银/二氧化硅纳米复合材料对海洋营养盐红外吸收与拉曼光谱影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋中的营养盐是指与生物过程有密切关系的元素。在海洋学上,传统的营养元素术语几乎是氮、磷、硅三种元素的专有名称。营养盐对于海洋生物的生长无疑具有重要作用,但是营养盐的反常分布也会对其生长造成巨大的刺激,像2008年青岛地区的浒苔大爆发就是一起典型的因为营养盐含量异于正常值引起的海洋生物污染。因此对海洋营养盐含量进行快速检测就成为一个急需解决的课题。传统的海洋营养盐检测是采用化学显色结合光度学测量的方法,测量精度高,但是测量过程复杂、费时。本文尝试利用银/二氧化硅纳米复合材料的表面增强红外光谱(Surface-enhanced Infrared Absorption Spectroscopy, SEIRAS)和表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy, SERS)技术,探索海洋营养盐的新型物理检测技术。
     首先,采用了银镜反应原理,通过优化工艺,制备了不同银含量的三种银/二氧化硅纳米复合材料,并利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外一可见吸收光谱、红外吸收光谱,对样品的表面形貌、结构、光学特性进行了分析表征。结果表明纳米银颗粒、二氧化硅颗粒大小均匀,二氧化硅颗粒被纳米银颗粒不同程度地包裹;银/二氧化硅纳米复合材料在可见光区域存在表面等离激元共振效应,在中红外区域有可能存在表面等离激元共振效应。
     其次,以硝酸钠水溶液为研究对象,重点研究了溶液蒸发过程中银/二氧化硅纳米复合材料对营养盐红外吸收光谱的影响。结果表明:水溶液中硝酸根的反对称伸缩振动模式分裂为两种模式A、B,模式A的振动频率约为1350cm-1(v1),模式B的振动频率约为1410cm-1(v2);且随着水分的蒸发,两种振动模式的峰位均随硝酸根浓度的升高而有降低趋势,其半高宽也有不同程度变化,两种振动模式的吸收峰积分强度有不同程度的增大,其中纳米银颗粒含量较少的银/二氧化硅纳米复合材料对硝酸根的红外吸收具有更好的增强效果。这些结果表明银/二氧化硅纳米复合材料对硝酸根的红外吸收增强效应来自银/二氧化硅的界面效应。银/二氧化硅纳米复合材料对磷酸盐水溶液的红外吸收没有明显的影响,这是由于磷酸根本身的红外活性较弱造成的。
     再次,进一步研究了海水盐度和腐植酸对硝酸钠红外吸收光谱特性的影响。结果表明:随着盐度的增大,不同银纳米颗粒含量的银/二氧化硅纳米复合材料对硝酸根的红外吸收增强效应逐渐减小,硝酸根中心峰位、半高宽也有一定影响,其中二氧化硅颗粒被银纳米颗粒完全包裹的银/二氧化硅纳米复合材料对盐度的变化不敏感。腐殖酸对硝酸钠水溶液的红外光谱没有影响。
     本文初步研究了银/二氧化硅纳米复合材料对营养盐拉曼光谱的影响,结果发现复合材料对水溶液中的磷酸根的拉曼响应具有显著的增强效应,而对硝酸根的拉曼光谱没有明显影响,这是由于磷酸根的拉曼活性较强而硝酸根的拉曼活性较弱之外,银纳米颗粒在可见光区域具有明显的表面等离激元共振效应。
     海水盐度对硝酸根表面增强红外吸收光谱的影响表明:在测量海水环境下的营养盐含量时,盐度会对测量结果有很大的不利因素。总体来说,盐度对纳米壳结构的影响是最弱的,这个结果可以启发我们可以考虑使用纳米壳结构来尽量排除海水盐度的影响。
Nutrient is one functional element in the ocean which has a close relationship with the biological process. In Oceanographic, traditional terms of nutrient elements of nitrogen, phosphorus, Silicon is one of the three primary elements. Undoubtedly nutrient plays an important role in the growth of marine organisms, however anomalous distribution of nutrients can also cause enormous stimulus on its growth. The seagrass eruption in Qingdao during the Beijing Olympic Games was the result of unusual content of the seawater nutrients. Rapid detection of the nutrients in the ocean becomes a pressing issue. This article researches the detection of nutrients in ocean exploration with surface-enhanced infrared/Raman Spectroscopy (SEIRAS: Surface-enhanced Infrared Absorption Spectroscopy; SERS:Surface-enhanced Raman Spectroscopy).
