 Visible-Light Photocatalyst. Advanced Materials,2007,19:2083-2086.
    [189]Z. Chen, D. Li, W. Zhang, et al. Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation. The Journal of Physical Chemistry C,2009,113: 4433-4440.
    [190]Z. Zou, J. Ye, H. Arakawa. Photophysical and photocatalytic properties of InMO4 (M= Nb5+, Ta5+) under visible light irradiation. Materials Research Bulletin,2001,36:1185-1193.
    [191]M. Oshikiri, M. Boero, J.H. Ye, et al. Electronic structures of promising photocatalysts InM04 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. Journal of Chemical Physics,2002,117:7313-7318.
    [192]J. Ye, Z. Zou, H. Arakawa, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+). Journal of Photochemistry and Photobiology A:Chemistry,2002,148:79-83.
    [193]Z. Zou, J. Ye, H. Arakawa. Effect of Ni substitution on the structure and photocatalytic activity of InTaO4 under visible light irradiation. Journal of Materials Research,2002,17: 1419-1424.
    [194]Z. Zou, J. Ye, K. Sayama, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry,2002,148:65-69.
    [195]A. Chakraborty, S. Ganguli, M. Kebede. Photocatalytic Degradation of 2-Propanol and Phenol Using Au Loaded MnWO4 Nanorod Under Visible Light Irradiation. J Clust Sci,2012, 23:437-448.
    [196]J. Zeng, H. Wang, Y. Zhang, et al. Hydrothermal Synthesis and Photocatalytic Properties of Pyrochlore La2Sn2O7 Nanocubes. The Journal of Physical Chemistry C,2007,111: 11879-11887.
    [197]C.-C. Hu, T.-F. Yeh, H. Teng. Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting. Catalysis Science & Technology,2013,3: 1798-1804.
    [198]L. Schwertmann, M. Wark, R. Marschall. Sol-gel synthesis of defect-pyrochlore structured CsTaWO6 and the tribochemical influences on photocatalytic activity. RSC Advances,2013,3: 18908-18915.
    [199]M.A. Pena, J.L.G. Fierro. Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews,2001,101:1981-2018.
    [200]K.E. Sickafus, J.M. Wills, N.W. Grimes. Structure of Spinel. Journal of the American Ceramic Society,1999,82:3279-3292.
    [201]林仕伟,段文杰,李建保.尖晶石型化合物的制备及光催化性能.硅酸盐学报,2010,03:527-534.
    [202]Z. Xu, Y. Hu, Y. Li. Electrokinetics and Wettability of Huebnerite and Ferberite. Journal of Colloid and Interface Science,1998,198:209-215.
    [203]郭英娜.新型铋系层状氧化物的设计及其模拟太阳光光催化行为研究:[博士学位论文].吉林:东北师范大学,2010
    [204]D. Ismunandar, B.J. Kennedy, B.A. Hunter. Structural and magnetic studies of manganese-containing pyrochlore oxides. Journal of Alloys and Compounds,2000,302: 94-100.
    [205]李二军,陈浪,章强,et al.铋系半导体光催化材料.化学进展,2010,12:2282-2289.
    [206]L. Zhou, W. Wang, H. Xu, et al. Bi2O3 Hierarchical Nanostructures:Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis. Chemistry-A European Journal, 2009,15:1776-1782.
    [207]S. Wu, J. Fang, W. Xu, et al. Hydrothermal synthesis, characterization of visible-light-driven a-Bi2O3 enhanced by Pr3+doping. Journal of Chemical Technology & Biotechnology,2013,88:1828-1835.
    [208]D. Hou, X. Hu, P. Hu, et al. Bi4Ti3O12 nanofibers-BiOI nanosheets p-n junction:facile synthesis and enhanced visible-light photocatalytic activity. Nanoscale,2013,5:9764-9772.
    [209]D. Hou, W. Luo, Y. Huang, et al. Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale, 2013,5:2028-2035.
