转ABP9基因小麦纯合株系的创制与干旱、低氮逆境的抗性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是限制作物产量提升的一个重要胁迫因子,而农田系统氮肥的过量施用则是生态系统的一个重要污染源。小麦是我国的第二大粮食作物,培育耐旱、耐低氮的小麦种质资源有着重要的现实意义。本实验室前期工作从玉米花后17天幼胚的cDNA文库中克隆到一个可以与Cat1基因上游顺式作用元件ABRE2相互作用的bZIP类转录因子——ABP9。拟南芥中的研究结果表明,ABP9基因可以显著提高转基因拟南芥对干旱、盐渍、低温等非生物逆境的耐受性。本论文从创制转ABP9基因小麦株系入手,验证其对干旱、低氮两种非生物逆境胁迫的耐受性,旨在为小麦抗逆育种创造良好的种质资源。研究结果如下:
     (1)2006年-2009年通过基因枪共转化的方法将三种不同启动子驱动的ABP9基因(Ubi-ABP9、Ind-ABP9、Pabp9-ABP9)转入两个小麦受体品种石4185和宁春四号中并获得了T0代转化植株。通过PCR方法对T0-T4代的转基因株系进行跟踪检测,在T4代株系中获得Ubi-ABP9和Ind-ABP9石4185各1个纯合株系,Ubi-ABP9宁春四号两个纯合株系。通过Southern进一步验证了PCR结果,通过Northern确定了ABP9基因在受体小麦中的表达。
     (2)T2代转Ubi-ABP9和Ind-ABP9基因的石4185小麦株系的耐旱实验表明,转基因小麦株系在干旱逆境胁迫下的生长表型显著优于非转基因株系且存活率显著提高。
     (3)2009年和2010年对分别转ABP9基因石4185小麦纯合株系进行了两次盆栽耐旱实验。结果显示,与非转基因小麦株系相比转基因小麦株系在干旱逆境下的生长表型有了显著改善。2009年耐旱实验结果统计分析表明,干旱逆境下转Ubi-ABP9基因的小麦株系较非转基因小麦株系的株高、干物质积累、相对含水量、产量及产量构成要素显著提高;在正常生长条件下,上述指标无显著差异。2010年Ind-ABP9石4185和Ubi-ABP9宁春四号纯合株系耐旱实验初步结果显示两种转基因株系在干旱逆境下的生长表型较非转基因株系也有显著的改善。
     (4)利用实时荧光定量PCR的结果显示低氮逆境可以诱导ABP9基因的表达。在此基础之上,于2009年和2010年对Ubi-ABP9石4185株系分别在沙培和蛭石中进行了两次耐低氮胁迫的实验。结果显示,与非转基因小麦株系相比转基因小麦株系在低氮逆境下的长势、叶色等性状显著改善。2009年的耐低氮胁迫实验表明,在低氮逆境条件下转基因小麦株系的生长发育、叶绿素、产量及产量构成要素等指标较非转基因小麦株系有显著的改善。在正常生长条件下,转基因株系与非转基因株系在株高、干物质积累、穗长和穗粒数方面无显著差异,而转基因株系的单株产量、百粒重和穗数较非转基因株系有显著提高。2010年对宁春四号转Ubi-ABP9的株系在蛭石中进行了耐低氮胁迫的实验,初步实验结果显示转基因株系在低氮逆境条件下的生长表型也优于非转基因株系,与Ubi-ABP9石4185低氮胁迫实验结果基本一致。
     上述实验结果表明ABP9基因在提高受体小麦对干旱、低氮两种非生物逆境的耐受性方面有重要的作用,且该基因在受体小麦中的表达对其在正常生长条件下的生长发育和产量无负面影响。
Drought is an important factor that restrict the yield improvement of crops and the over application of nitrogen has caused serious eco-system pollution. Our laboratory has cloned a bZIP transcription factor-ABP9 from the cDNA library of maize, which can interact with the cis-acting element of Cat1——ABRE2. According to the function study of ABP9 in Arabidopsis Thaliana, ABP9 can significantly improve its tolerance to abiotic stress such as drought, salinity and cold. Starting from the creation of transgenic wheat expressing ABP9, we further identified the transgenic wheat’s tolerance to the stress of drought and low-nitrogen and created good germplasm resources for the wheat breeding. Results of the study are as following:
     (1) From 2006 to 2009 we have successfully transformed ABP9 gene driven by three different promoters into two varieties of SHI4185 and NINGCHUN4 by the method of microprojectile bombardment and obtained the T0 transformed plants. According to the detection of T0-T4 transformed plants by PCR, we obtained one pure line of Ubi-ABP9 SHI4185 and Ind-ABP9 SHI4185 respectively ,two pure lines of Ubi-ABP9 NINGCHUN4 . According to Southern blot and Northern blot, we further confirmed the results of PCR and the expression of ABP9 in the wheat.
