不同盐类对黄瓜幼苗生长及生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在温室、大棚等园艺设施作物栽培中,由于特殊的栽培环境,肥料不合理使用、栽培管理措施不当、地下水上升等因素致使土壤中盐分聚集,引起设施土壤次生盐渍化。而设施土壤盐分的组成特点为:阴离子以NO3-为主,阳离子则以Ca2+和K+为主。为此,本试验以黄瓜为材料,研究不同种类硝酸盐对黄瓜幼苗生理特性的影响,主要结果如下:
     1.高浓度的硝酸盐抑制黄瓜幼苗的生长,而不同种类的硝酸盐对黄瓜幼苗生理特性的影响差异较大。NaNO3处理条件下,随着NO3-浓度增加,黄瓜幼苗生物量降低、根系吸收能力及吸收面积下降;而低浓度Ca(NO3)2及KNO3处理下,黄瓜幼苗生物量随着NO3-浓度增加而增加,当大于98 mmol·L-1时,黄瓜幼苗鲜重逐渐降低。相同NO3-浓度条件下,Ca(NO3)2处理长势好于KNO3处理。
     2.硝酸盐胁迫下,黄瓜叶片中MDA含量、电解质相对渗漏率及保护酶活性均逐渐增加。不同硝酸盐处理下的黄瓜幼苗对其响应也有所不同。NO3-浓度小于98 mmol·L-1时,Ca(NO3)2处理的黄瓜幼苗中MDA含量和电解质相对渗漏率变化不明显,而NaNO3和KNO3处理的黄瓜幼苗中MDA含量和电解质相对渗漏率升高。与其它硝酸盐相比,NaNO3处理的黄瓜幼苗中保护酶活性较高。
     3.黄瓜幼苗的光合特性对不同种类硝酸盐的响应也有所不同。NO3-浓度为14~98 mmol·L-1时,Ca(NO3)2处理的黄瓜幼苗叶绿素含量逐渐增加,光合速率、蒸腾速率和气孔导度均逐渐升高,但处理浓度继续增加时,光合能力开始下降;KNO3处理的黄瓜幼苗光合参数变化不明显;NaNO3处理下,其光合参数则一直呈下降趋势。当KNO3和NaNO3的处理浓度分别高于140 mmol·L-1和98 mmol·L-1时,叶片发生萎蔫。高浓度的NaNO3和KNO3处理条件下,黄瓜幼苗光合能力的下降可能是受非气孔因素的影响。
     4.不同种类的硝酸盐对黄瓜幼苗矿质元素的吸收影响较大。随NO3-浓度的增加,Ca(NO3)2处理的黄瓜幼苗叶片和根系中P、Fe和K含量均呈先升高后降低趋势;而KNO3处理的黄瓜幼苗叶片和根系中的P和Ca含量亦呈先升高后降低趋势,NO3-浓度为98 mmol·L-1时达最大,而Fe的含量则逐渐下降;NaNO3所有处理浓度下黄瓜幼苗叶片和根系中P、K、Ca、Fe含量均低于对照。
     5.两种钠盐均抑制了黄瓜幼苗的生长,与NaCl处理相比,NaNO3处理下的黄瓜幼苗生物量、根系吸收能力及光合速率较低;而叶片和根系的渗透势、渗透调节物质含量、MDA含量、电解质相对渗漏率和保护酶活性较高;而NaNO3处理的黄瓜幼苗Na+含量明显高于NaCl处理。尽管NaCl处理的黄瓜幼苗长势相比NaNO3好,但较Ca(NO3)2和KNO3处理长势差。
In the establishment cultivation such as greenhouse and shed of horticultural crops,because fertilizer was unreasonablely applied, culture management was unsuitable, and ground water rised, which caused soil secondly salinization. The main anion of facilities soil salt is NO3-, the main cation is Ca2+ and K+. Therefore, this experiment was desighed about the effect of different salt treatments on physiological and biochemical characteristics of cucumber seedlings.The main results were as follows:
     1. High cocentration nitrate inhibited the growth of cucumber seedlings. There were great differences in effect of different nitrates on cucumber seedlings. With the increasing of NO3- concentration, the biomass, root absorbability and root absorbing area declined under NaNO3 treatment. The biomass was gradually increased with NO3- concentration increasing under Ca(NO3)2 and KNO3 treatments, while NO3- concentration excessed 98 mmol·L-1, the fresh weight of cucumber seedlings was gradually decreased. Under the same NO3- concentration, the growth of cucumber seedlings under Ca(NO3)2 was better than under KNO3.