    [210]X. Lin, Q.-F. Guan, T.-T. Liu, et al. Controllable Synthesis and Photocatalytic Activity of Bi4Ti3O12 Particles with Different Morphologies. Acta Physico-Chimica Sinica,2013,29:411-417.
    [211]W.F. Yao, H. Wang, X.H. Xu, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7. Applied Catalysis A:General,2004,259:29-33.
    [212]Z. Bian, Y. Huo, Y. Zhang, et al. Aerosol-spay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity. Applied Catalysis B: Environmental,2009,91:247-253.
    [213]W. Guo, S. Zhang, Y. Guo, et al. Template-free and morphology-controlled hydrothermal growth of single-crystalline Bil2TiO20 with excellent simulated sunlight photocatalytic activity. RSC Advances,2013,3:4008-4017.
    [214]Z. Yang, H. Fan, X. Wang, et al. Rapid microwave-assisted hydrothermal synthesis of Bil2TiO20 hierarchical architecture with enhanced visible-light photocatalytic activities. Journal of Physics and Chemistry of Solids,2013,74:1739-1744.
    [215]许效红,姚伟峰,张寅,et al.钛酸铋系化合物的光催化性能研究.化学学报,2005,01:5-10+91.
    [216]J. Tang, Z. Zou, J. Ye. Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 Under Visible Light Irradiation. Catalysis Letters,2004,92:53-56.
    [217]K. Akihiko, H. Statoshi. H2 or 02 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+with 6s2 Configuration and dO Transition Metal Ions. chemistry Letters,1999,10:1103-1104.
    [218]C.Y. Wang, H. Zhang, F. Li, et al. Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation. Environmental Science & Technology,2010,44:6843-6848.
    [219]C. Wang, L. Zhu, M. Wei, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research,2012,46: 845-853.
    [220]P. Chen, L. Zhu, S. Fang, et al. Photocatalytic Degradation Efficiency and Mechanism of Microcystin-RR by Mesoporous Bi2WO6 under Near Ultraviolet Light. Environmental Science & Technology,2012,46:2345-2351.
    [221]S. Tokunaga, H. Kato, A. Kudo. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chemistry of Materials,2001,13: 4624-4628.
    [222]龙明策.新型光催化剂的制备、表征及其光催化活性的调控机制:[博士学位论文].上海:上海交通大学,2007
    [223]A. Kudo, K. Ueda, H. Kato, et al. Photocatalytic 02 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters,1998,53:229-230.
    [224]Y.H. Ng, A. Iwase, A. Kudo, et al. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters,2010,1:2607-2612.
    [225]F. Lin, D. Wang, Z. Jiang, et al. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy & Environmental Science,2012,5:6400-6406.
    [226]GH. Tian, Y.J. Chen, W. Zhou, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. Journal of Materials Chemistry,2011,21:887-892.
    [227]L. Wang, W.Z. Wang, M. Shang, et al. Visible light responsive bismuth niobate photocatalyst:enhanced contaminant degradation and hydrogen generation. Journal of Materials Chemistry,2010,20:8405-8410.
    [228]X.Y. Zhang, J. Lv, L. Bourgeois, et al. Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New Journal of Chemistry,2011,35: 937-941.
    [229]R. Shi, J. Lin, Y.J. Wang, et al. Visible-Light Photocatalytic Degradation of BiTaO4 Photocatalyst and Mechanism of Photocorrosion Suppression. Journal of Physical Chemistry C, 2010,114:6472-6477.
    [230]Z.-z. Qin, Z.-I. Liu, Y.-b. Liu, et al. Synthesis of BiY03 for degradation of organic compounds under visible-light irradiation. Catalysis Communications,2009,10:1604-1608.
    [231]J.W. Tang, Z.G Zou, J.H. Ye. Efficient photocatalysis on BaBiO3 driven by visible light. Journal of Physical Chemistry C,2007,111:12779-12785.
