玉米氮素营养相关小分子非编码RNA的克隆及miRNA169的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素作为作物需求量最大的元素与作物的产量和品质密切相关,相关研究多集中于氮素吸收与同化过程,而相应的调控机制还很不清楚,调控机制研究的滞后严重限制了人们应用基因工程手段培育可行的氮素高效利用的作物品种。小分子非编码RNA作为重要的上游调控因子,其发现也吸引了植物营养分子生物学家的注意,有证据表明有miRNA参与植物适应氮胁迫的过程,但是具体路径及机制有待于进一步深入研究。
     本课题以禾本科重要的模式作物——玉米为试材,结合拟南芥,运用RNA组学技术、生物信息学和分子生物学等手段,挖掘受氮胁迫影响的miRNA,从小分子非编码RNA的角度深入研究植物氮素吸收和同化过程的调控机制。主要结果和结论如下:
     1.通过对缺氮处理下的玉米幼苗组成的4个小RNA文库和一个降解组库进行深度测序,我们新发现了47个1niRNA家族,将玉米中的miRNA数量由150提高到249。此外,我们分别发现了miR171、miR169和miR398家族的3、5和1个新成员。
     2.通过降解组分析发现了miR164f*, miR167g*/h*/i*, miR169r*, miR168a*/b*以及miR827*的潜在靶标,表明miRNA*链并不是像原先认为的在生物体内无功能,而是可以通过对潜在靶基因的切割来参与植物各种生理代谢过程。
     3.根据small RNA深度测序、Q-PCR,小RNA Northern blot、5'-RACE等结果,我们鉴定了八个在低氮胁迫下上调或下调的miRNA(5个保守:miRNA家族和3个新发现miRNA家族),并总结了玉米应答低氮胁迫可能的miRNA功能网络。低氮胁迫显著降低miR169、 miR395、miR827和miRC1的表达,它们通过对靶基因表达量的调控直接参与玉米适应氮胁迫的过程;而低氮条件下,miR171、miR528、miRC39和miRC37的表达量上调,其靶基因很可能参与缺氮信号在玉米体内的转导过程。
     4.选取了物种间保守的miR169在拟南芥中进行功能验证。基于对miR169前体的分析发现,只有MIR169a的表达量同时在缺氮状况下的根和地上部中发生了下降。35S::MR169a转基因植株在所有生长条件(水培、培养基生长、土培)下对于缺氮都高度敏感,并且都出现了叶片发黄的症状;而miR169的靶基因NFYA5过表达植株在缺氮条件下表现出了更加耐受胁迫的现象,并且生物量也显著高于野生型。这些均表明miR169a通过调控靶基因NFYA5的表达量参与了植物适应氮胁迫的过程。
     5.在缺氮条件下,35S::MIR169a转基因植株根部的总氮含量为4.5%,明显低于野生型(5%),在地上部也有相同的变化趋势。此外,35S::MIR169a转基因植株中发现硝酸盐转运蛋白AtNRT1:1和AtNRT2:1的表达都比野生型要低,这其中至少有一部分原因是由于在35S::MIR169a转基因植株中,氮吸收系统遭到破坏所致。这些结果指出,miR169在帮助植物应对土壤中的氮素有效性波动过程中起作用。
Nitrogen (N) is closely related to crop's yeild and quality, and it is the most required element of crop, related research has focused on nitrogen uptake and assimilation, while the corresponding regulatory mechanism is still unclear. Lagged study of regulatory mechanism severely limit researchers breed nitrogen efficient use crop by genetic engineering techniques. As an important upstream regulatory factor, the finding of plant miRNAs attracted the attention of molecular plant nutrition biologists. Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to N-limitation remains to be explored.
     To elucidate the regulatory mechanism of plant nitrogen uptake and assimilation from the perspective of miRNAs, we use maize and Arabidopsis as model plant, and use the RNA genomics technology, the bioinformatics, and the molecular biology to explore the plant miRNAs that affected by N-limitation. The main results are as follows:
     1. We discovered a total of99absolutely new loci belonging to47miRNA families by small RNA deep sequencing and degradome sequencing, as well as9new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported150high confidence genes within26miRNA families in maize.