     (2) We conducted drought tolerance experiment in the two T2 transgenic lines of SHI4185(Ubi-ABP9SHI4185 and Ind-ABP9 SHI 4185). The results showed that the phenotypes of the two transgenic lines under the drought stress and survival rate have been significantly improved.
     (3)We conducted drought tolerance experiment for the pure lines of transgenic ABP9 SHI4185 in ports in 2009 and 2010. Results showed that the phenotype of transgenic lines has been greatly improved. The results of 2009 showed that under drought stress the height, biomass, relative water content, yield and yield components have been remarkably improved and statistical analysis showed that the difference of yield and yield components between SHI4185 and Ubi-ABP9 SHI4185 is significant on the level of 1% and the above indexes are not significant between SHI4185 and Ubi-ABP9 SHI4185 under normal conditions.
     (4) According to the Real-time Quantitative PCR, we confirmed the induction of ABP9 in maize under the conditions of low nitrogen. We conducted the low-nitrogen tolerance experiment with pure lines of Ubi-ABP9SHI4185 in the sand and vermiculite in 2009 and 2010 respectively. Results of 2009 and 2010 showed that the growth and leaf color of Ubi-ABP9SHI4185 have been greatly improved comparing with SHI4185. Results of 2009 showed that the growth, chlorophyll, yield and yield components have been greatly improved,too. The differences of height,biomass,length of panicle and spikelets per panicle between SHI4185 and Ubi-ABP9SHI4185 are not significant and yield per plant, 100-grain weight and number of panicle of Ubi-ABP9SHI4185 are significantly improved comparing with SHI4185. The results of low-nitrogen tolerance experiment in vermiculite with Ubi-ABP9NINGCHUN4 are basically consistent with that of Ubi-ABP9 SHI4185.
     The above results from 2009 to 2010 have showed that ABP9 can significantly improve wheat’s tolerance to drought and low nitrogen stress and has no obvious negative effect on the growth and yield of the wheat under normal conditions.
引文
1. J. FLEXAS and H. MEDRANO. (2002) Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited.. Annals of Botany 89: 183-189.
    2. Arunyanark A.;Jogloy S.;Akkasaeng C.;Vorasoot N.;Kesmala T.;Nageswararaor.C. et al. (2008)Chlorophyll Stability is an Indicator of Drought Tolerance in Peanut. Journal of agronomyand crop science ,194(2):113-125.
    3. Cushman J C,et al.(2000).Genomic approaches to plant stress tolerance.Current Opinion Plant Biology,3:117-124.
    4. Bray EA.(1997).Plant responses to water deficit.Trends Plant Sci,2:48-54.
    5. Smirnoff N.(1998).Plant resistance to environmental stress.Current Opinion Biotech,9:214-219.
    6. Hasegawa P M,et al.(2000).Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,51:463-499.
    7. Huang B,Gao H.(2000).Root Physiological characteristics associated with drought resistancein Tall Fescue cultivars.Crop Science,40(1):196—203.
    8. Huang B,Duncan R.R,Carrow R.N.(1997).Drought—resistance mechanisms of seven warm-season turfgrass under surface soil drying:Ⅱ.Root aspects.Crop Science,37(6):1863—1869.
    9. Chung-Li Chen,Jih-Min Sung.(1983). Effect of Water Stress on the Reduction of Nitrate and Nitrite by Soybean Nodules. Plant Physiology ,73:1065-1066.
    10. Ji-Bao Chen, Shu-Min Wang, Rui-Lian Jing and Xin-Guo Mao.(2009).Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. Journal of Plant Physiology, 166(1), 12-19.
    11. Bohnert H J,Nelson D E,Jensen R G.(1995).Adaptations to environmental stress.Plant Cell,7:1099-1111.
    12. P.B.KaviKishor.,S.Sangam,R.N.Amrutha1,P.SriLaxmi,K.R.Naidu,K.R.S.S. Rao.(2005).Regulation of proline biosynthesis,degradation,uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance.Current Science,88(3):425-438.
    13. Ingram J,Bartels D.(1996).The molecular basis of dehydration tolerance in plant.Annu Rev Plant Physiol Plant Mol Biol,47:377-403.
    14. Kiyosue T,Yamaguchi-Shinozaki K.(1994).Cloning of cDNA for genes that are early-response to dehydration stress(ERDS)in Arabidopsis thaliana L.: Identification of three ERDS as HSP cognate genes.Plant MoBiol,25:791-798
    15. Kiyosue T,Yoshiba Y,Yamaguchi-Shinozaki K.(1996).A nuclear gene encoding mitochondrialproline dehydrogenase,an enzyme involved in proline metabolism,is upregulated by prolinebut downregulated by dehydration in Arabidopsis.Plant Cell,8:1323 -1335.