     In this article we prepare three silver/silica nano-composites with different silver content by the silver-mirror reaction. All these samples were characteristic with scanning electron microscope (SEM), x-ray diffraction (XRD), UV-visible absorption spectrum, infrared absorption spectroscopy to depict their surface morphology, structure of the sample characterization, optical characteristics. Results show that the nano silver particles, silicon dioxides have good uniformity in size and silicon dioxides are surround ed by nano-silver particles in different degree, but also silver/silica composites has the possibility of surface plasmon resonance in infra-red region.
     This article researches the infrared absorption spectrometry of nitrate in its evaporation process. Results indicate that the vibration modes of nitrate change with nitrate concentration, the half width, central wavenumber has changed in different degree. As the evaporation process, anti-symmetric stretch vibration of two nitrate absorption peak of the vibration mode integrals corresponding increase in area, all of reflecting composite films on nitrate anti-symmetric stretching vibration effects. We further study the effect of seawater salinity and the humic acid on infrared absorption spectrum properties of sodium nitrite and found that with the increase of salinity, the absorption peak integral area is gradually reduced. In this article, we also measured the infrared spectrometry of sodium phosphate and found that the Ag/SiO2composite material had strong enhanced function on its Raman spectrometry. The half band width and its peak integration area appear large change, while the central peak has no change. The infrared activity of sodium phosphate is weak, so the infrared spectra of is weak too.
     Results show that the aqueous silver/silica Nanocomposites in the different modes of vibration influence mainly from the silver nitrate/silica interface of hydration and nutrients, not much unlike that plasmon resonance.
引文
[1]张正斌,刘莲生,海洋物理化学,北京:科学出版社,1989年.
    [2]Spostto G, Sorption of trace metals by humic materials in soils and natural waters, J. CRS Crit Rev Environ Ctrl,1986,16:193-227.
    [3]Esteves G. V., Cordeiro N. M., Variation on the adsorption efficiency of humic substances from estuarine waters using XAD resins, J. Marine Chemistry,1995, 51(1):61-66.
    [4]王保栋,新世纪渤海污染新特点,海洋环保,2007,24(3):117-119.
    [5]孙丕喜,王波,张朝晖,王宗灵,夏滨,莱州湾海水中营养盐分布与富营养化的关系,海洋科学进展,2006,24(3):329-335.
    [6]蒋红,崔毅,陈碧鹃,陈聚法,宋云利,渤海近20年来营养盐变化趋势研究,海洋水产研究,2005,26:61-67.
    [7]孙丕喜,王宗灵,战闰,夏滨,王湘芹,胶州湾海水中无机氮的分布与富营养化研究,海洋科学进展,2005,23(4):466-471
    [8]魏俊峰,戴民汉,洪华生,李骁麟,陈尉芳,海洋胶体与痕量金属的相互作用,Advance in earth sciences,2004,19(1):26-31.
    [9]Santschi P. H., Balnois E., Wilkinson K. J., et al., Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy, J. Limnology and Oceanography,1998,43: 896-908.
    [10]崔红,孙秉一,河口区水体中磷酸盐的缓冲机制,海洋湖沼通报,1991,1:77-84.
    [11]赵宏宾,刘莲生,张正斌,海水中磷酸盐在固体粒子上阴离子交换作用,海洋与湖沼,1997,28(3):294-302.
    [12]Harvey H. W., The Chemistry andFertility of Seawater, Cambridge Univ. Press, London,1957.
    [13]Riley J. R., Skirrow G., ChemicalOceanography,2nd ed. Academic Press, London,1975.
    [14]中华人民共和国国家标准.GB7480-87.
