水稻硝转运蛋白基因OsNRT1.1a和OsNRT1.1b的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国农业已经进入高成本时代,生产资料价格已经普遍上涨,种子、肥料、农药等价格都处于上涨趋势中。氮肥在水稻的生产中起到至关重要的作用,近年来中国的氮肥施用量也是急剧上升。中国水稻种植面积占世界总面积的20%,但氮肥施用量却占到世界总施用量的37%,1995年中国的氮肥生产量和使用量已达到世界第一位,但中国的氮肥使用效率却不高,氮肥施用的同时也加剧了环境的污染,导致生态恶化。因此,在现代化农业建设中,通过生物学手段来提高水稻对氮肥的利用率,减少氮肥污染,保护自然资源,是解决氮肥利用率低的一条比较好的途径。植物对硝酸盐的吸收是通过根系一整套高效吸收转运系统-硝酸盐转运蛋白家族来完成的,主要由高亲和低亲和两套吸收转运系统来完成。通过分子生物学方法,得到水稻两个同源性很高的硝酸盐转运蛋白基因OsNRT1.1a, OsNRT1.1b的克隆。本研究以模式水稻品种日本晴(Nipponbare)为材料,通过RT-PCR、超表达、蛙卵异源表达系统、电生理等方法研究了OsNRT1.1a和OsNRT1.1b的功能和表达调控模式,所获得的主要结果如下:
     1.通过对两个基因全序列、氨基酸结构以及跨膜分析,得出他们基因的同源性达到95%,二者仅各有一个内含子的差别。但OsNRT1.1b的开放阅读框(ORF)只有OsNRT1.1a的一半长,为OsNRT1.1a的前半部分。通过跨膜预测分析得出OsNRT1.1b为6次跨膜,而OsNRT1.1a为正常的12次跨膜。通过序列分析表明OsNRT1.1a与OsNRT1.1b在水稻基因组中都是以单拷贝的形式存在,都位于3号染色体上,拥有相同的启动子。
     2.通过RT-PCR技术,分析了OsNRT1.1a与OsNRT1.1b在水稻中地上部和地下部的基因表达情况,两个基因对不同处理的表达情况具有一定的相似性,在完全缺氮下这两个基因的表达都相对较弱,当以低浓度N03-和NH4+诱导以后,表达量都相应增加许多,因此这两个基因是受氮诱导的。
     3.分别克隆了水稻OsNRT1.1a与OsNRT1.1b两个基因,通过农杆菌介导转到水稻愈伤组织中进行过表达实验。对所得到的OsNRT1.1a与OsNRT1.1b两个转基因品种进行不同氮形态和浓度的水培处理后得到结果为这两个品种都明显比野生型植株长得高大、分蘖多、结实率更高。同样在相同处理的土培条件下也得到类似的结果。同时分析了不同处理下水稻地上部地下部总氮的含量,结果显示,地上部总氮含量转基因植物都高于野生型植株,地下部的总氮含量不固定,不同处理结果趋势不相同。在前期用MS培养基同时进行转基因植株与野生型植株发苗,在发苗一周后转基因植株地上部高度明显高于野生型,而后进行的1/4全营养液培养下每四天记录一次地上部、地下部高度和鲜重后得到结果为:转基因植株的地上部生长速度明显快于野生型,处理20天后平均高于野生型5厘米左右,而地下部的生长转基因水稻与野生型没有明显差异。
     4.在对水稻中OsNRT1.1a与OsNRT1.1b两个基因分别进行过表达后,转基因植株和野生型同时饥饿一周后进行根部电生理实验分析得到:OsNRT1.1a过表达后对高低浓度的硝态氮的响应情况与野生型类似,而OsNRT1.1b过表达对低浓度的硝态氮只有微弱响应,而对高浓度的硝态氮几乎不响应。同样饥饿一周,OsNRT1.1a过表达后对高低浓度铵态氮的响应情况也与野生型类似,但OsNRT1.1b对高低浓度的铵态氮都有强烈的响应。在正常营养液培养条件下OsNRT1.1b对高低浓度的硝态氮的响应与野生型相比基本没什么差异。在用低浓度的硝态氮诱导培养条件下,OsNRT1.1a的表现基本与野生型相类似,也体现出了OsNRT1.1a为低亲和硝态氮转运蛋白基因的特性,在高浓度的硝态氮条件下响应强烈。而OsNRT1.1b在高低浓度硝态氮条件下的响应都较野生型平淡。
     5.蛙卵异源表达结果显示,当注射OsNRT1.1b基因时,蛙卵对低浓度的NO3-表现出大约10mv的去极化,说明蛙卵相应地对NO3-有一定吸收。所以OsNRT1.1b可能是负责硝酸盐吸收转运的一个基因。
China's agriculture has entered the erea of high-cost times. The seeds, ferilizers, pesticides and other prices have been generally increased and the rural labor force is also greatly reduced. China's agriculture has entered the times of the quality of agricutural products and environmental protection. Nitrogen fertilizer plays a crucial role in the rice production. In recent years, Chinese uses of nitrogen fertilizer is also sharply increased. Rice planting area in China accounts for 20% of the total area of the world, but they account for the world's nitrogen fertilizer application rate of 37% in total. In 1995 China's nitrogen fertilizer production and use have reached first in the world, but China's nitrogen fertilizer use efficiency is low, also aggravated the pollution of the environment, leading to ecological deterioration. Therefore, by biological means to increase the utilization of nitrogen fertilizer in rice, reduce nitrogen pollution, protect natural resources, agricultural production is currently a relatively good way. Plant uptake of nitrate is absorbed through the root system by transport protein system to complete nitrate transporter.There are high-affinity and low affinity uptake system to complete the transportion. Through the rice nitrate transporter gene cloning, we got two highly homologous rice nitrate transporter gene OsNRTl.1a and OsNRT1.1b. In this study, model variety Nipponbare (Nipponbare) were used, the function and expression regulation paterns were studied by RT-PCR, electrophysiological and overexpresstion. The main results obtained are as follows:
