互花米草对河口盐沼生态系统氮循环的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵作为全球变化的组成部分,对土著生态系统产生深刻影响,其生态系统水平的后果之一便是改变生态系统的碳氮循环。尽管对此已有大量研究,但仍缺乏对其影响机制的全面深刻认识,尤其是目前的研究多集中于群落内部循环,而入侵种的生态系统工程师效应对系统同外部输入/输出的影响往往被忽视。本文以互花米草(Spartina alterniflora)入侵长江口崇明东滩的盐沼湿地芦苇(Phragmites australis)群落为例,研究了入侵种如何影响生态系统氮循环的科学问题,同时以其中潮汐交换和促淤过程的作用揭示了作为生态系统工程师的入侵种影响外部输入这一机制的重要性。
     互花米草显著升高了生态系统的碳、氮库。2007年4月至2008年4月的野外观测显示互花米草群落的地上生物量(干重1.54±0.05 kg m-2)显著高于芦苇群落(干重0.87±0.05 kg m-2),约为后者的180%;互花米草群落的地上总碳库(514±18g m-2)显著高于芦苇(333±16g m-2),约为后者的154%;互花米草群落的地上总氮库(14.60±0.65g m-2)显著高于芦苇(10.63±0.54g m-2),约为后者的137%;互花米草群落的0-20cm土壤总碳库(3270±54g m-2)显著高于芦苇群落(2998±49g m-2),约为后者109%;互花米草群落的0-20cm土壤总氮库(175.94±4.91g m-2)显著高于芦苇群落(153.49±5.76g m-2),约为后者115%;互花米草群落的0-20cm土壤无机氮库(2.50±0.06g m-2)显著高于芦苇群落(1.97±0.05g m-2),约为后者的127%,其中互花米草群落的0-20cm土壤硝态氮库(1.71±0.04g m-2)显著高于芦苇群落(1.22±0.02g m-2),约为后者的140%,而互花米草群落的0-20cm土壤铵态氮库(0.80±0.03g m-2)与芦苇群落(0.75±0.05g m-2)相比无显著差异。在2005年4月至2006年9月的移栽试验中,互花米草的地上生物量与地上总碳、氮库同样显著高于芦苇群落,但土壤总碳氮库与无机氮库与芦苇群落差异不显著。这说明互花米草增加生态系统碳、氮库的现象不能仅以群落内部循环机制解释。
     互花米草在潮汐交换中获取大量外源无机氮输入。2007年进行了土柱法野外操纵实验,2008年进行了大潮期间土壤-潮水无机氮交换的直接观测实验,结果均显示在潮汐交换中互花米草群落获取的无机氮(操纵实验中土壤无机氮库外源补充:14.84±0.67mg kg-1 month-1;直接观测实验中土壤无机氮浓度增量:9.43±1.18mg L-1)显著高于芦苇群落(外源补充:2.97±0.24mg kg-1month-1;无机氮浓度增量:4.92±0.51mg L-1)。操纵实验中互花米草群落土壤无机氮净矿化速率(14.15±0.68mg kg-1month-1)与芦苇群落(13.59±0.69mg kg-1month-1)无显著差异,直接观测实验中互花米草群落内潮水无机氮浓度下降量(2.92±0.36mg L-1)显著高于芦苇群落(2.07±0.20mg L-1)。以上结果表明对潮汐外源无机氮输入的截取与利用是互花米草增加生态系统地上总氮库与土壤无机氮库的重要机制。
     淤积物是互花米草累积碳氮库的重要来源。于2007年至2008年以埋瓶法和埋板法收集淤积物,结果显示,互花米草群落中淤积量(埋瓶法:6.69±0.68kg m-2 month-1;埋板法:38.60±3.33kg m-2yr-1)显著高于芦苇群落(埋瓶法:4.27±0.53kg m-2 month-1;埋板法:21.42±2.16kg m-2 yr-1).同时,埋板实验结果还显示互花米草群落中淤积物总碳库(0.69±0.08kg m-2 yr-1).总氮库(40.05±4.50g m-2 yr-1)和无机氮库(953±85mg m-2 yr-1)均显著高于芦苇群落中淤积物总碳库(0.42±0.05kg m-2 yr-1).总氮库(24.56±2.97g m-2 yr-1)和无机氮库(415±37mg m-2 yr-1).于2007年至2008年进行的空地凋落物添加试验结果显示,互花米草地上直立凋落物的降解速率(K=0.0038 day-1)高于芦苇的地上直立凋落物(K=0.0021 day-1);添加互花米草凋落物下方土壤总碳库(1.96±0.02kg m-2)显著高于未添加凋落物空白对照土壤的总碳库(1.91±0.02kg m-2,),而添加芦苇凋落物后的土壤总碳库(1.93±0.02kg m-2)其多重比较组别介乎二者之间;添加互花米草凋落物,添加芦苇凋落物和未添加凋落物空白对照土壤的总氮库与无机氮库均无显著差异。以上结果表明互花米草增加土壤总碳库与总氮库的机制存在差异,后者不能仅由初级生产与凋落物降解过程解释,促淤效应在其中起着重要作用。
     互花米草对氮循环的影响将作用于自身的扩张。于2008年6月测定互花米草与芦苇叶硝酸盐还原酶活性(nitrate reductase actiVity,NRA),结果显示互花米草叶的NRA(对数值1.69±0.11)整体上显著高于芦苇叶(对数值0.87±0.08)。加氮处理使互花米草与芦苇叶的NRA均显著上升,淹水处理使互花米草叶NRA升高,而芦苇叶NRA降低。对野外观测实验与操纵实验的数据进行多元回归和PCA分析,结果显示淤积物性质与植物群落性质有显著的相关性。以上结果提示互花米草入侵改变生态系统氮循环的后果可能影响其自身扩张,形成一定程度的反馈作用。
     总之,上述结果强调了在湿地生态系统中,生态系统工程师效应对系统与外界输入/输出的控制是植物入侵影响土著生态系统氮循环的重要机制。这一结论不但有助于对外来入侵植物的管理,也加深了对植物调控生态系统氮循环的理解。