    [15]中华人民共和国行业标准.SL 84-1994.
    [16]中华人民共和国行业标准.SL 86-1994.
    [17]钟海庆,红外光谱学入门,北京:北京化学工业出版社,1984.
    [18]谢晶曦,红外光谱在有机化学与药物化学中的应用,北京:科学出版社,1987.
    [19]翁诗甫,傅里叶变换红外光谱学,北京:化学工业出版社,2006.
    [20]Kohler G., Milstein C., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature,1975,256:495-497.
    [21]Esaki L., Chang L. L., New transport phenomenon in a semiconductor 'superlattice'. Phys. Rev. Lett.,1974,33(8):493-498.
    [22]Feynman R. P., There is plenty of room at the bottom, Engineering and Science, 1960,23-36.
    [23]Frens G., Kolloid Z., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phys. Sci.,1973,241:20-22.
    [24]Kreibig U., Genzel L., Optical Properties of small metallic particles, Sur. Sci., 1985,156(2):678-700.
    [25]Kreibig U., Voller M., Optical properties of metal clusters, Berlin:Springer,1995.
    [26]Sun Y. G., Xia Y. N., Shape-controlled synthesis of gold and silver nanoparticles, J. Sci.,2002,298:2176-2179.
    [27]Nicewarner-Pena S. R., Freeman R. G., Reiss B.D., He L., Pena D. J., Walton I. D., Cromer R., Keating C. D., Natan M. J., Submicrometer metallic barcodes, Sci., 2001,294(5540):137-141.
    [28]Jana N. R., Gearheart L., Murphy C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B.2001,105(19):4065-4067.
    [29]Kellner R., Mizaikoff B., Jakusch M., Wanzenbock H. D., Weissenbacher N., Surface enhanced vibrational spectroscopy:a new tool in chemical IR sensing?, Appl. Spectrosc.,1997,51:495-503.
    [30]Cai W. B., Wan L. J., Noda H., Hibino Y., Ataka K., Osawa M., Orientational phase transition in a pyridine adlayer on gold(111), Langmuir,1998,14:6992-6998.
    [31]Chen Y. X.; Miki A.; Ye S.; Sakai H.; Osawa M., Format an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc.,2003,125, 3680-3681.
    [32]Rodes A., Orts J. M., Perez J. M., Feliu J. M., Aldaz A., Sulphate adsorption at chemically deposited silver thin film electrodes:time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy, Electrochem. Commun.,2003,5:56-60.
    [33]Kenichi A., Joachim H., Biochemical applications of surface-enhanced infrared absorption spectroscopy, Anal. and Bio. Chem.,2007,388:47-54.
    [34]Huo S. J., Li Q. X., Yan Y. G.,(?)Chen Y, Cai W. B., Xu Q. J., Osawa M, Tunable surface-enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles, J. Phys. Chem. B,2005, 109:15985-15991.
    [35]Brown K. R., Natan M. J., Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces, Langmuir 1998,14:726728.
    [36]Wei Y. K., Yang J.,2007, Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids, Talanta,2006,71:2007-2014.
    [37]Yajima T., Uchida H., Watanabe M. J., In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt Ru alloy, Phys. Chem. B 2004,108:2654-2659.
    [38]Nishikawa Y., Fujiwara K., Ataka K., Osawa M., Surface-enhanced external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, J. Anal. Chem.,1993, 65:556-562.
    [39]Wanzenbock H. D., Mizaikoff B., Weissenbacher N., et al., SEIRA spectroscopy using external reflection on low-cost substrates, J. Anal. Chem.,1998,362:15-20.
    [40]Wanzenbock H. D., Mizaikoff B., Weissenbacher N., Kellner R., Surface enhanced infrared absorption spectroscopy(SEIRA) using external reflection on low-cost substrates, Fresenius J. Anal. Chem.1998,362:15-20.
    [41]Hatta A., Ohshima T., Suetaka W., Observation of the enhanced infrared absorption of p-nitrobenzoate on Ag island films with an ATR technique, J. Appl, Phys.1982,29:71-75.