    16. Hong-Bo S, Zong-Suo L, Ming-An S.(2005).LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces,45(3-4):131-1355.
    17. Kiyosue T,Yoshiba Y,Yamaguchi-Shinozaki K,et al.(1996).A nuclear gene encoding mitochondrial proline dehydro-genase,an enzyme involed in proline metabolism,is up regulated by proline but downregulated by dehydration in Arabidopsis.Plant Cell,8:1323-1325.
    18. Ingram J,Bartels D.(1996).The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Biol,47:377—403.
    19. Landschulz W H, Johnson P F, McKnight S L.(1988),The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins Science, 240:1759-1764.
    20. Nakagawa H, Ohmiya K, Hattori T,et al.(1996). A rice bZIP protein ,designated OSBZ8, israpidly induced by absciscic.The Plant Journal,9:217-227.
    21. Bray E A.(1997). Plant responses to water deficit.Trends in Plant Science,2:48-54.
    22. NakagawaH,ohmiyaK,HattoriT,et al.(1996).A rice b-Zip Protein,designated OSBZS,is rapidly induced by abscisic.ThePlantJournal,9:217-227.
    23. Kang J, Choi H, Kim S Y.(2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling.The Plant Cell,14:343-357.
    24. Kim J B, Kang J Y, Kim S Y.(2004).Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance.Plant Biotechnology Journal,2:459-466.
    25. Casaretto J, Ho T H.(2003).The transcription factorsHvABI5andHv-VP1are require for theabscisic acid induction of gene expression in Barley Aleurone cells.The Plant Cell,15(1):271-284.
    26. Lipsick JS. (1996). One billion years of myb. Oncogene, 13, 223–235.
    27. Abe H.,Yamaguchi-Shinozaki K,,Hosolawa D,Shinozaki K.(1997). Role of Arabidopsis MYCand MYB homologs in drought and abscisic acid-regulated gene expression.Plant Cell,9:1859-1866.
    28. BilandT,Koering CE,Binet一Brasselet E,Ancelin K,Polliee A,Gasser SM,Gilson E.(1996).The telobox,a myb一related telomerie DNA binding motif found in Proteins from yeast,plants and human.Nucleic Acids Res,24:1294一1303.
    29. Abe H., Urao .T, Shinozaki K., Yamaguchi—Shinozaki K.(2003).Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell,15:63-78.
    30. Kagaya Y, Hobo T, Murata M,et al.(2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor,TRAB1.The Plant Cell,14:3177-3189.
    31. Tena, G., Asai, T., Chiu, W.-L., and Sheen, J.(2001). Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol,4,392-400
    32. Rentsch D,Hirner B,Schmelzer E,et al.(1996).Salt stress-induced proline transporters and saltstress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant.Plant Cell,8:1437-1446.
    33. Bray EA(2004).Genes commonly regulated by water-deficit stress in Arabidopsis thaliana.JExp Bot,55:2331-2341.
    34. Yoshiba Y,Kiyosue T,Katagiri T,et al.(1995).Correlation between the induction of a gene forΔ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thalianaunder osmotic stress.PlantJ,7:751-760.
    35. Artus N N,et al.(1996)Constitutive Expression of the Cold-Regulated Arabidopsis thaliana COR15A Gene Affects Both Chloroplast and Protoplast Freezing Tolerance.Proceedings of the National Academy of Sciences of the United States of America,93:13404-13409.
    36. Kermode AR.(1997).Approaches to elucidate the basis of desiccation-tolerance in seeds.SeedSci Res,7:75-95.
    37. Ingram J,Bartels D.(1996).The molecular basis of dehydration tolerance in plant.Annu Rev Plant Physiol Plant Mol Biol,47:377-403.
    38. Kiyosue T,Yamaguchi-Shinozaki K.(1994).Cloning of cDNA for genes that are early-response to dehydration stress(ERDS)in Arabidopsis thaliana L.: Identification of three ERDS as HSP cognategenes.Plant Mol Biol,25:791-798.
    39. Liu Q,Kasugaa M,Sakumaa Y,et al.(1998).Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively,in Arabidopsis.PlantCell,10:1391-1406.
    40. Enrico Magnani, Kimmen Sj?lander, and Sarah Hake. (2004).From Endonucleases to Transcription Factors: Evolution of the AP2 DNA Binding Domain in Plants. Plant Cell,16: 2265-2277.