     2.Under nitrate stress, the MDA content, the relative electronic leakage and protective enzyme activity were gradually increased. There were different responses on cucumber seedlings under different nitrate treatments. While NO3- concentration was less than 98 mmol·L-1, there were no distinct changes in MDA content and electri conductivity by Ca(NO3)2. But the MDA content and the relative electronic leakage were increased under NaNO3 and KNO3. Compared with other nitrates, the protective enzyme activity ubder NaNO3 were higher .
     3.There were different responses on photosynthesis characteristic of cucumber seedlings under different nitrate treatments. The chlorophyll content, photosynthesis rate , transpiration rate and stomatal conductance rised gradually, increasing concentrations of NO3- from 14 to 98mmol·L-1, while increasing the concentration continuously, photosynthesis ability declined. There were no obvious changes on photosynthetic parameters under KNO3 treatment, photosynthetic parameters of cucumber seedlings leavese under NaNO3 descended gradually.Whlie NO3- concentration was more than 140and 98 mmol·L-1, the leaf was wilting. The decreasement of photosynthesis ability of cucumber seedlings leavese was caused by high concentration of NaNO3 and KNO3.
     4. There was great effect of different nitrate treatments on absorption of mineral elements. With the increase of NO3- concentration, the content of P, Fe and K increased under low Ca(NO3)2 concentration, then declined. The content of P and Ca increased with the increasing of NO3- from 14 to 98 mmol·L-1 , and reached the maximum while NO3- was 98 mmol·L-1 under KNO3 , then declined. However,the content of Fe gradually declined. Under NaNO3 treatment, P, K, Ca and Fe content in leaf and root were lower than control.
     5. Two kinds of sodium salts inhibited the growth of cucumber seedlings. Compared with under NaCl treatment, the biomass, root absorbability and photosynthesis rate were lower under NaNO3, but osmotic potential, osmoregulation substance content, MDA content, the relative electronic leakage and protective enzyme activity were higher than under NaNO3. Which was because the content of Na+ of cucumber seedlings under NaNO3 was remarkably higher than under NaCl, high Na+ concentration has the poison function on cucumber seedlings. The growth of cucumber seedlings under NaCl was better than under NaNO3, but worse than under Ca(NO3)2 and KNO3.