    [42]Hatta A., Suzuki Y., Suetaka W., Infrared absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration, Evidence for two types of enhanced surface electric fields, J. Appl.Phys. A,1984, 35:135-140.
    [43]Ortiz R., Cuesta, A. Marquez 0. P., Marquez J.,Mendez J. A., Cutierrez C. J., Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates, Electroanal. Chem.1999,465(2):234-238.
    [44]Bjerke A. E., Griffiths P. R., Theiss W., Surface enhanced infrared absorption of CO on platinized Platinum, J. Anal. Chem.1999,71:1967-1974.
    [45]Tian, Z. Q., Ren, B., Wu, D. Y., Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nano-structures, J. Phys. Chem. B,2002,106:9463-9483.
    [46]Jensen, T. R., Van Duyne, R. P., Johnson, S. A., Maroni, V. A., Surface-enhanced infrared spectroscopy:a comparison on metal island films with discrete and nondiscrete surface plasmons, Appl. Spectrosc,2000,54:371-377.
    [47]Park S., Wiekowski A., Weaver M. J., Probing molecular vibrations at catalytically significant interfaces:a new ubiquity of surface-enhanced Raman scattering, J. Am. Chem. Soc.2003,125,2282-2286.
    [48]Lu G. Q., Sun S. G., Cai L. R., Chen S. P., Tian Z. W., In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly (o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh:abnormal Infrared effects (AIREs), Langmuir,2000,16:778-786.
    [49]Hul teen J. C., Van Duyne R. P., Nanosphere lithography:A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A, 1995,13:1553-1558.
    [50]Palik E. D., Handbook of Optical Constants of Solids, Academic Press, New York,1985.
    [51]Gotschy W., Vonmetz K., Leitner A., Aussenegg F. R., Optical dichroism of lithographically designed silver nanoparticle films, Optics Letters1996,21(15):pp: 1099-1101.
    [52]Foss C. A., Jr., Hornyak G. L., Stockert J. A., Martin C. R., Optical properties of composite membranes containing arrays of nanoscopic gold sylinders, Phys., Chem.1992,98:2963-2969.
    [53]Granqvist C. G, Hunderi O., Optical properties of ultrafine gold particles, Phys. Rev. B 1977,16(8):3513-3534.
    [54]Hartstein A., Kirtley J. R., Tsang J. C., Enhancement of the infrared absorption from molecular monolayers with thin medal overlayers, J. Phys. Rev. Lett..1980, 45,201-203.
    [55]Osawa M., Yoshii K., In situ and real-time surface-enhanced infrared study of electrochemical reactions, J. Appl. Spectrosc.,1997,51:512-518.
    [56]Osawa M., Dynamic process in electrochmical reactions studied by infrared enhancement absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn.,1997, 70:2861-2880.
    [57]Brown K. R., Walter D. G, Natan M. J., Seeding of colloidal Au nanoparticle solutions.2. improved control of particle size and shape, Chem. Mater.,2000, 12:30.6-313.
    [58]Schutt E. G., Ero.Patent Application 90310671.4, filed September 25.1990.
    [59]Brown K. R.; Natan M. J., Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces, Langmuir 1998,14,726-728.
    [60]John C.H., Van Duyne R. P., Nanosphere lithography:a materials general fabrication process for periodic particle array surfaces, J. Vac.Sci.Technol.,1995, 13(3):1553-1558.
    [61]Anderson M. S.Enhanced infrared absorption with dielectric nanoparticles, Appl. Phys. Lett.,2003,83:2964-2966.
    [62]Anderson M. S. Surface enhanced infrared absorption by coupling phonon and Plasmon Resonance, Appl. Phys. Lett.,2005,87:144102
    [63]Xue X. K., Wang J. Y., Li Q. X., Yan Y. G., Liu J. H., Cai W. B, Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes, Anal. Chem.,2008,80:166-171.
    [64]严彦刚,李巧霞,霍胜娟,孙颖娜,蔡文斌,铂和钌纳米薄膜电极的全湿法制备及表面增强红外效应,化学学报,2005,63(6):545-549.