    41. Sakuma Y, et al.(2002)DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications,290:998-1009.
    42. Okamuro JK,Caster B,Villarroel R.(1997)The AP2 domain of APETALA2 define a large new family of DNA binding Protein in ArabidoPsis.Proc Natl Acad Sci USA,94(13):7076一7081.
    43. Volker Haake,Daniel Cook,JoséLuis Riechmann, Omaira Pineda, Michael F. Thomashow.etal.(2002). Transcription Factor CBF4 is a regulator of drought adaptation in Arabidopsis.Plant Physiology,130:639-648.
    44. Filichkin SA,wu Q,Busov V,Meilan R Carmen LG’Groover A,Goldfarb B,Ma C,Dharmawardhana P,Brunner A,Strauss SH(2006).Enhancer trapping in woody plants:isolation of the ET304 gene encoding a putative AT—hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis.Plant Sci,171:206-216.
    45. Guiltinan M J,et al.(1990).A plant leucine zipper protein that recognizes an abscisic acid response element.Science,250:267-271.
    46. Finkelstein RR, Lynch TJ.(2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,12: 599–609.
    47. Emst HA,Olsen AN,Skriver K,et al.(2004).Structure of the conserved domain of ANAC,a member of the NAC family of transeription factors.EMBO ReP,5(3):297一303.
    48. Fujita M,et al. (2004).A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway.Plant Journal,39:863-876.
    49. Addie Nina Olsen,Heidi A Emst,Leila Lo Leggio and Karen Skriver.(2005)NAC transcription factors:structurally distinctly,functionally diverse.Trends in Plant Science,10(2):79一87.
    50. Buttner,M.,and Singh,K.B.(1997).Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 94, 5961–5966.
    51. Patrick Achard, Fan Gong, Soizic Cheminant, Malek Alioua, Peter Hedden, and Pascal Genschik.(2008). The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates theAccumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. Plant Cell,20: 2117-2129.
    52. Yoh Sakuma, Kyonoshin Maruyama, Yuriko Osakabe, Feng Qin.(2006). Functional Analysisof an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell,18: 1292-1309
    53. Ruth R. Finkelstein, Ming Li Wang, Tim J. Lynch, Shashirekha Rao, and Howard M. Goodman.(1998). The Arabidopsis Abscisic Acid Response Locus ABI4 Encodes an APETALA2 Domain Protein. Plant Cell,14: 2565-2575.
    54. K. Wilson, D. Long, J. Swinburne and G. Coupland(1996). A Dissociation Insertion Causesa Semidominant Mutation That Increases Expression of TINY, an Arabidopsis Gene Related to APETALA2. Plant Cell,8: 659-671.
    55. Shree P. Pandey and Imre E. Somssich.(2009). The Role of WRKY Transcription Factors in Plant Immunity. Plant Physiol,150: 1648-1655.
    56. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206.
    57. Apel,K,Hirt,H.(2004). Reaetive oxygen species: metabolism,oxidative sterss,and singal transduction. Annu.Rev.Plant Biol,55:373-399.
    58. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., and Siedow, J.N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol,141:357–366.
    59. Christine H. Foyer , Humberto Lopez-Delgado, James F. Dat Ian M. Scott.(2006). Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum,100(2),241-254.
    60. Bolwell,G.P. Wojtaszek,P. (1997).Mechanisms for the generation of reactive oxgen species in plant defense-broad perspective.Physiol.Mol.Plant Pathol,51:347-366.
    61. AlalnACandFluhr,R.(1997). Two distinct soueres of elicited reactive oxygen species in tobacco epidermal cells.Plant Cell,9:1559-1572.
    62. He Y Y, Hader D P.(2002). Involement of reactive oxygen species in the UV-B damage to cyanobacterium Anabaenasp. J Photochem Photobio B: Biol, 66:73-80.
    63. L A Bethards, R W Skadsen, and J G Scandalios.(1987). Isolation and characterization of a cDNA clone for the Cat2 gene in maize and its homology with other catalases. Proc. Natl. Acad. Sci. USA. 84, 6830-6834.
    64. Abler ML,Scandalios JG.(1993). Isolation and characterization of a genomic sequence encoding the maizeCat3 catalase gene.Plant Mol Biol,22:1031-1038.
    65. Ronald W. Skadsen,Paul Schulze-Lefert,John M.(1995). Herbst. Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Molecular Biology,29:1005-1014.
    66. Chandlee JM, et al.(1984). Regulation of Cat1 gene expression in the scutellum of maize during early sporophytic development. Proc Natl Acad Sci U S A., 81(15):4903-4907.