     1. OsNRT1.1a and OsNRT1.1b obtained 95% homology by anaysised of gene, the amino acid sequence and ransmembrane. Both have only one intron difference. But the ORF longthe of OsNRT1.1a is two times of OsNRT1.1b,and the ORF of OsNRT1.1b is the first part of OsNRT1.1a.OsNRT1.1b is 6 times transmembrane by transmembrane prediction analysis. Sequence analysis showed that OsNRT1.1a and OsNRT1.1b both located on chromosome 3,with the same promoter and a single copy in the rice genome.
     2. Analyzes the gene expression of OsNRT1.1a and OsNRT1.1b in rice shoots and underground by RT-PCR technology, The results showed that they are not subject to different nitrogen forms and concentrations. This two genes has some similarities on the expression by different treatments. They don't vary with different nirogen forms and different concentrations.This two genes are relatively weak under full nitrogen. when a low concenration of NO3- or NH4+ induced,the corresponding increased in the expression.So these two genes maybe constitutively expressed induced by nitrigen..
     3.OsNRT1.1a and OsNRT1.1b were coloned and overexpressed mediaed by agrobacterium through rice callus. These two transgenic plants were treated by different forms and concentrations,and the results showed that these two transgenic plants are significantly higher than WT plants and taller,more tillers and seed set higher.and with the same result treated in soil culture conditions.we analysis the total N of underground and aboveground parts,and the total N of two transgenic plants of aboveground is higher than WT but underground of the total nitrogen content is not fixed.the transgenic plants and wt were cultured at the same time,and the transgenic plants were significantly higher than wild-type after a week culture.The Length of shoot and root was recored every four days.The results showed that the both transgenic plants grow faster than WT,and final average of about 5 cm higher than WT.but the underground part of transgenic plants and WT did not differ significantly.
     4. Electrophysiology analyse showed that after overexpresstion of OsNRT1.1a and OsNRT1.1b in rice,the Overexpression of OsNRT1.1a (OEa) has no singinficent difference to WT treated with High and low concentrations of nitrate. The overexpression of OsNRT1.1b(OEb) on low concentration of nitrate is only a weak response but with no response on high concentration of nitrate. the response of OEa was similar to WT treated with high and low concentrations of ammonium, but OEb has a strong response on high and low concentrations of annonium.Low concentrations of nitrate induced expression OEa basic and similar to wild-type. High concentrations of nitrate in response to strong conditions, reflect the lower affinity of OsNRT1.1a nitrate transporter gene characteristics.