    [65]Yan, Y. G., Li, Q. X., Huo, S. J., Ma, M., Cai, W.B., Osawa, M., Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at Platinum group metal electrolyte interfaces, J. Phys. Chem. B 2005,109,7900.
    [66]Mukhopadhyay G., Lundqvist S., Density oscillations and density response in systems with nonuniform electron density, Ⅱ Nulvl Cimento B.,1975,27:1-18.
    [67]Oldenburg S. J., Averit R.D.t, Halas N. J., Nanoengineering of optical resonances, Chem. Phys. Lett.,1998,288:243-247.
    [68]黄昆,韩汝琦,固体物理学,北京:高等教育出版社,1985年
    [69]Prodan E., Radloff C., Halas N. J., Nordlander P. A., Hybridization model for the plasmon response of complex nanostructures, Science,2003,302:41-422
    [70]童国秀,官建国,王维,赵立英,羰基铁/Al2O3核壳复合粒子的制备和性能,材料研究学报,2008,22(1):102-106.
    [71]丁观军,祝名伟,钱国栋,王智宇,王民权,单分散SiO2/Ag/SiO2核结构微球制备及自组装光子晶体,硅酸盐学报,2007,35:81-85.
    [72]Janotta M., Karlowatz M., Vogt F., Mizaikoff B., Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution, Analytica Chimica Acta,2003,496:339-348.
    [73]Kwan K., Hyung S. K., Hyoung K. P., Facile method to prepare surface-enhanced-raman-scattering-active Ag nanostructures on silica spheres. Langmuir,2009,22:8083-8088.
    [74]谈勇,丁少华,王毅,钱卫平,金纳米壳球体的制备及其潜在的生物学应用,化学学报,2005,63(10):929-933.
    [75]Osawa M., Ikeda M., Surface-enhanced infrared spectroscopy:the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles, Appl. Spectrosc,1993,47:1497-1502.
    [76]Ahmad M., Franziska K., Vahid S., Mario A., Fluorescence enhancement with the optical (Bi-) conical antenna, J. Phys. Chem. C,2010,114:7372-7377.
    [77]Norrman S., andersson T., Granqvist C. G, Hunderi O., Optical properties of discontinuous gold films, Phys. Rev. B,1978,18(2):674-696.
    [78]Osawa M., Ikeda M., Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films:contributions of electromagnetic and chemical mechanisms, J. Phys. Chem.,1991,95 (24):9914-9919.
    [79]Seelenbinder J. A., Brown C. W., Pivarnik P., Rand A. G., Colloidal gold filtrates as a metal substrates for surface-enhanced infrared absorption spectroscopy, J. Anal. Chem.,1999,71:1963-1966.
    [80]Kang S. Y., Jeon I. C., Kim K., Infrared absorption enhancement at silver colloidal particles, J. Appl. Spectrosc.,1998,52:278-283.
    [81]Kamata T., Kato A., Umemura J., Takenaka T., Intensity enhancement of infrared attenuated total reflection spectra of stearic acid Langmuir-Blodgett monolayers with evaporated silver island films, Langmuir,1987,3:1150-1154.
    [82]Hatta A., Suzuki N., Suzuki Y., Suetaka W., Infrared absorption of polycyanoacrylate enhanced by Ag island films in the Kretschmann's ATR geometry, J. Appl. Surf. Sci.,1989,37:299-305.
    [83]Prodan E., Nordlander P., Structural tenability of the plasmon resonances in metallic nanoshells, Nano Letters,2003,3(4):543-547.
    [84]Nordlander P., Oubre C., Plasmon hybridization in nanoparticle dimmers, Nano Letters,2004,4(5):899-903.
    [85]吴青松,金银纳米颗粒及其纳米壳层的制备、形成机理及光学性能研究:[博士学位论文],东北大学材料物理与化学专业,2006年.
    [86]Merklin G. T., Griffith P. R., Influence of chemical interactions on the surfaceenhanced infrared absorption spectrometry of nitrophenols on copper and silver films, Langmuir.1997,13:6159-6163.