    67. Zeevaart JAD, Creelman RA.(1988). Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Mol Boil,39:413-439.
    68. Parry AD.(1993). Abscisic acid metabolism. Methods in Plant Biochem,9:381-402
    69. Taylor IB.(1991). Genetic analysis of abscisic acid biosynthesis. In: Davies WJ, Jones JD (ed). Abscisic Acid: Physiology and Biochemistry. Oxford, UK: BIOS Scientific Publishers Limited.23-27.
    70. Marin E, Nussaume L, Quesada A, et al.(1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involoved in abscisic acid biosynthesis and corresponding to ABA locus ofArabidopsis thaliana. EMBO J,15:2331-2342.
    71. Audran C, Borel C, FreyA, et al.(1998). Expression studies of the zeaxanthin epoxidase gene inNicotiana plumbaginifolia. Plant Physiol, 118 (3):1021-1028.
    72. Tan B C, Schwartz S H, Zeevaart J A D, et al.(1997). Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA,94(22) :12235-12240
    73. Gilroy S, Trewavas T.(1994)A decade of plant signals.BioEssays,16: 677-681.
    74. Bush DS.(1995) Calcium regulation in plant cells and its role in signaling.Annu Rev Plant Physiol Mol Boil,46: 95-112.
    75. Lee Y, Choi YB, Sub CS et al.(1996)Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Viciafaba.Plant Physiol, 110: 987-996.
    76. Leckie C P, McAinsh M R, Allen GJ et al. (1998).Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose.Proc Natl Acad Sci USA, 95: 15837-15842.
    77. Schroeder J I. (1995).Anion channels as central mechanisms for signal transduction in guard cells and putative function in roots for plant soil interaction.Plant Molecular Biology, 28:353-361.
    78. Hirt H.(2000).MAP kinases in plant signal transduction.Res Prob Cell Diff,27:1-9.
    79. Shinozaki K.,Yamaguchi-shinozaki K..(2007). Gene networks involved in drought stress response and tolerance. Exp Bot 2007,58(2):221-227.
    80. Xiong L.,Schumaker K.,Zhu J K.(2002).Cell signaling during cold, drought and salt stress. Plant cell,14:165-183.
    81. Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.(2002).Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun.,293(2):806-815.
    82. Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY.(2006). Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett.,580(5):1239-1250.
    83. Goh C-H, Kinoshita T, et al.(1996).Inhibition of blue light-dependent H+pumping by abscisic acid inViciaguard-cell protoplasts.Plant Physiol, 11: 433-440.
    84. Baxter-Burrell A, Yang Z, Springer PS, et al.(2002).RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science,296: 2026-2028.
    85. Boomithan R, Doran PM.(2002). Ni-induced oxidative stress in roots of Ni hyperaccumulator, Alyssum bertolonii. New Phytologist, 156: 205-215.
    86. Alscher RG, Erturk N, Heath LS.(2002). Role of Superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot,53: 1331–1341.
    87. Bowler C, van Montagu M, InzéD.(1992). Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol,43: 83–116.
    88. Ishitani M, Xiong L, Stevenson B and Zhu J K.(1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell,9: 935-1949.
    89. Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, GongZ. (2006). Mutations in ABO1/ELO2, a subunit of holo-elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol,26:6902–6912.
    90. Byran D. Mckersie. Julia Murnaghan, Kim S.Jones, et al.(2000). Bowley Iron-Superoxide Dismutase Expression in Transgetic Alfalfla Increases Winter Suvrvival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance. Plant Physiol,122:1427一1438.
    91. Neill S T et al.(1984). In: Crozier A and Hillman I R (eds). The Biosynthesis and Metabolism of PlantHormones, Cambridge University Press,43-50.
    92. Guan L,et al.(2000).Cis-elements and trans-factors that regulate expression of the maize CatI antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signaling molecule for the response.Plant Journel,22:87-95.
    93. Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C.(1999).Salt-specific regulation of thecytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40: 729–736.
    94. Charlton WL, Matsui K, Johnson B, Graham IA, Ohme-Takagi M, Baker A.(2005). Salt-induced expression of peroxisome-associated genes requires components of the ethylene, jasmonate and abscisic acid signalling pathways. Plant Cell Environ,28: 513–524.
    95. Xiong L, Schumaker KS, Zhu JK.(2002). Cell signaling during cold, drought, and salt stress. Plant Cell,14: 165–183.
    96. Li M-G,Villemur R,Hussey PJ,Silflow CD,Gantt JS,Snustad DP.(1993). Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol 23: 401-407.
    97. Quarrie S A (1988). A monoclonal antibody to (s)-absciisic acid: its characteristics and usein a radioimmunoassay or measuring abscisic acid in crude extracts and Lupin leaves. Planta,173: 330-339.