    [232]X.F. Chang, G.B. Ji, Q. Sui, et al. Rapid photocatalytic degradation of PCP-Na over NaBiO3 driven by visible light irradiation. Journal of Hazardous Materials,2009,166:728-733.
    [233]Y. Li, G Chen, H. Zhang, et al. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi2AlNbO7. Materials Research Bulletin,2009,44:741-746.
    [234]肖信.碘氧化铋分级微纳结构的合成、表征和可见光光催化活性研究:[博士学位论文].广东:华南理工大学,2011
    [235]魏平玉,杨青林,郭林.卤氧化铋化合物光催化剂.化学进展,2009,09:1734-1741.
    [236]X.F. Chang, J. Huang, C. Cheng, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:Characterization and catalytic performance. Catalysis Communications,2010,11:460-464.
    [237]X. Xiao, W.D. Zhang. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. Journal of Materials Chemistry,2010,20: 5866-5870.
    [238]M. Shang, W.Z. Wang, L. Zhang. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. Journal of Hazardous Materials, 2009,167:803-809.
    [239]J.X. Xia, S. Yin, H.M. Li, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Transactions,2011,40:5249-5258.
    [240]J.X. Xia, S. Yin, H.M. Li, et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid. Langmuir,2011,27:1200-1206.
    [241]J.X. Xia, J. Zhang, S. Yin, et al. Advanced visible light photocatalytic properties of BiOCl micro/nanospheres synthesized via reactable ionic liquids. Journal of Physics and Chemistry of Solids,2013,74:298-304.
    [242]C.L. Yu, C.F. Fan, X.J. Meng, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes. Reaction Kinetics Mechanisms and Catalysis,2011,103:141-151.
    [243]L.F. Lu, L. Kong, Z. Jiang, et al. Visible-Light-Driven Photodegradation of Rhodamine B on Ag-Modified BiOBr. Catalysis Letters,2012,142:771-778.
    [244]H. Liu, W.R. Cao, Y. Su, et al. Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Applied Catalysis B:Environmental,2012,111:271-279.
    [245]C.L. Yu, J.C. Chen, F.F. Cao, et al. Preparation, characterization, and photocatalytic properties of Pt/BiOCl nanoplates. Chinese Journal of Catalysis,2013,34:385-390.
    [246]C.L. Yu, J.C. Yu, C.F. Fan, et al. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Materials Science and Engineering B,2010,166:213-219.
    [247]G.H. Jiang, X.H. Wang, Z. Wei, et al. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres. Journal of Materials Chemistry A,2013,1: 2406-2410.
    [248]B. Pare, B. Sarwan, S.B. Jonnalagadda. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition. Applied Surface Science,2011,258:247-253.
    [249]X.C. Zhang, C.M. Fan, Y.W. Wang, et al. DFT+U predictions:The effect of oxygen vacancy on the structural, electronic and photocatalytic properties of Mn-doped BiOCl. Computational Materials Science,2013,71:135-145.
    [250]R.J. Wang, GH. Jiang, X.H. Wang, et al. Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres. Powder Technology,2012,228: 258-263.
    [251]P.Q. Wang, Y. Bai, J.Y. Liu, et al. N, C-codoped BiOCl flower-like hierarchical structures. Micro & Nano Letters,2012,7:876-879.
    [252]F.D. Gao, D.W. Zeng, Q.W. Huang, et al. Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics, 2012,14:10572-10578.
    [253]S.Y. Song, W. Gao, X. Wang, et al. Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Transactions,2012,41: 10472-10476.
    [254]S.Y. Chai, Y.J. Kim, M.H. Jung, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. Journal of Catalysis,2009,262:144-149.
    [255]Y.Y. Li, J.S. Wang, H.C. Yao, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catalysis Communications,2011,12: 660-664.
    [256]X. Zhang, L.Z. Zhang, T.F. Xie, et al. Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures. Journal of Physical Chemistry C,2009,113:7371-7378.