    [87]Chang R. K., Furtak T. E., Surface enhanced Raman scattering. New York: Plenum Press.1982.
    [88]Otto A., The'chemical'(electronic) Contribution to Surface-enhanced Raman Scattering, J.Raman spectroscopy,2005,36(6/7):497-509.
    [89]Otto A., Light Scatte ring in Solid (IV). Berlin:Springer Verlag Press.1984.
    [90]Otto A.,Bornemann T.,Erturk U., Mrozek I., Pettenkofer C., Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver, Surf. Sci.,1989,210(3):363-386.
    [91]Moskovits M., Surface-enhanced spectroscopy, Rev. Mod. Phys.1985,57: 783-826.
    [92]Ricardo F. A., Daniel J. R., Surface-enhanced infrared spectroscopy, Appl. Spectr.,2004,58(11):324-338A.
    [93]Daniel R., Ricardo A., Effective medium theories in surface enhanced infrared spectroscopy:the pentacene example, J. Chem. Phys.,2002,117(17):8095-8103.
    [94]Fujiwara H., Joohyun K., Rovira P. I., Collins R. W., Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films, Phys. Rev. B,2000, 61 (16):10832-10844.
    [95]Maxwell J. C., Ganett B. A., Larmor J., Colours in metal and in metallic films, Philosophical Transactions of theRoyal Society of Landon A,1904,370:385-420.
    [96]Bohren C. F., Huffman D. R., Absorption and Scattering of Light by Small Particles, New York:John Wiley and Sons,1983.
    [97]王永昌,赵延瑞,朱键,黄丽清,表面金属等离体子振荡,大学物理,2005,24(11):1-4.
    [98]顾本源,表面等离子体亚波长光学原理和新颖效应,物理,2007,36(4):280-287.
    [99]梁昆淼,数学物理方法,北京:人民教育出版社,1978年.
    [100]John D. J., Classical Electrodynamics, New York:John Wiley and Sons,1998.
    [101]许以明,拉曼光谱及其在结构生物学中的应用,北京:化学工业出版社2005年
    [102]Olson L. G., Uibel R.H., Harris J. M., C18-modified metal-colloid substrates for surface-enhacced Raman detection of trace-level polycyclic aromatichydrocarbons in aqueous solution, Appl. Spectr.,2004,58(12):1394-1400.
    [103]Olson L. G., Lo Y. S., Beebe T. P., Harris J. M., Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy, Anal. Chem.,2001,73:4268-4276.
    [104]Fleischmann M., Headra P. J., Raman spectra of pyridine adsorbed at a silver electrode, J. Chem. Phys. Lett.,1974,26(2):163-166.
    [105]Jeanmaire D. L., Van Duyne R. P., Surface Raman electrochemistry, part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodised silver electrode, J. Electroanal. Chem.1977,84:1-20.
    [106]Albrecht M. G., Creighton J. A., Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc.,1977,99:5215-5219.
    [107]Van Duyne R. P., Laser excitation of Raman scattering from adsorbed molecules on electrode surface, Chem. Biochem., Appl. Lasers,1979,4:101-185.
    [108]Hayes C. L., Yonzon C. R., Duyne R. P. Van, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection, J. Raman Spectrosc.,2005,36:471-484.
    [109]Tian Z. Q., Ren S. Z., Wu D. Y., Surface enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B,2002,106(37):9463-9483.
    [110]Gediminas N., Adolfas K. G., Vincent L. V., Surface-enhanced Raman spectroscopy of phosphate anions:adsorption on silver, gold, and copper electrodes, J. Phys. Chem. B 1997,101:9250-9262.
    [111]杨志林,吴德印,姚建林,胡建强,任斌,周海光,田中群,镍电极的表面增强拉曼光谱散射机理初探,科学通报,2002,47(13):989-992.
    [112]杨志林,李秀燕,胡建强,任斌,周海光,田中群,金纳米粒子光学性质中的尺寸和形状效应,光散射学报,2003,15(1):1-5,
    [113]Cory C. P., Wolfram W. R., An ab initio, infrared, and Raman investigation of phosphate ion hydration, J. Phys. Chem., A,2003,107:8746-8755.