     5. Heterologous expression in Xenopus showed that,when inject OsNRT1.1b cRNA,it depolarizated about 10mv to low concentrations of NO3-,So Xenopus may absorb certain NO3-.So OsNRT1.1b may be responsible for a nitrate transporter gene.
引文
1.蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报,2003,24(3):1-4.
    2.程建峰,戴廷波,荆奇.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,2007,44(2):266-272.
    3.段英华,范晓荣,李奕林,王芳,张亚丽,徐国华,沈其荣.水稻增硝营养的生理与分子生物学机制.中国农业科学,2008,41:1708-1716.
    4.段英华,张亚丽,沈其荣。增硝营养对不同基因型水稻苗期氮素吸收同化的影响。植物营养与肥料学报,2005,11(2):160-165.
    5.郭再华,贺立源,徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响.应用与环境生物学报,2006,12(4):449-452.
    6.郭强,孙淑斌,YU Ling,徐国华.水稻中的磷转运蛋白基因在异源表达系统中的功能分析.中国水稻科学,2008,22:227-233.
    7.何强,邓华凤,舒服,杨益善,刘国华,刘建丰,陈立云.杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系.杂交水稻,2006,21(3):75-77.
    8.彭少兵,黄见良,钟旭华等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    9.何亚清.作物氮素营养与土壤氮素.大庆师范学院学报,2005,04:105-106.
    10.何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究,1998,12(4):249-252
    11.黄农荣,钟旭华,郑海波.水稻氮高效基因型及其评价指标的筛选.中国农学通报,2006,22(6):29-34.
    12.凌启鸿,陆卫平.水稻根系分布与叶角关系研究的初探.作物学报,1989,15(2):123-131.
    13.刘德祥,董安详,邓振镛.中国西北地区气候变暖对农业的影响.自然资源学报,2005(1):119-125
    14.李玉嵩,陶师顺,陈建强.不同基因型水稻氮效率的差异机理研究.河南农业科学,2009,(12):30-38
    15.单玉华.不同类型水稻品种氮素吸收利用差异及控制.扬州:扬州大学,2002.57-58.
    16.武志杰.我国化肥生产应用中的问题及对策.科技导报,1997,9:37-39.
    17.吴伟明,宋祥甫,孙宗修,等.不同类型水稻的根系分布特征比较.中国水稻科学,2001,15(4):276-280.
    18.陶龙兴,王熹,黄效林,闵绍楷,程式华.水稻灌浆期间土壤含水量对根系生理活性的影 响.中国农业科学,2004,37(11):1616-1620.
    19.夏冰,刘请波,邓念丹.不同基因型水稻氮素的吸收和利用效率研究综述.作物研究,2008,22(4):288-292.
    20.徐富贤,熊洪,谢戎,张林等.水稻氮素利用效率的研究进展及其动向.植物营养与肥料学报,2009,15(5):1215-1225.
    21.王艳朋,靳静晨,汤继华,胡彦民,刘宗华.作物氮素高效利用研究与现代农业,中国青年农业科学学术年会,2007,23(10):041.
    22.王光火,张奇春,黄昌勇.提高水稻氮肥利用率控制氮肥污染的新途径.浙江大学学报:农业与生命科学版,2003,29(2):67-70.
    23.张福琐,米国华,刘建安,等.玉米氮利用效率遗传改良与应用,农业生物技术学报,1997,2:112-117.
    24.张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应.南京农业大学学报,2004,27:130-135.
    25.张亚丽,董园园,沈其荣.不同水稻品种对铵态氮和硝态氮吸收特性的研究,土壤学报.2004,41:918-924.
    26.张亚丽,沈其荣.增硝营养对不同基因型水稻吸收铵的影响.土壤学报,2005,42(2):260-265.
    27.钟旭华,黄农荣.水稻结实期根系活性与稻米垩白形成的相关性初步研究.中国水稻科学,2005,19(5):471-474.
    28.朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432.