    [257]GP. Dai, J.G Yu, G Liu. Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p-n Junction BiOI/TiO2 Nanotube Arrays. Journal of Physical Chemistry C,2011, 115:7339-7346.
    [258]J. Jiang, X. Zhang, P.B. Sun, et al. ZnO/BiOI Heterostructures:Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C,2011,115:20555-20564.
    [259]B.X. Li, Y.F. Wang, Y.L. Wu, et al. ZnO-BiOC1 Nanocomposite for Photocatalytic Degradation of Organic Dye. Asian Journal of Chemistry,2012,24:3942-3944.
    [260]L. Kong, Z. Jiang, H.H. Lai, et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. Journal of Catalysis,2012,293:116-125.
    [261]H.F. Cheng, W.J. Wang, B.B. Huang, et al. Tailoring Agl nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. Journal of Materials Chemistry A,2013,1:7131-7136.
    [262]H.F. Cheng, B.B. Huang, P. Wang, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chemical Communications,2011,47:7054-7056.
    [263]W. Xiong, Q.D. Zhao, X.Y. Li, et al. One-step synthesis of flower-like Ag/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity. Catalysis Communications,2011, 16:229-233.
    [264]T.B. Li, G. Chen, C. Zhou, et al. New photocatalyst BiOCI/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions,2011,40:6751-6758.
    [265]J. Cao, B.Y. Xu, H.L. Lin, et al. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chemical Engineering Journal,2012,185:91-99.
    [266]C.K. Chiang, C.R. Fincher, Jr., Y.W. Park, et al. Electrical Conductivity in Doped Polyacetylene. Physical Review Letters,1977,39:1098-1101.
    [267]C.K. Chiang, Y.W. Park, A.J. Heeger, et al. Conducting polymers:Halogen doped polyacetylene. The Journal of Chemical Physics,1978,69:5098-5104.
    [268]王俊生.聚苯胺微/纳米结构的构建与表征:[博士学位论文].天津:天津大学,2009
    [269]S. Yanagida, A. Kabumoto, K. Mizumoto, et al. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Journal of the Chemical Society, Chemical Communications,1985,474-475.
    [270]H. Zhang, R. Zong, J. Zhao, et al. Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI. Environmental Science & Technology,2008,42:3803-3807.
    [271]A.Y. Liu, M.L. Cohen. STRUCTURAL-PROPERTIES AND ELECTRONIC-STRUCTURE OF LOW-COMPRESSIBILITY MATERIALS-BETA-SI3N4 AND HYPOTHETICAL BETA-C3N4. Physical Review B,1990,41:10727-10734.
    [272]D.M. Teter, R.J. Hemley. Low-Compressibility Carbon Nitrides. Science,1996,271:53-55.
    [273]王雅君.共轭分子表面杂化提高光催化性能的研究:[博士学位论文].北京:清华大学,2011
    [274]X.C. Wang, K. Maeda, A. Thomas, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials,2009,8:76-80.
    [275]X.F. Chen, Y.S. Jun, K. Takanabe, et al. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride:A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. Chemistry of Materials,2009,21:4093-4095.
    [276]J. Sun, J. Zhang, M. Zhang, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun,2012,1139.
    [277]X.F. Chen, J.S. Zhang, X.Z. Fu, et al. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light. Journal of the American Chemical Society, 2009,131:11658-11659.
    [278]Y. Di, X.C. Wang, A. Thomas, et al. Making Metal-Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light. Chemcatchem,2010,2: 834-838.
    [279]Z.X. Ding, X.F. Chen, M. Antonietti, et al. Synthesis of Transition Metal-Modified Carbon Nitride Polymers for Selective Hydrocarbon Oxidation. Chemsuschem,2011,4:274-281.
    [280]D. Portehault, C. Giordano, C. Gervais, et al. High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials,2010,20:1827-1833.
    [281]Y. Wang, Y. Di, M. Antonietti, et al. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids. Chemistry of Materials,2010,22:5119-5121.