    [114]赵丽,余家国,程蓓,赵修建,单分散二氧化硅球形颗粒的制备与形成机理,J.化学学报,2003,61(4):562-566.
    [115]朱捷,朱红,正交设计在单分散球形SiO2制备中的研究,J.功能材料,2005,36(4):577-579.
    [116]Nozawa K, Gailhanou H, Rais on L. Smart contr ol of monodis perse stober silica particles:effect of reactant additi on rate on growth process, Langmuir,2005, 21(4):1516-1523.
    [117]快素兰,章俞之,胡行为,二氧化硅胶体晶体的制备及其光子带隙特性,J.无机材料学报,2002,17(1):159-162.
    [118]汪静,袁春伟,黄忠兵,高质量胶体晶体薄膜的快速制备及表征,J.物理学报,2004,53(9):3054-3058.
    [119]Wang W., Gu B., Liang L. Y., et al. Fabrication of near-infrared photonic crystals using highly-monodispersed submicrometer SiO2 spheres, J. Phys. Chem. B,2003,107(12):113-117.
    [120]Chen S. L., Dong P., Yang G. H., The size dependence of growth rate of monodiesperse silica particles from tetraalkoxysilane, Journal of colloid and interface science,1997,189:268-272.
    [121]Stober W., Fink A., Bohn E. J., Controlled growth of monodis perse silica spheres in the micron size range. Journal of colloid and interface science,1968, 26:62-69.
    [122]Jackson J. B., Halas N. J., Silver nanoshells:variations in morphologies and optical properties, J. Phys. Chem. B,2001,105:2743 2746.
    [123]谈勇,几种金纳米复合材料的制备和表征,东南大学博士学论文,南京:生物医学工程,2006年
    [124]Liu J. H., Zhang Y. H., Wang L. Y., Drawing out the structural information of the first layer of hydrated ions:ATR-FTIR spectroscopic studies on aqueous NH4NO3, NaNO3, and Mg(NO3)2 solutions, J. Spectrochimica Acta Part A 2005, 61:893-899.
    [125]Waterland M. R., Kelley A. M., Far-ultraviolet resonance Raman spectroscopy of nitrate ion in solution, J. Chem. Phys.,2000,113(6):6760-6773.
    [126]Wei Z. F., Zhang Y. H., Zhao L. J., Liu J. H., Li X. H., Observation of the first hydration layer of isolated cations and anions through the FTIR-ATR difference spectra, J. Phys. Chem. A,2005,109:1337-1342.
    [127]郜振宁.硝酸根分子振动的计算与测量:[硕士学位论文].青岛:中国海洋大学光学工程专业,2011年.
    [128]Irish D. E., Davis A. R., Interactions in aqueous alkali metal nitrate solutions, Canadian Journal of Chemistry,1968,46:943-951.
    [129]Mariano C. G. L., Damian E. B., Elola M. D., Dario A. E., Adrian E. R., Solvent-induced symmetry breaking of nitrate ion in aqueous clusters:a quantum-classical simulation study, J. Chem. Phys.,2002,117(6):2718-2725.
    [130]Kearley G. J., Kettle S. F. A., Solid-state studies:part ⅩⅩⅣ:Raman spectral consequences of disorder in the structure of phase Ⅱ of ammonium nitrate, Journal of Crystallographic and Spectroscopic Research,1982,12(2):83-97.
    [131]Christoph E., Usa O., Michael P., Computational study of hydrated phosphate anions, Journal of Molecular Liquids,2005,118:15-25.
    [132]Maciej S., Emilia G., Janusz S., Systematic study of hydration patterns of phosphoric (V) acid and its mono-, di-, and tripotassium salts in aqueous solution, J. Phys. Chem. B,2009,113:7650-7661.
    [133]Cory C. P., Wolfram W. R., An ab initio, infrared, and Raman investigation of phosphate ion hydration, J. Phys. Chem. A,2003,107:8746-8755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700