引文
1. 查仁明. 果树耐盐机理研究进展. 渝西学院学报, 1997, 2: 38-40
    2. 刁丰秋, 章文华, 刘友良等. 盐胁迫对大麦叶片类囊体膜组成和功能的影响. 植物生理学报, 1997, 23(2):105-110
    3. 龚明,李英,曹宗巽等. 植物体内钙信使系统.植物学通报,1990,14-18
    4. 郭丽红, 陈善娜, 龚明. 钙对玉米幼苗热激诱导抗盐性的影响. 植物生理学通讯, 2004, 40(1): 19-21
    5. 韩德昌, 陈妍, 关连珠等. 氮肥种类及用量对油菜硝酸盐积累的影响. 土壤肥料科学. 2005, 121(5):292-294
    6. 季玉鸣等. 植物生理学报, 1991, 17(1): 56-62
    7. 蒋 武 生 . 盐 对 番 茄 植 株 生 长 和 细 胞 膜 透 性 的 影 响 . 河 南 农 业科,1992(6):23-25
    8. 孔令安, 郭红海, 董晓霞. 硒提高酸模抗盐性的生理及对超微结构影响的研究. 山东农业科学, 2001, 5: 10-13
    9. 李凤玲, 李鹏. 耐盐芦笋引进品种筛选试验. 中国种业, 2005, 6: 38-39
    10. 李海云, 王秀峰, 魏珉.不同阴离子对黄瓜幼苗生长的效应.中国农学通报,2003, 19(3): 57-60
    11. 李海云,王秀峰,魏珉等.不同阴离子对黄瓜幼苗生长的效应. 中国农学通报,2003, 19(30):57-60
    12. 李红, 杨苏声. 盐渍条件下快生大豆根瘤菌的渗透调节. 微生物学报,1995,35(1):1-6
    13. 李青云, 葛会波, 胡淑明等.盐胁迫下钙对草莓叶片脂肪酸含量及组成的影响. 河北农业大学学报, 2004, 27(6): 56-59
    14. 李兆亮, 原永兵, 刘连成等. 水杨酸对黄瓜叶片抗氧化剂酶系的调节作用.植物学报, 1998, 40(4):356-361
    15. 林植芳, 李双顺, 林桂珠. 水稻叶片衰老与 SOD 活性及膜脂过氧化的关系.植物学报, 1984, 26(6): 605-615
    16. 刘爱荣,赵可夫.盐胁迫对盐芥生长及硝酸还原酶活性的影 响,植物生理与分子生物学报.2005,31(5):469-476
    17. 刘 春 生 , 杨 守 祥 . 农 业 化 学 分 析 . 北 京 : 中 国 农 业 大 学 出 版社,1996:21-23,32-34, 43-45
    18. 刘家饶,衣艳君,张其德. 盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J]. 植物学通报,1998,15(2):16-19
    19. 刘友良,毛良才,汪良驹.植物耐盐性研究进展[J]. 植物生理学通讯,1987(4):1-7
    20. 刘友良,汪良驹. 植物对盐胁迫的反应和耐盐性[A]. 余叔文,汤章城主编,植物生理与分子生物学(3 版).北京: 科学出版社, 1998: 752-769
    21. 刘志媛,朱祝军,钱亚茸等.等渗 Ca(NO3)2 和 NaCl 对番茄幼苗生长的影响.园艺学报,2001,28(1):31-35
    22. 马淑时 , 王伟 . 大豆品种资源的抗盐碱性研究 . 吉林农业科学,1994,4:69-71
    23. 苗海霞,孙高明,夏阳等. 盐胁迫对苦楝根系活力的影响,山东农业大学学报,2005,36(1):9-12
    24. 牛 东 玲 , 王 启 基 . 柴 达 木 盆 地 弃 耕 地 水 盐 动 态 分 析 . 草 业 学报,2002,11(4):35-38
    25. 佘小平, 贺军民, 何志学等. 水盐酸对黄瓜幼苗伤害的缓解效应. 陕西师范大学学报, 2001, 29(3):99-101
    26. 佘小平,贺军民,张健等. 水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应.西北植物学报, 2002, 22(2):401-405
    27. 沈博礼, 沈博书, 古丽巴哈尔. 逆境胁迫下镧对春小麦的影响. 干旱区研究, 1996, 13(4): 24-29
    28. 束良佐, 刘英慧. 硅对盐胁迫下玉米幼苗生长的影响. 农业环 境保护,2001, 20(1): 38-40
    29. 汤章城, 王育启, 吴亚华等. 不同抗旱品种高粱苗中脯氨酸积累的差异.植物生理学报,1986, 12(2): 154-162
    30. 汤章城. 逆境条件下植物脯氨酸的积累及其可能的意义. 植物生理学通讯,1984(1): 15-21
    31. 童有为,陈淡飞. 温室土壤次生盐渍化的形成和治理途径研 究. 园艺学报,1991, 18(2): 159-162
    32. 汪宗立,刘晓忠,王志霞.水稻耐盐性的生理研究.江苏农业学报,1986,2(3):1-9.