    29.曾翔,李阳生,谢小立,肖国樱,廖江林.不同灌溉模式对杂交水稻生育后期根系生理特性和剑叶光合特性的影响.中国水稻科学,2003,17(4):355-359.
    30. Aurelio M, Briones J, Satoshi O, Yoshiaki U, Niels-Birger R, Wolfgang R, Hidetoshi O. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil.2003,250:335-348.
    31. Aurelio M,Briones Jr,Satoshi Okabe,et al.Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use of different rice culivars.Plant and Soil.2003,250:335-348
    32. Arima S, Saisho K, Harada J. Morphological analysis of the rice root system based on root diameter. Japanese Journal of Crop Science,2001,70:408-417.
    33. Araki H, Morita S, Tatsumi J, Iijima M. Physiol-morphologicalanalysis on axial root growth in upland rice. Plant Production Science,2002,5:286-293.
    34. Chung-Ming Lin, Serry Koh, Gary Stacey, Su-May Yu, Tsai-Yun Lin, and Yi-Fang Tsay. Cloning and Functional Characterization of a Constitutively Expressed Nitrate Transporter Gene, OsNRTl, from Rice. Plant Physiology,2000,122:379-388.
    35. Chopin F, Wirth J, Dorbe MF, Lejay L, Krapp A, Gojon A, Daniel-Vedele F. The arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiol. Biochem.2007,45: 630-635.
    36. Cleaver OB, Patterson KD, Krieg PA. Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development.1996,122: 3549-3556.
    37. Crawford NM, Glass ADM. Molecular and physiology aspects of nitrate uptake in plants. Trends Plant Sci.1998,3:389-395.
    38. Drew M C.Comparison of the effects of a localized supply of phosphate,nitrate,ammonium and potassium on he growth of seminal root system,and the shoot, in barley.New Phytol.,1975,75:479-493.
    39. Dafny-Yelin M and Tzfira T. Delivery of Multiple Transgenes to Plant Cells. Plant Physiology.2007, 145:1118-1128.
    40. Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR. Response of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of botany.2007,99:1153-1160.
    41. Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett.2001,489:220-4.
    42. Feng Q, Zhang YJ, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature.2002,420: 316-320.
    43. Feller U. Soong T, Hagema RH. Leaf proteolytic activies and senescence during grain development of field-grown corn(Zea mays L.)[J]. Plant Physiol,1977,59:290-294
    44. Feller U. Nitrogen remobilization protein degradation during senescence[A]. In:Abrol T P. Nitrogen in Higher Plants[M]. Somerset, England:Research Studies Press,1990,195-222.
    45. Fraisier, V., Gojon A, Tillard P and Daniel-Vedele F. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia:evidence for post-transcriptional regualtion by a reduced nitrogen source. Plant J.2000,23:489-496.
    46. Fried M, Zsoldos F,Vose P B.Charaerizing the NO3 and NH4 upake process of rice roots by use of N15 labelled NO3 and NH4.plant Physiol.,1965,18:313-320.
    47. Fan XR, Shen QR, Ma Z, Zhu H, Yin XM, Miller AJ. A comparsion of nitrate transport in four different rice (Oryza sativa L.) cultivars. Sci China Ser C.2005,48:897-911.
    48. GlassA.D.M., Dev T.Britto,Brent N.Kaiser,Herbert J.Kronzuker.The regulation of nitrae and ammonium transport systems in plants.Journal of Experimental Botany,2002,53,855-864.
    49. Guo FQ, Wang RC, Chen MS, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. The Plant Cell.2001,13:1761-1778..
    50. GRANA TO T C, RA PER C D. P roliferation of maize roots in response to localized supp ly of nitrate [J]. Journalof Experimental Botany,1989,40:263- 275.
    51. He Q, Deng H F, Shu F, Yang Y S, Liu G H, Liu J F, Chen L Y.Correlation of rooting traits in seedling stage to activity of root systemin late growth stage and panicle traits in hybrid rice. Hybrid rice,2006,21(3):75-77.
    52. Huang NC, Liu HK, Lo HJ, Tsay YF. Cloning and functional characterization of an arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. The Plant Cell. 1999,11:1381-1392.
    53. Inukai Y, Ashikari M, Kitano H. Function of the root system andmolecular mechanism of crown root formation in rice. Plant and CellPhysiology,2004,45:17.