     2. Through the degradome we detected the potential targets of miR164f*, miR167g*/h*/i*, miR169r*, miR168a*/b*and miR827*, suggesting that miRNA*could play important roles in plant physiological metabolism processes by mediated mRNA cleavage, which are far from former consider.
     3. Small RNA deep sequencing, Q-PCR, small RNA northern blot and5'-RACE analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition, and we summarized a potential function network of miRNA that responses to N-limitation in maize. The expression of miR169, miR395, miR827and miRC1are down-regulated by N-limitation, they directly involved in maize nitrogen stress adaptation by regulate the expression of their targets; miR.171, miR528, miRC19and miRC37are up-regulated under N-limitation condition, their targets are suggested to involved in the N-limitation singal transduction in maize.
     4. Further research are carried in Arabidopsis as functional verification, we chose miR169and its target NFYA5, which is a conserved miRNA between plant species. Analysis of the expression of miR169precursors showed that MIR169a was substantially down-regulated in both roots and shoots by N-limitation.35S::MIR169a transgenic plants are hypersensitive to N starvation in hydroponic solution, agar medium and soil, and in all these conditions35S::MIR169a transgenic plants emerge a symptom:the leaves turn yellow. However,35S::NFYA5transgenic plants are more tolerance to the N-limitation, and35S::NFYA5transgenic plants can gain more biomass than wild type, suggesting miR169is involved in the N-limitation responses by regulated the expression of its target in plant.
     5. Under N-limiting conditions, the total N contents in roots of35S::MIR169a transgenic plants were c.4.5%, which was lower than that of the wild-type (5%). Furthermore, compare to wild-type, the expression of AtNRT1:1and AtNRT2:1are less in35S::MIR169a transgenic plants. These results provide evidence that miRNAs have functional roles in helping plants to cope with fluctuations in N availability in the soil.
引文
Abe M, Yoshikawa T, Nosaka M, et al. WAVY LEAF 1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and trans-acting small interfering RNA accumulation in Rice. Plant Physiology,2010,154(3):1335-1346.
    Akbergenov R, Si-Ammour A, Blevins T, et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Research,2006,34(2):462-471.
    Allen E, Xie Z, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121(2):207-221.
    Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation. RNA,2003, 9(3):277-279.
    Amor B B, Wirth S, Merchan F, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Research,2009,19(1):57-69.
    Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell,2003,15(11):2730-2741.
    Aung K, Lin S I, Wu C C, et al.pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology,2006,141(3):1000-1011.
    Baek D, Park H C, Kim M C, et al. The role of Arabidopsis MYB2 in miR399f-mediated phosphate-starvation response. Plant Signaling & Behavior,2013,8(3):e23488.
    Bari R, Pant B D, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology,2006,141(3):988-999.
    Bartel B, Bartel D P. MicroRNAs:at the root of plant development?. Plant Physiology,2003, 132(2):709-717.
    Beauclair L, Yu A, Bouche N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. The Plant Journal,2010, 62(3):454-462.
    Bologna N G, Mateos J L, Bresso E G, et al. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. The EMBO Journal,2009,28(23): 3646-3656.
    Breakfield N W, Corcoran D L, Petricka J J, et al. High-resolution experimental and compu-tational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Research,2012,22(1):163-176.
    Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science,2008,320(5880):1185-1190.
    Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology,2010,10(1):64.
    Castaings L, Camargo A, Pocholle D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal,2009,57(3):426-435.
    Cavalar M, Phlippen Y, Kreuzaler F, et al. A drastic reduction in DOF1 transcript levels does not affect C4-specific gene expression in maize. Journal of Plant Physiology,2007,164(12): 1665-1674.
    Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science Signaling,2004,303(5666):2022.
    Chen H M, Chen L T, Patel K, et al.22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(34):15269-15274.
    Chen X P, Cui Z L, Vitousek P M, et al. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(16):6399-6404.
    Chiou T J, Aung K, Lin S I, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell,2006,18(2):412-421.
    Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology,2011,62:185-206.
    Cho H J, Kim J J, Lee J H, et al. SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Letters,2012,586(16):2332-2337.
    Combier J P, Frugier F, de Billy F, et al MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA 169 in Medicago truncatula. Genes & Development,2006,20(22):3084-3088.
    Combier J P, de Billy F, Gamas P, et al. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes & Development,2008, 22(11):1549-1559.
    Cuperus J T, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology,2010a,17(8):997-1003.
    Cuperus J T, Montgomery T A, Fahlgren N, et al. Identification of MIR390a precursor proce-ssing-defective mutants in Arabidopsis by direct genome sequencing. Proceedings of the National Academy of Sciences of the United States of America,2010b,107(1):466-471.
    De Angeli A, Monachello D, Ephritikhine G, et al. CLC-mediated anion transport in plant cells. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2009,364(1514):195-201.
    Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science,2006,313(5783):68-71.
    Delhaize E, Randall P J. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology,1995,107(1):207-213.
    Devers E A, Branscheid A, May P, et al. Stars and symbiosis:microRNA-and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiology, 2011,156(4):1990-2010.
    Dong Z, Han M H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proceedings of the National Academy of Sciences of the United States of America,2008,105(29):9970-9975.
    Dugas D V, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology,2008,67(4):403-417.
    Eamens A L, Curtin S J, Waterhouse P M. The Arabidopsis thaliana Double-Stranded RNA Binding (DRB) Domain Protein Family. Non Coding RNAs in Plants. Springer Berlin Heidelberg,2011,385-406.
    Eamens A L, Kim K W, Waterhouse P M. DRB2, DRB3 and DRB 5 function in a non-canonical microRNA pathway in Arabidopsis thaliana. Plant Signaling & Behavior,2012,7(10): 1224-1229.
    Eamens A L, Smith N A, Curtin S J, et al. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA,2009,15: 2219-2235.
    Engelsberger W R, Schulze W X. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. The Plant Journal,2012,69(6):978-995.
    Fahlgren N, Carrington J C. miRNA target prediction in plants. Plant MicroRNAs, Humana Press, 2010,592:51-57.
    Fang Y, Spector D L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Current Biology,2007,17(9):818-823.
    Farazi T A, Juranek S A, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development,2008,135(7):1201-1214.
    Fischer J, Beatty P, Good A, et al. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science,2013,210:70-81.
    Fode B, Siemsen T, Thurow C, et al. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. The Plant Cell,2008,20(11):3122-3135.
    Fujii H, Chiou T J, Lin S I, et al. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology,2005,15(22):2038-2043.
    Gandikota M, Birkenbihl R P, Hohmann S, et al. The miRNA 156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal,2007,49(4):683-693.
    Gao N, Su Y, Min J, et al. Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil,2010a,334:123-136.
    Gao P, Bai X, Yang L, et al. osa-MIR393:a salinity-and alkaline stress-related microRNA gene. Molecular Biology Reports,2010b,38(1):237-242.
    German M A, Luo S, Schroth G, et al. Construction of parallel analysis of RNA ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols, 2009,4(3):356-362.
    German M A, Pillay M, Jeong D H, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology,2008,26(8):941-946.
    Ghildiyal M, Zamore P D. Small silencing RNAs:an expanding universe. Nature Reviews Genetics,2009,10(2):94-108.
    Gifford M L, Dean A, Gutierrez R A, et al. Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences of the United States of America,2008,105(2):803-808.
    Grigg S P, Canales C, Hay A, et al. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature,2005,437(7061):1022-1026.
    Grigorova B, Mara C, Hollender C, et al. LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers. Development,2011,138(12):2451-2456.
    Gu S, Jin L, Huang Y, et al. Slicing-independent RISC activation requires the argonaute PAZ domain. Current Biology,2012,22(16):1536-1542.
    Guan Q, Lu X, Zeng H, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant Journal,2013,74(5):840-51.
    Guo F Q, Young J, Crawford N M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. The Plant Cell,2003,15(1): 107-117.
    Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
    Gusmaroli G, Tonelli C, Mantovani R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene,2002,283(1-2):41-48.
    Hajdarpasic A, Ruggenthaler P. Analysis of miRNA expression under stress in Arabidopsis thaliana. Bosnian Journal of Basic Medical Sciences,2012,12(3):169-176.
    Han M H, Goud S, Song L, et al. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proceedings of the National Academy of Sciences of the United States of America,2004,101(4):1093-1098.
    Hiraguri A, Itoh R, Kondo N, et al. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Molecular Biology,2005,57(2):173-188.
    Ho C H, Lin S H, Hu H C, et al. CHL1 functions as a nitrate sensor in plants. Cell,2009,138(6): 1184-1194.
    Ho C H, Tsay Y F. Nitrate, ammonium, and potassium sensing and signaling. Current Opinion in Plant Biology,2010,13(5):604-610.
    Hu B, Zhu C, Li F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology,2011,156(3):1101-1115.
    Iki T, Yoshikawa M, Nishikiori M, et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Molecular Cell,2010,39(2):282-291.
    Jeong D H, Park S, Zhai J, et al. Massive analysis of rice small RNAs:mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. The Plant Cell,2011, 23(12):4185-4207.
    Ji L, Liu X, Yan J, et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genetics,2011,7(3):e1001358.
    Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell,2004,14(6):787-799.
    Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America,2009,106(9):3041-3046.
    Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leafl specifies maize leaf polarity. Nature,2004,428(6978):84-88.
    Kant S, Peng M, Rothstein S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genetics,2011,7(3): e1002021.
    Kawashima C G, Matthewman C A, Huang S, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. The Plant Journal,2011,66(5):863-876.
    Kawashima C G, Yoshimoto N, Maruyama-Nakashita A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. The Plant Journal,2009,57(2):313-321.
    Khraiwesh B, Zhu J K, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012, 1819(2):137-148.
    Kim Y J, Zheng B, Yu Y, et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. The EMBO Journal,2011,30(5):814-822.
    Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. The Plant Cell,2012,24(9):3590-3602.
    Koiwa H, Hausmann S, Bang W Y, et al. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proceedings of the National Academy of Sciences of the United States of America,2004,101:14539-14544.
    Kuo H F, Chiou T J. The role of microRNAs in phosphorus deficiency signaling. Plant Physiology, 2011,156(3):1016-1024.
    Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA,2006,12: 206-212.
    Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(34):12753-12758.
    Kwak P B, Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nature Structural & Molecular Biology,2012,19(2):145-151.
    Lanet E, Delannoy E, Sormani R, et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. The Plant Cell,2009,21(6):1762-1768.
    Lee H, Fischer R L, Goldberg R B, et al. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):2152-2156.
    Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854.
    Li A, Mao L. Evolution of plant microRNA gene families. Cell Research,2007,17(3):212-218.
    Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Current Biology,2005,15(16):1501-1507.
    Li S, Liu L, Zhuang X, et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell,2013,153(3):562-574.
    Li T, Li H, Zhang Y X, et al. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Research,2011,39(7):2821-2833.
    Li W X, Oono Y, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 2008,20(8):2238-2251.
    Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. The Plant Journal,2010,62(6):1046-1057.
    Liang G, He H, Yu D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE,2012,7(11):e48951.
    Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. The Plant Journal,2010,62(6):1046-1057.
    Little D Y, Rao H, Oliva S, et al. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13693-13698.
    Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA,2008,14(5):836-843.
    Liu J, Carmell M A, Rivas F V, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science,2004,305(5689):1437-1441.
    Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell,1999,11(5):865-874.
    Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China. Nature,2013,494, 459-462.
    Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science,2002,297(5589):2053-2056.
    Lobbes D, Rallapalli G, Schmidt D D, et al. SERRATE:a new player on the plant microRNA scene. EMBO Reports,2006,7(10):1052-1058.
    Machida S, Chen H Y, Yuan Y A. Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Research,2011,39(17):7828-7836.