    98. Zdunek E, Lips SH.(2001).Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativumL. in response to suboptimal growth conditions.J Exp Bot,52(359):1269-1276.
    99. Jiang M Y and Zhang J H. (2004). Abscisic Acid and Antioxidant Defense in Plant Cells.Acta Bot Sin,46 (l):l-9.
    100. Morillon R, Chrispeels MJ.(2001).The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells.Proc Natl Acad Sci USA,98(24):14138-14143.
    101. Neill S T et al.(1984). In: Crozier A and Hillman I R (eds). The Biosynthesis and Metabolism of Plant Hormones, Cambridge University Press,43-50.
    102. Giraudat J, Parcy F, Bertauche N, et al.(1994). Current advances in abscisic acid action and signaling. Plant Mol Bio,26: 1557-1577.
    103. Pei Z M,et al.(2000).Calcium channels activated by hydrogen peroxide mediate abs acid signaling in guard cells.Nature,17:731-734.
    104. Heather Knight, Daniel G. Zarka, Haruko Okamoto, Michael F. Thomashow and Marc R. Knight.(2004). Abscisic Acid Induces CBF Gene Transcription and Subsequent Induction ofCold-Regulated Genes via the CRT Promoter Element. Plant Physiology,135: 1710-1717.
    105. Poole P, Allaway D. (2000). Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol, 43: 117-163.
    106. Delhon P, Gojon A, Tillard P, Passama L. (1995). Diurnal regulation of NO3– uptake in soybean plants: I. Changes in NO3– influx, efflux, and N utilization in the plant during the day/night cycle. J Exp Bot, 46: 1585-1594.
    107. Crawford NM, Glass ADM. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci, 3: 389-395.
    108. Aarnes H, Eriksen B, Southon TE .(1995). Metabolism of nitrate and ammonium in seedlings of Norway spruce (Picea abies) measured by in vivo N-14 and N-15 NMR spectroscopy. Physiol Plant, 94:384-390.
    109. Clarkson DT, Gojon A, Saker LR, Wiersema PK, Purves JV, Tillard P, Arnold GM, Paams AJM, Waalburg W, Stulen I .(1996). Nitrate and ammonium influxes in soybean (Glycinemax) roots: direct comparison of 13N and 15N tracing. Plant Cell Environ, 19:859-868.
    110. Fitzmaurice AM, O'Gara F. (1991) .Glutamate catabolism in Rhizobium meliloti. Arch Microbiol,155:422-427.
    111. Loppes R, Radoux M, Ohresser MC, Matagne RF .(1999). Transcriptional regulation of theNIA1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. Plant Mol Biol,41: 701-711.
    112. Beevers L, Hageman RH. (1980). Nitrate and nitrite reduction. In BJ Mifin, ed, The Biochemistry of Plants. Academic Press, New York,115-168.
    113. Cheng C-L, Acedo GN, Cristinsin M, Conkling MA. (1992). Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA, 89: 1861-1864.
    114. Bernhard WR, Matile P .(1994). Differential expression of glutamine synthetase genes during the senescence of Arabidopsis thaliana rosette leaves. Plant Sci, 98: 7-14.
    115. Edwards JW, Coruzzi GM.(1989). Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell 1: 241-248.
    116. Li M-G, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP.(1993). Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol, 23: 401-407.
    117. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM.(1993).The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 72, 705-713.
    118. Huang NC,Liu KH, Lo HJ, Tsay YF.(1999).Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell,11: 1381–1392.
    119. Huang NC, Chiang CS, Crawford NM, Tsay YF .(1996). CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expressionin roots. Plant Cell, 8:2183–2191.
    120. Crawford NM, Arst HN.(1993). The molecular genetics of nitrate assimilation in fungi andplants. Annu. Rev. Genet,27:115–46.
    121. Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass AD. (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen poolsin roots of barley. Plant Physiol, 123, 307-318.
    122. Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE.(2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA, 102: 13693–13698.
    123. Nathawat N S, Kuhad M S, Goswami C.(2005). Nitrogen-Metabolizing Enzymes: Effect of Nitrogen Sources and Saline Irrigation. J Plant Nutri,28(6):1089–1101.
    124. Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF.(2004).Mutation of a nitrate transporter, AtNRT1:4, results in a reducedpetiole nitrate content and altered leaf development.Plant Cell Physiol,45,1139-1148.
    125. Galv′an A, Fern′andez E.(2001). Eukaryotic nitrate and nitrite transporters. Cell. Mol. Life Sci,58:225–233。
    126. Cerezo M, Tillard P, Filleur S, Mu?os S, Daniel-Vedele F, Gojon A .(2001). Major alterations of the regulation of root NO3– uptake are associated with the mutation of NRT2.1 andNRT2.2 genes in Arabidopsis. Plant Physiol, 127: 262–271.