    [282]Y.J. Zhang, T. Mori, J.H. Ye, et al. Phosphorus-Doped Carbon Nitride Solid:Enhanced Electrical Conductivity and Photocurrent Generation. Journal of the American Chemical Society,2010,132:6294-6295.
    [283]J.S. Zhang, J.H. Sun, K. Maeda, et al. Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy & Environmental Science,2011,4:675-678.
    [284]Y. Wang, J.S. Zhang, X.C. Wang, et al. Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers:Metal-Free Catalysts for Cyclohexane Oxidation. Angewandte Chemie-International Edition,2010,49:3356-3359.
    [285]A. Fischer, M. Antonietti, A. Thomas. Growth confined by the nitrogen source:Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Advanced Materials, 2007,19:264-267.
    [286]吴欢文,张宁,钟金莲,et al.p-n复合半导体光催化剂研究进展.化工进展,2007,12:1669-1674.
    [287]M. Long, W. Cai, J. Cai, et al. Efficient Photocatalytic Degradation of Phenol over Co304/BiVO4 Composite under Visible Light Irradiation. The Journal of Physical Chemistry B,2006,110:20211-20216.
    [288]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展.化学进展,2009,Z1:406-419.
    [289]Y. Wang, R. Shi, J. Lin, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science,2011,4: 2922-2929.
    [290]C. Pan, J. Xu, Y. Wang, et al. Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly. Advanced Functional Materials,2012,22: 1518-1524.
    [291]Y. Wang, X. Bai, C. Pan, et al. Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. Journal of Materials Chemistry,2012,22:11568-11573.
    [292]D. Chen, K. Wang, D. Xiang, et al. Significantly Enhancement of Photocatalytic Performances via Core-shell Structure of ZnO@mpg-C3N4. Applied Catalysis B: Environmental,2013, http://dx.doi.Org/10.1016/i.apcatb.2013.09.039.
    [293]L. Sun, X. Zhao, C.-J. Jia, et al. Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction:investigation based on experimental and theoretical studies. Journal of Materials Chemistry,2012,22:23428-23438.
    [294]Y. Cheng, M. Shigeta, S. Choi, et al. Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma. Chemical Engineering Journal,2012,183:483-491.
    [295]S.C. Yan, Z.S. Li, Z.G. Zou. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir,2009,25:10397-10401.
    [296]S.C. Yan, Z.S. Li, Z.G. Zou. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation. Langmuir,2010,26:3894-3901.
    [297]F. Goettmann, A. Fischer, M. Antonietti, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angewandte Chemie International Edition,2006,45:4467-4471.
    [298]X.C. Wang, X.F. Chen, A. Thomas, et al. Metal-Containing Carbon Nitride Compounds:A New Functional Organic-Metal Hybrid Material. Advanced Materials,2009,21:1609-1612.
    [299]Y. Wang, J. Yao, H.R. Li, et al. Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media. Journal of the American Chemical Society,2011,133:2362-2365.
    [300]Y. Xiong, B. Wiley, J. Chen, et al. Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie International Edition,2005,44:7913-7917.
    [301]C. Langhammer, Z. Yuan, I. Zoric, et al. Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Letters,2006,6:833-838.
    [302]J. Ren, W.Z. Wang, S.M. Sun, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Applied Catalysis B:Environmental, 2009,92:50-55.
    [303]P. Wang, B. Huang, X. Zhang, et al. Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr. Chemistry A European Journal,2009,15:1821-1824.
    [304]V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave. Powder Synthesis and Characterization of Amorphous Carbon Nitride. Chemistry of Materials,2000,12:3264-3270.
    [305]Q.J. Xiang, J.G. Yu, M. Jaroniec. Preparation and Enhanced Visible-Light Photocatalytic H-2-Production Activity of Graphene/C3N4 Composites. Journal of Physical Chemistry C, 2011,115:7355-7363.