    54. Katayama, H., Mori, M., Kawamura, Y., Tanaka, T., Mori, M. and Hasegawa, H. Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Sci.2009,59:237-243.
    55. Kirk GJD. Plant-mediated processes to acquire nutrients:nitrogen uptake by rice plants. Plant and Soil.2001,232:129-134.
    56. Kirk GJD, Kronzucker HJ. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants:a modelling study. Ann Bot.2005,96:639-646.
    57. Kamoshita A, Wade L.J, Ali M.L, et al. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions [J]. Theor Appl Genet,2002,104:880-893.
    58. Kronzuker H J,Siddiqi M Y,Glass A D M,et al. Nirate-ammonium synergism in rice:A subcellular flux analysis.Plant Physoil.,1999,119:1041-1045.
    59. Krouk G, Tllard P, Gojion A. Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Plant Physiol.2006,142:1075-1086.
    60. Kronzucker HJ, Glass ADM, Siddiqi MY, et al. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice:implications for rice cultivation and yield potential. New Phytologist.2000,145:471-476.
    61. Krouk G, Tllard P, Gojion A. Regulation of the high-affinity NO3-uptake system by NRT1.1-mediated NO3-demand signaling in Arabidopsis. Plant Physiol.2006,142:1075-1086.
    62. Kaiser WM, Huber SC. Post-translational regulation of nitrate reductase:mechanism, physiological relevance and environmental triggers. J Exp Bot.2001,52:1981-1989.
    63. kronzucker, H.J., Siddiqi,M.Y.and Glass,A.D.M.Kineics of NH4 influx in spruce.Plant Physiology,1996,110:773-779.
    64. Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Sci,2009,59:237-243.
    65. Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant and Soil,2006,287: 145-159.
    66. Li YL, Fan XR, Shen QR. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ.2007,31:73-85.
    67. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology.1996,47:569-593.
    68. Li W, Wang Y, Okamoto M, Crawfrod NM, Siddiqi MY, Glass AD. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol.2007, 143:425-433.
    69. Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant and Soil,2006,287: 145-159.
    70. Liang T, Wang H, Kung HT and Zhang CS. Agriculture land-use effects on nutrient losses in West Tiaoxi watershed, China. Journal of the American Water Resources Association.2004,40: 1499-1510.
    71. Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRTl, from rice. Plant Physiology.2000,122: 379-388.
    72. Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF. The Plant Cell.2008,20:2514-2528.
    73. Liu KH, Huang C Y, and Tsay Y F. CHL1 Is a Dual-Affinity Nitrate Transporter of Arabidopsis Involved in Multiple Phases of Nitrate Uptake. The Plant Cell.1999,11:865-874.
    74. Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE. The putative high-affinity nitate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. USA.2005,102:13693-13708.
    75. Ladha JK, Kir k GJD, Bennett J, et al. Oppor tunitiesfor incr ea sed nit rogen-use efficiency fr om improved lowland r ice germplasm. Field Crops Resear ch,1998,56(1-2):41-71.
    76. Miller AJ, Smith SJ. Nitrate transport and compartmentation in cereal root cells, J. Exp. Bot.1996, 47:843-854.
    77. Miller AJ, Cookson SJ, Smith SJ, Wells DM. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J. Exp. Bot.2001,52: 541-549
    78. Miller AJ, Fan XR, Orsel M, Wells DM. Nitrate transport and signalling. J. Exp. Bot.2007,58: 2297-2306
    79. Moll RH, Kampr ath EJ, Jackson WA. Analysis andnterpr etation of factors which contribute t o efficiency ofnitrogen utilization Zea ma ys. Agr on J,1982,74(3):562-564.
    80. Mar schner H, Kir kby EA, Cakmak T. Effect ofmineral nutr it ion status on shoot-root par titioning ofphoto assimilates and cycling of mineral nut rients.Jour nal of Exper iment Bota ny,1996, 47:1255-1263.
    81. MARSCHN ER H, K IRKBY E A, CA KMA K T. Effect of m ineral nutritional status on shoot root partitioning of photoassilates and cycling of m ineral nutrients. J Exp Bot,1996,47:1255-1263.