    33. 王宝山, 张宝泽, 赵可夫.植物抗盐剂提高盐碱地作物产量 的依据和效果.山东农业科学, 1995,6: 31-33
    34. 王长泉, 刘涛.硒对盐胁迫下耐盐常夏石竹生物量和渗透物质含量的影响.植物生理学通讯, 2005, 41(3): 325-327
    35. 王伟, 崔红, 陈亮等. 盐胁迫对不同生境铺地黎叶片蛋白质合成的影响.厦门大学学报, 2000, 39(3): 417-420
    36. 王小军, 鲍文奎.八倍体小黑麦耐盐细胞系产生的遗传机制.植物学报,1998,40(4): 330-336
    37. 王晓琴,袁继超,柯永培等. 渗透胁迫对玉米根系活力和 K+吸收动力学特征的影响,植物营养与肥料学报. 2005,11(1):27-32
    38. 王业遴等. 植物生理学通讯, 1990, (5): 21-23
    39. 徐呈祥, 徐锡增. 硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响. 南京林业大学学报, 2005, 29(1): 25-28
    40. 徐锴, 金芳. 外源激素对盐胁迫下草莓光合性能的影响. 甘肃农业大学学报, 2006, 41(2):31-34
    41. 徐云岭等. 植物生理学通讯,1989,(2):12-16
    42. 薛继澄, 毕德义,李家金等. 保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料, 1994(1): 4-9
    43. 晏斌 , 戴秋杰 , 刘晓忠等 . 钙提高水稻耐盐性的研究 . 作物学报,1995,21(6):685-690
    44. 杨爱芳, 赵仕兰,朱丽萍等. 利用转基因技术创造甜菜耐盐新种质.山东农业科学, 2002, 4: 3-9
    45. 杨凤娟, 王秀峰, 魏珉,闫童. NO3-胁迫下 K+、Ca2+对黄瓜幼苗膜脂过氧化及活性氧清除酶系统的影响. 农业工程学报, 2005,21:155-158
    46. 杨国会, 李如升, 田永清等. NaCl 对甘草叶片脯氨酸含量及质膜相对透性的影响. 农业与技术, 2000, 20(5): 43-45
    47. 原永兵, 曹宗. 水杨酸在植物体内的作用. 植物学报, 1994, 11(3):1-3
    48. 张锐, 严慧峻, 魏由庆等. 有机肥在改良盐渍土中的作用. 土壤肥料,1997,(4):11-14
    49. 张新生, 周卫, 陈湖等. 钙对苹果果实质膜脂肪酸组成及过氧化作用的影响. 河北农业科学, 2006, 10(1): 35-38
    50. 赵可夫, 邹琦. 盐分和水分胁迫对盐生和非盐生植物质膜过氧化作用的效应. 植物学报, 1993, 35(7): 519-522
    51. 赵可夫. 植物抗盐生理.北京:中国科学技术出版社,1993,9-10
    52. 赵可夫等. 曲阜师范学院学报, 植物抗盐生理专辑, 1984
    53. 赵世杰, 刘华山, 董新纯主编. 植物生理学试验指导. 北京: 中国农业科技出版社,1998: 56-124
    54. 郑企成, 陈文华, 赵世荣等. 利用单倍体单细胞系统筛选获得耐盐小麦.核农学通报, 1996, 17(6): 253-255, 280
    55. 朱广新, 王强, 张其德等. 冬小麦光合功能对盐胁迫响应.植物营养与肥料学报, 2002, 8(2):177-180
    56. 邹琦主编. 植物生理生化试验指导. 北京: 中国农业出版社, 1995: 30-32
    57. Ballesteros E, Blunmwalt E,Donaire J P, Belver A. Na+/H+ antiport activity in tonoplasr vesicles isolated form sunflower roots induced by NaCl stress. Physiol Plant, 1997,99:328-334
    58. Bolwer C, Montagu MC. Superoxide Dismutase and stress tolerance. Plant Physiol, 1992,98(1):83-85
    59. Bowler C, Slooten L, Larson T J et al. Manganese superoxide can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBOJ,1991,10: 1723-1732
    60. Cheeseman J M, Mechanism of salinity tolerance inplants. Plant physiol ,1988,87:547-550
    61. Engels C, Marschner H. Influence of the form nitrogen supply on root uptake and translocation of cations in the xykem exudates of maize(Zea mays L.). J Exp Bot, 1993, 44: 1695-1701
    62. Friedman R.,Altman A. The effect of salt stress on poyarmie bioynthesis and content in mung bean plants and in halophytes. Physiology plant, 1989,76:295-302
    63. Ginnopolitis C N, Ries S K. Superoxide dismutases. Ⅰ. Occurrence in higher plants. Plant physiol, 1977, 59:309-314
    64. Gorham J, Wynjones R S, Mcdonnell E. Some mechanisms of salt tolerance in crop plants. Plant and Soil, 1985, 89: 15-40