    127. Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J. 17:563-568.
    128. Gazzarrini S, Lejay L, Gojon A, Ninnemann O, FrommerWB, von Wiren N. (1999). Threefunctional transporters forconstitutive, diurnally regulated, and starvation-induced uptakeof ammonium into Arabidopsis roots. Plant Cell, 11, 937-948.
    129. Huang NC, Liu KH, Lo HJ, T Filleur S, Daniel-Vedele F.(1999). Expression analysis of ahigh-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta, 207:461–469.
    130. Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo D, Glass AD,Touraine B.(2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol,52: 689–703.
    131. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A.(2001). Alterations ofthe regulation of root NO3?- uptake are associated with the mutation of Nrt2.1 and Nrt2.2genes in Arabidopsis. Plant Physiol, 127:262–271.
    132. Fraisier V, Gojon A, Tillard P, Daniel- Vedele F.(2000).Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J,23:489–496.
    133. Filleur S, Dorbe MF, Cerezo M, Orsel M,say YF.(1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell,11, 1381-1392.
    134. Quesada A, Krapp A, Trueman L J.(1997). PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the cRNA family. Plant Mol Bio,34:265-274.
    135. Engineer CB, Kranz RG. (2007). Reciprocal leaf and root expression of AtAmt1.1 and rootarchitectural changes in response to nitrogen starvation. Plant Physiol, 143, 236-250.
    136. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T,Yamaguchi J。(2003). Distinct expression and function of threeammonium transporter genes (OsAMT1;1-1;3) in rice. PlantCell Physiol,44, 726-734.
    137. Fraisier V, Gojon A, Tillard P, Daniel- Vedele F.(2000). Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys,Acta 1465:219–35.
    138. Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG.(2005). Nutritional regulation of ANR1 and other root-expressed MADSbox genes in Arabidopsis thaliana. Planta, 222, 730-742.
    139. Desikan R, Griffiths R, Hancock J, and Neill S.(2002). A new role for an old enzyme: Nitrate reductase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. PlantBio, 99 (25): 16324-16318.
    140. Lea U S, Hoopen F t, Provan F.(2004).Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta, 219 (1): 59- 65
    141. Mata C G and Lamattinala L.(2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol, 126 (1): 196-204.
    142. Cruz J L, Mosquim P R, Pelacani C R .(2003). Photosynthesis impairment in cassava leaves in response to nitrogen Deficiency. Plant Soil, 257: 417–423
    143. Beck EH.(1996). Regulation of shoot/root ratio by cytokinins from roots in Urtica dioica: opinion. Plant Soil, 185:3–12.
    144. Linkohr BI, Williamson LC, Fitter AH, Leyser HM .(2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J,29: 751–760.
    145. Clarkson DT, Gojon A, Saker LR, Wiersema PK, Purves JV, Tillard P, Arnold GM, Paams AJM, Waalburg W, Stulen I .(1996). Nitrate and ammonium influxes in soybean (Glycinemax) roots: direct comparison of 13N and 15N tracing. Plant Cell Environ, 19: 859-868.
    146. Crawford NM.( 1995). Nitrate: nutrient and signal for plant growth. Plant Cell, 7:859–868.
    147. Redinbaugh MG, Campbell WH.(1991). Higher plant responses to environmental nitrate. Physiol. Plant, 82:640-650.
    148. Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M.( 1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11:671–691
    149. Wang RC, Guegler K, LaBrie ST, CrawfordNM.(2000). Genomic analysis of a nutrient response in arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 12:1491–1509.
    150. Redinbaugh MG, Campbell WH. (1991).Higher plant responses to environmental nitrate. Physiol. Plant, 82:640–650.
    151. Gansel X, Munos S, Tillard P, Gojon A.(2001). Differential regulation of the NO3?- and NH4transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J, 26:143–155.
    152. Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM. (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol, 123:307–318.
    153. Hsieh M-H, Lam H-M, Van De Loo FJ, Coruzzi G.(1998). A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc. Natl. Acad. Sci. USA ,95:13965–13970.
    154. Zhang HM, Jennings A, Barlow PW,Forde BG. (1999). Dual pathways for regulation of root branching by nitrate. Proc.Natl. Acad. Sci. USA, 96:6529–6534.