    [306]W. Lei, D. Portehault, R. Dimova, et al. Boron Carbon Nitride Nanostructures from Salt Melts:Tunable Water-Soluble Phosphors. Journal of the American Chemical Society,2011, 133:7121-7127.
    [307]Q.X. Guo, Y. Xie, X.J. Wang, et al. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chemical Communications, 2004,26-27.
    [308]A.P. Dementjev, A. de Graaf, M.C.M. van de Sanden, et al. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films. Diamond and Related Materials,2000,9:1904-1907.
    [309]Y.G. Li, J.A. Zhang, Q.S. Wang, et al. Nitrogen-Rich Carbon Nitride Hollow Vessels: Synthesis, Characterization, and Their Properties. Journal of Physical Chemistry B,2010,114: 9429-9434.
    [310]C.S. Guo, M. Ge, L. Liu, et al. Directed Synthesis of Mesoporous TiO(2) Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environmental Science & Technology,2010,44:419-425.
    [311]C. Young, T.M. Lim, K. Chiang, et al. Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Applied Catalysis B: Environmental,2008,78:1-10.
    [312]P. Fu, P. Zhang, J. Li. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185nm irradiation. Applied Catalysis B:Environmental,2011,105:220-228.
    [313]F.X. Xiao, F.C. Wang, X.Z. Fu, et al. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry,2012,22:2868-2877.
    [314]S.B. Zhu, T.G. Xu, H.B. Fu, et al. Synergetic effect of Bi2WO6 photocatalyst with C-60 and enhanced photoactivity under visible irradiation. Environmental Science & Technology,2007, 41:6234-6239.
    [315]C.Y. Wang, L.Y. Zhu, C. Song, et al. Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on bisphenol A under simulated solar light irradiation. Applied Catalysis B:Environmental,2011,105:229-236.
    [316]L.S. Zhang, K.H. Wong, H.Y. Yip, et al. Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light: The Role of Diffusing Hydroxyl Radicals. Environmental Science & Technology,2010,44:1392-1398.
    [317]S.H. Yoon, J.H. Lee. Oxidation mechanism of As(III) in the UV/TiO2 system:Evidence for a direct hole oxidation mechanism. Environmental Science & Technology,2005,39: 9695-9701.
    [318]R. Hazime, C. Ferronato, L. Fine, et al. Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Applied Catalysis B: Environmental,2012,126:90-99.
    [319]Y.N. Wang, K.J. Deng, L.Z. Zhang. Visible Light Photocatalysis of BiOI and Its Photocatalytic Activity Enhancement by in Situ Ionic Liquid Modification. Journal of Physical Chemistry C,2011,115:14300-14308.
    [320]N.B.-M. Kalish, E. Shandalov, V. Kharlanov, et al. Apparent Stoichiometry of Water in Proton Hydration and Proton Dehydration Reactions in CH3CN/H2O Solutions. Journal of Physical Chemistry A,2011,115:4063-4075.
    [321]C.H. Wang, C.L. Shao, Y.C. Liu, et al. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia,2008,59:332-335.
    [322]Z. Liu, X.X. Xu, J.Z. Fang, et al. Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science,2012,258:3771-3778.
    [323]K. Gurunathan. Photocatalytic hydrogen production using transition metal ions-doped y-Bi2O3 semiconductor particles. International Journal of Hydrogen Energy,2004,29: 933-940.
    [324]O. Rosseler, M.V. Shankar, M.K.-L. Du, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts:Influence of noble metal and porogen promotion. Journal of Catalysis,2010,269:179-190.
    [325]P. Wang, B. Huang, Z. Lou, et al. Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures. Chemistry A European Journal,2010,16:538-544.
    [326]D.B. Ingram, S. Linic. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes:Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. Journal of the American Chemical Society,2011,133:5202-5205.
    [327]A. Primo, T. Marino, A. Conna, et al. Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society,2011,133:6930-6933.
    [328]H. Zhang, X.F. Fan, X. Quan, et al. Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light. Environmental Science & Technology,2011,45:5731-5736.