    65. Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA, 2000,97: 3735-3740
    66. Jiankang Zhu .Plant salt to tolerance. Plant Science,2001,6(2): 66-71
    67. Krishnamurthy R, Bbagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol,1989, 91: 500-504
    68. Maslenkora LT. Adaptation to salinity as monitored By PSII oxygen evolving reactions in barley thylakoids. J Plant Phyiol. 1993,142: 629-634
    69. McCue K F, A D. Hanson TECH,1990,8:358-362
    70. Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling. Plant physiol, 1980,65: 407-408
    71. Paulm,Hasegawa,Raya.Plant cellar and molecular responses to high saltinity.Plant Physiol. Plant Mol.Biol,2000,51;463-499
    72. Radriguez H G, Robertsj K M, Jordan W R et al. Growth water relations and accumulation of organic and inorganic solutes in roots of maize seedlings during salts stress. Plant Physiol, 1997, 113: 881-893
    73. Ramagopal S. Salinity stress induced tissue-specific in barley seedling. Plant physiol, 1987, 84(2): 324-331
    74. Rao G G,Rao G R. Pigment composition chlorophyllase activity in pigment pea & gengelley () under NaCl salinity[J].India J Exp Biol .1981,19:768-770
    75. Raskin. Role of sallicy acid in plant. Ann Rev Plant Physiol: Plant Mol Biol, 1992, 43:439-463
    76. Santos C, Azevedo H, Caldeira G. In situ and in vitro senescence induced by KCl stress nutritional imbalance, lipid perxoidation and antioxidant metabolism. J Exp Botanx, 2001,52:351-360
    77. Santos C, Caldera G. Comparative responses of Helianthus annuus plants and calliexpose to NaCl I Growth rate and osmotic regulation in intact plants and calli. J Plant Physiol, 1999, 155: 769-777
    78. Santos C, Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 2004, 103: 93-99
    79. Scandalioa J G. Oxygen stress and superoxide dismutases. PlantPhysiol,1993(101): 7-12
    80. Skaggs T H,Wu L, Shouse P J,et al. State Space analysis of soil water and salinity regimes in a loam soil underlain by shallow groundwater. Soil Sci Am J,2001, 65: 1074-1080
    81. Smironff N Cumbes Q J. Hydyoxl radical scavenging activity of compatible solutes. Phytochem, 1989,28: 1057-1060
    82. Solomon A,Beer S, Waisel Y et al.Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presense and absence of praline-related compatible solutes. Plant Physiol, 1994, 90: 198-204
    83. Suzanne N R, David M P. Leaf area predication model for cucumber from linear measurements. Hort. Sci., 1987, 22(6): 1264-1266
    84. Tarczvnski.M.C.et al,1993 甘蓝型油菜耐盐基因克隆及表达研究
    85. Zeevart J A et al. Ann Rev Plant Physiol and Plant Mol Biol, 1988,39: 439-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700