    82. Miller AJ and Zhou JJ. Xenopus oocytes as an expression system for plant transporters. Biochimica et Biophysica Acta.2000,1465:343-358.
    83. Miller AJ, Shen QR, Xu GH Freeways in the plant:transporters for N, P and S and their regulation. Curr Opin Plant Biol.2009,12:284-290
    84. Ohnishi M,Horie T,Homma K,et al.Nitrogen management and cultival effects on rice yield and nitrogen use efficiency in Northeast Thailand.Field Crps Res,1999,19:127-136
    85. Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology.2002,129:886-896.
    86. Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNR3.1. Plant Physiol.2006,140:1036-46.
    87. Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol.2006,142:1304-1317
    88. Press M C, Scholes J D, Barker M G. Plant Physiological Ecology. London:Blackwell Scientific, 1999:115-131
    89. Revsbech N P,pedersen O, Reichardt W, et al. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions.Billogy and Fertility of Soils,1999,24(4):379-385
    90. Remans D R, Spanswick R M,Walker L P. The kinetics of nitrate uptake from flowing nutrient solutions by rice:influence of pretreatment and light.Bioresourse Technology,1995,53:125-132
    91. Shimizu H, Tanabata T, Xie X Z, Inagaki N, Takano M, Shinomura T.Physiological function of phytochromes in seminal root growth of riceseedlings. Plant and Cell Physiology,2006,47
    92. Singh U, Ladha JK, Castillo EG, et al. Genot ypicvar iation in nitr ogen use efficiency in medium-and longduraton r ice. Field Crops Resear ch,1998,58(1):35-53.
    93. Sasakawa H,Yamamoto Y.Comparison of he uptake of nitrate and ammonium by rice seedlings.Plant Physiol.,1978,62:665-669
    94. Sasaki T, Matsumoto T, Yamamoto K et al. The genome sequence and structure of rice chromosome 1. Nature.2002,420:312-316.
    95. Siddiqi MY, Glass ADM, Ruth TJ, Rufty T. Studiesof the uptake of nitrate in barley:I. Kinetics of 13NO3-influx. Plant Physiol.1990,93:1426-1432.
    96. Tsay Y, Schroeder JI, Feldmann KA, Crawford NM. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell.1993,72:705-713.
    97. Tsay Y, Schroeder JI, Feldmann KA, Crawford NM. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell.1993,72:705-713.
    98. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. Nitrate transporters and peptide transporters. FEBS Lett.2007,581:2290-300
    99. Tong YP, Zhou JJ, Li ZS, Miller AJ. A two-component high-affinity nitrate uptake system in barley. Plant J.2005,41:442-450
    100. Ullrich WR, Novacky A. Nitrate-dependent membrane potential changes and their induction in lemna gibba. Plant Sci. Lett.1981,22:211-217.
    101. Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology.2000,123:307-318.
    102. Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. The Journal of Biological Chemistry.2007,282:23541-23552.
    103. Wang X, Zhang W, Huang Y, and Li S. Modeling and simulation of point-non-point source effluent trading in Taihu Lake area:Perspective of non-point sources control in China. Science of the Total Environment.2004,325:39-50.
    104. Wang XB, Wu P, Hu B, Chen QS. Effects of nitrate on rice lateral root morphology and nitrogen absorption in rice (Oryza Sativa L.). Acta Botanica Sinica.2002,44:678-683.
    105. Williams L E, Miller A J. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. Plant Mol. Biol.2001,52:659-681
    106. Waisel Y,Eshel A, Kafkafi U. Plant Roots, the Hidden Half. New York MarcelDekker Inc.,2002: 15-32.
    107. WA GN ER B W, BECK E. Cytok inins in the perennial herb U rtica d ioica L. as influenced by its nitrogen status[J]. P lanta,1993,190:511- 518.
    108. Zhong X H, Huang N R. Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling slage.Chinese Journal of Rice Science,2005,19(5):471-474.
    109. Zhang H, Forde BG. An Arabidopsis MADS box gene that control nutrient-induced changes in root architecture. Science.1998,279:407-409.
    110. Zhou JJ, Fernandez E, Galvan A, Miller AJ. A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett.2000,466:225-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700