    Machida S, Yuan AY. Crystal structure of Arabidopsis thaliana dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for Dicer-like 1 binding. Molecular Plant,2013,6(4):1290-1300.
    MacRae I J, Zhou K, Li F, et al. Structural basis for double-stranded RNA processing by Dicer. Science,2006,311(5758):195-198.
    Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell,2005,17(5):1360-1375.
    Mallory A, Reinhart B J, Jones-Rhoades M W, et al. MicroRNA control of PHABULOSA in leaf development:importance of pairing to the microRNA 5'region. The EMBO Journal,2004, 23(16):3356-3364.
    Manavella P A, Hagmann J, Ott F, et al. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell,2012a,151(4):859-870.
    Manavella P A, Koenig D, Weigel D. Plant secondary siRNA production determined by microRNA-duplex structure. Proceedings of the National Academy of Sciences of the United States of America,2012b,109(7):2461-2466.
    Margis R, Fusaro A F, Smith N A, et al. The evolution and diversification of Dicers in plants. FEBS Letters,2006,580(10):2442-2450.
    Mateos J L, Bologna N G, Chorostecki U, et al. Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIRl72a precursor. Current Biology, 2010,20(1):49-54.
    Maunoury N, Vaucheret H. AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS ONE,2011,6(12):e28729.
    Meng Y, Shao C. Large-scale identification of mirtrons in Arabidopsis and Rice. PLoS ONE,2012, 7(2):e31163.
    Meyers B C, Axtell M J, Bartel B, et al. Criteria for annotation of plant MicroRNAs. The Plant Cell,2008,20(12):3186-3190.
    Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'terminal nucleotide. Cell,2008,133(1):116-127.
    Miller A J, Fan X, Orsel M, et al. Nitrate transport and signaling. Journal of Experimental Botany, 2007,58 (9):2297-2306.
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science,2004,9(10):490-498.
    Molnar A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature,2007,447(7148):1126-1129.
    Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene,1999,239(1): 15-27
    Montgomery T A, Howell M D, Cuperus J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell,2008,133(1): 128-141.
    Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell,2000,101(5):533-542.
    Nelson D E, Repetti P P, Adams T R, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16450-16455.
    Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biology and Evolution,2012,4(3):230-239.
    On N, Cohen A R, Etzioni A, et al Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics,2007,39(6):787-791.
    Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003, 425(6955):257-263.
    Pant B D, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal,2008,53(5):731-738.
    Pant B D, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology,2009,150(3):1541-1555.
    Park M Y, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,2005,102(10):3691-3696.
    Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology,2002,12 (17):1484-1495.
    Peng M, Hannam C, Gu H, et al. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. The Plant Journal,2007,50(2): 320-337.
    Pomeranz M C, Hah C, Lin P C, et al. The Arabidopsis tandem zinc finger protein AtTZFl traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiology, 2010,152(1):151-165.
    Prigge M J, Wagner D R. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. The Plant Cell,2001,13(6):1263-1280.
    Qin H, Chen F, Huan X, et al. Structure of ihe Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA,2010,16(3):474-481.
    Rajagopalan R, Vaucheret H, Trejo J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development,2006,20(24):3407-3425.
    Rasia R M, Mateos J, Bologna N G, et al. Structure and RNA interactions of the plant MicroRNA processing-associated protein HYL1. Biochemistry,2010,49(38):8237-8239.
    Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes & Development, 2002,16(13):1616-1626.
    Ren G, Xie M, Dou Y, et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,2012,109(31):12817-12821.
    Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell,2002, 110(4):513-520.
    Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell, 2013,25(7):2383-2399.
    Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell,2005,8(4):517-527.
    Sieber P, Wellmer F, Gheyselinck J, et al. Redundancy and specialization among plant microRNAs:role of the MIR164 family in developmental robustness. Development,2007, 134(6):1051-1060.
    Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant & Cell Physiology,2005, 46(8):1350-1357.
    Sugiyama N, Nakagami H, Mochida K, et al. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Molecular Systems Biology,2008,4:193.
    Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell,2006,18(8):2051-2065.
    Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Ara-bidopsis. The Plant Cell,2004,16(8):2001-2019.
    Takeda A, Iwasaki S, Watanabe T, et al. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant and Cell Physiology,2008,49(4): 493-500.
    Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters. FEBS Letters, 2007,581(12):2290-2300.
    Val6czi A, Varallyay E, Kauppinen S, et al. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. The Plant Journal,2006,47(1):140-151.
    Vazquez F. Arabidopsis endogenous small RNAs:highways and byways. Trends in Plant Science, 2006,11 (9):460-468.
    Vazquez F, Blevins T, Ailhas J, et al. Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Research,2008,36(20):6429-6438.
    Vazquez F, Gasciolli V, Crete P, et al. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology,2004,14(4):346-351.
    Vazquez F, Legrand S, Windels D. The biosynthetic pathways and biological scopes of plant small RNAs. Trends in Plant Science,2010,15(6):337-345.
    Vidal E A, Gutierrez R A. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology,2008,11(5):521-529.
    Wang F, Perry S E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiology,2013,161(3):1251-1264.
    Wang R, Okamoto M, Xing X, et al. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology,2003,132(2): 556-567.
    Werner S, Wollmann H, Schneeberger K, et al. Structure determinants for accurate process-ing of miR172a in Arabidopsis thaliana. Current Biology,2010,20(1):42-48.
    Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Molecular Cell,2010,38(3):465-475.
    Xie Z, Johansen L K, Gustafson AM, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biology,2004,2(5):e104.
    Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis miRNA genes. Plant Physiology, 2005a,138(4):2145-2154.
    Xie Z, Allen E, Wilken A, et al. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,2005b,102(36):12984-12989.
    Xu M Y, Zhang L, Li W W, et al. Stress-induced early flowering is mediated by miR.169 in Arabidopsis thaliana. Journal of Experimental Botany,2014,65(1):89-101.
    Yamasaki H, Abdel-Ghany S E, Cohu C M, et al. Regulation of copper homeostasis by microRNA in Arabidopsis. Journal of Biological Chemistry,2007,282(22):16369-16378.
    Yanagisawa S, Akiyama A, Kisaka H, et al. Metabolic engineering with Dofl transcription factor in plants:improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(20):7833-7838.
    Yang J S, Phillips M D, Betel D, et al. Widespread regulatory activity of vertebrate microRNA* species. RNA 2011,17(2):312-326.
    Yang L, Liu Z, Lu F, et al. SERRATE is a novel nuclear regulator in primary microRNA pro-cessing in Arabidopsis. The Plant Journal,2006a,47(6):841-850.
    Yang L, Wu G, Poethig R S. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):315-320.
    Yang S W, Chen H Y, Yang J, et al. Structure of Arabidopsis HYPONASTIC LEAVES 1 and its molecular implications for miRNA processing. Structure,2010,18(5):594-605.
    Yang Z, Ebright Y W, Yu B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2'OH of the 3'terminal nucleotide. Nucleic Acids Research,2006b, 34(2):667-675.
    Yu B, Bi L, Zheng B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America,2008,105(29):10073-10078.
    Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005,307(5711):932-935.
    Yumul R E, Kim Y J, Liu X, et al. Powerderess and diversified expression of the miR172 gene family bolster the floral stem cell network. PLoS Genetics,2013,9(1):e1003218.
    Zeng Y, Yi R, Cullen B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America,2003,100(17):9779-9784.
    Zeng Y, Cullen B R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Research,2004,32(16):4776-4785.
    Zhang L, Chia J M, Kumari S, et al. A genome-wide characterization of microRNA genes in Maize. PLoS Genetics,2009,5(11):e1000716.
    Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,1998,279(5349):407-409.
    Zhang B H, Xiao Ping P A N, Qing Lian W, et al. Identification and characterization of new plant microRNAs using EST analysis. Cell Research,2005,15(5):336-360.
    Zhu H, Hu F, Wang R, et al. Arabidopsis argonautelO specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell,2011,145(2):242-256.
    Zhu Q H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research,2008,18(9):1456-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700