    155. Robinson D.(1994). The responses of plants to non-uniform supplies of nutrients.New Phytol,127:635–674.
    156. Zhang HM, Forde BG.(1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.Science, 279:407–409.
    157. Zhang HM, Forde BG.(2000). Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot, 51:51–59.
    158. Farrar J.(1996). Regulation of root weight ratio is mediated by sucrose: opinion.Plant Soil, 185:13–19.
    159. McDonald AJS, Davies WJ. (1996). Keeping in touch: responses of the whole plant to deficits in water and nitrogen supply.Adv. Bot. Res,22:229–300.
    160.李合生.(主编).(2006).现代植物生理学(第2版).北京:高等教育出版社.
    161.朱玉贤.(主编).(2007).现代分子生物学(第3版).北京:高等教育出版社.
    162.吴乃虎.(主编).(2000).基因工程原理.北京:科学出版社.
    163.李韵珠,陆锦文,罗远培.(主编).(1994).土集水和养分的有效利用.北京:北京农业大学出版社.
    164.高国庆,储成才,刘小强,李杨瑞.(2005).植物WRKY转录因子家族的研究进展.植物学通报,22(l),11一18.
    165.陈少裕,刘杰.(1991).干旱胁迫对甘蔗叶片线粒体膜流动性及其膜脂过氧化的关系.西北农业大学学报,19(1),79—83.
    166.刘强,赵南明,Yamaguehl.Shinozakl K.,Shinozald k.(2000).DREB转录因子在提高植物抗逆性中的作用.科学通报,45,1-16.
    167.刘强,张贵友,陈受宜.(2000).植物转录因子的结构与调控作用.科学通报,45,1465—1474.
    168.梁建生.(1999).周期性土壤干早和叶片水势对气孔响应木质部ABA灵敏度的影响.植物学报,41,855一861.
    169.梁建生,庞佳英,陈云.(2001).渗透胁迫诱导的植物细胞中的脱落酸的合成.植物生理学通讯,37,447一451.
    170.贾文锁,何芳莲,张大鹏.(2001).蚕豆叶片中水分胁迫诱导ABA积累的触发机制.中国科学(C辑),31,213一219.
    171.缪颖,伍炳华.(2001).植物抗逆性的获得与信息传导.植物生理学通讯,37(l),71一75.
    172.梁颖,李玉花.(2009).植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能.植物生理学通讯,45(10):1027-1031.
    173.王贺正,马均,李旭毅,李艳,张荣萍.(2007).水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科学,40(7),1379-1387.
    174.柴晓清,印莉萍,刘祥林等.(1996).不同浓度NH4+和N03-对小麦根谷氨酰胺合成酶及其相关酶的影响.植物学报,38(10),803-808.
    175.张霖,赵翔,王亚静,张骁.(2009). NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控.作物学报,35(8),1491?1499.
    176.黄勤妮,印莉萍,柴小清等.(1995).不同氮源对小麦幼苗谷氨酰胺合成酶的影响.植物学报,37(11),856—862.
    177.莫良玉,等(.2001).高等植物GS/GOGAT循环研究进展.植物营养与肥料学报,7(2),223-231.
    178.王月福,于振文,李尚霞等.(2002).氮素营养水平对冬小麦氮代谢关键酶活性变化和子粒蛋白质含量的影响.作物学报,28(6),743-748.
    179.郑朝峰.(1986).植物的谷氨酸合酶.植物生理学通讯,22(3),5-12.
    180.印莉萍,刘祥林,吴小强等.(1994).叶绿体发育和光对小麦谷氨酰胺合成酶基因表达的影响.植物学报,36(8),597-602.
    181.胡廷章,何帅,黄小云,陈再刚,赵欣.(2009).植物中硝酸盐转运蛋白的运输和信号传输功能.植物生理学通讯,45(11),1131-1136.
    182.童依平,蔡超,刘全友,李继云,李振声.(2004).植物吸收硝态氮的分子生物学进展.植物营养与肥料学报,10(4),433–440.
    183.印莉萍,黄勤妮,黄海明,米国华.(2004).小麦根高亲和NO3-转运体全长基因(TaNRT2.1)的克隆和鉴定.中国农业科学,37(6),795-800.
    184.印莉萍,温波,刘祥林,高志环,邱泽生.(2006).小麦高亲和力NO3-转运体基因相关序列的克隆与表达分析.自然科学进展,10(6),567-570.
    185.李玉京,刘建中,李滨,等.(1999).与高等植物吸收NO3-/NH4+、PO43-和K+有关的膜转运蛋白编码基因的分子生物学研究现状.生物工程进展,19(2),41.
    186.张新梅,徐惠君,杜丽璞,等.(2004).共转化法剔除转基因小麦中的bar基因.作物学报,30(1),26-30.
    187.春亮,陈范骏,米国华.(2005).玉米苗期根系对氮胁迫反应的配合力分析.植物营养与肥料学报,11(6),750-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700