    [329]S.-W. Cao, J. Fang, M.M. Shahjamali, et al. Plasmon-Enhanced Hydrogen Evolution on Au-InVO4 Hybrid Microspheres. RSC Advances,2012,2:5513-5515.
    [330]Z. Han, L. Ren, Z. Cui, et al. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Applied Catalysis B:Environmental,2012,126: 298-305.
    [331]J. Toudert, R. Serna, M. Jimenez de Castro. Exploring the Optical Potential of Nano-Bismuth:Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. Journal of Physical Chemistry C,2012,116:20530-20539.
    [332]B. Ma, J. Guo, W.-L. Dai, et al. Highly stable and efficient Ag/AgCl core-shell sphere: Controllable synthesis, characterization, and photocatalytic application. Applied Catalysis B: Environmental,2013,130-131:257-263.
    [333]R. Nyholm, A. Berndtsson, N. Martensson. Core level binding energies for the elements Hf to Bi (Z=72-83). Journal of Physics C:Solid State Physics,1980,13:L1091.
    [334]Y. Zheng, C. Chen, Y. Zhan, et al. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst:Correlation between Structure and Property. Journal of Physical Chemistry C, 2008,112:10773-10777.
    [335]S. Song, L. Xu, Z. He, et al. Mechanism of the Photocatalytic Degradation of C.I. Reactive Black 5 at pH 12.0 Using SrTiO3/CeO2 as the Catalyst. Environmental Science& Technology, 2007,41:5846-5853.
    [336]Y. Chen, A. Lu, Y. Li, et al. Naturally Occurring Sphalerite As a Novel Cost-Effective Photocatalyst for Bacterial Disinfection under Visible Light. Environmental Science& Technology,2011,45:5689-5695.
    [337]W. Wang, Y. Yu, T. An, et al. Visible-Light-Driven Photocatalytic Inactivation of E. coli K-12 by Bismuth Vanadate Nanotubes:Bactericidal Performance and Mechanism. Environmental Science & Technology,2012,46:4599-4606.
    [338]Y.Y. Li, J.S. Wang, B. Liu, et al. BiOI-sensitized TiO2 in phenol degradation:A novel efficient semiconductor sensitizer. Chemical Physics Letters,2011,508:102-106.
    [339]H. Ji, F. Chang, X. Hu, et al. Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chemical Engineering Journal,2013,218:183-190.
    [340]Y. Chen, S. Yang, K. Wang, et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. Journal of Photochemistry and Photobiology A:Chemistry,2005,172:47-54.
    [341]M. Groenewolt, M. Antonietti. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Advanced Materials,2005,17:1789-1792.
    [342]L. Ge, F. Zuo, J. Liu, et al. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. Journal of Physical Chemistry C,2012,116:13708-13714.
    [343]J. Fu, Y. Tian, B. Chang, et al. BiOBr-carbon nitride heterojunctions:synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry,2012,22: 21159-21166.
    [344]B. Chai, T. Peng, J. Mao, et al. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Physical Chemistry Chemical Physics,2012,14:16745-16752.
    [345]M.J. Bojdys, J.O. Muller, M. Antonietti, et al. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chemistry A European Journal,2008,14:8177-8182.
    [346]J. Cao, B. Xu, H. Lin, et al. Novel heterostructured Bi2S3/BiOI photocatalyst:facile preparation, characterization and visible light photocatalytic performance. Dalton Transactions, 2012,41:11482-11490.
    [347]H. Yan. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chemical Communications,2012,48: 3430-3432.
    [348]J. Bi, L. Wu, Z. Li, et al. A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. Journal of Alloys and Compounds,2009,480:684-688.
    [349]X. Van Doorslaer, P.M. Heynderickx, K. Demeestere, et al. TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin:Operational variables and scavenger study. Applied Catalysis B:Environmental,2012,111-112:150-156.
    [350]Y. Zhang, N. Zhang, Z.-R. Tang, et al. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chemical Science,2012,3:2812-2822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700