As a component of global change, biological invasions have profound effects on the native ecosystems. One of the ecosystem-level consequences of invasive alien species caused is their impacts on carbon and nitrogen cycling. Although a growing number of studies on these impacts have been conducted over the last two decades, the underlying mechanisms are still poorly understood. Recent studies especially concentrate on the production-decomposition cycling within communities, while the system input/output exchange with environment controlled by invasive ecosystem engineer effects is left unconcerned. The first objective of this study was to explore the effects of Spartina alterniflora (SA) invasion on ecosystem N pools and cycling in the Phragmites australis(PA) communities at Dongtan estuarine wetlands, Chongming island. The second objective was to estimate the importance of invasive ecosystem engineer effects (sediment accretion) as a mechanism of invasive impact on native ecosystem nitrogen cycling.
     Spartina significantly increased ecosystem C and N pool. Field observation experiment was conducted from Apr 2007 to Apr 2008. The results showed that the average aboveground biomass in SA communities(1.54±0.05 kg dry weight m-2) was significantly higher than that in PA communities(0.87±0.05 kg dry weight m-2), respectively 80% greater.The average aboveground total carbon pool in SA communities (514±18g m-2) was significantly higher than that in PA communities(333±16g m-2), respectively 54% greater.The average aboveground total nitrogen pool in SA communities (14.60±0.65g m-2) was significantly higher than that in PA communities(10.63±0.54g m-2), respectively 37% greater.The average soil total carbon pool(0-20cm) in SA communities (3270±54g m-2) was significantly higher than that in PA communities(2998±49g m-2), respectively 9% greater.The average soil total nitrogen pool(0-20cm) in SA communities (175.94±4.91 g m-2) was significantly higher than that in PA communities(153.49±5.76g m-2), respectively 15% greater.The average soil inorganic nitrogen pool(0-20cm) in SA communities (2.50±0.06g m-2) was significantly higher than that in PA communities(1.97±0.05g m-2), respectively 27% greater. While the average soil NO3-nitrogen pool(0-20cm) in SA communities (1.71±0.04g m-2) was significantly higher than that in PA communities(1.22±0.02g m-2), respectively 40% greater, the average soil NH4-nitrogen pool(0-20cm) in SA communities (0.80±0.03 g m-2) and PA communities (0.75±0.05g m-2) had no significant difference. Controlled transplant experiment was conducted from Apr 2005 to Sep 2006. While the aboveground plant pools showed same patterns as in field observation experiment, all the soil pools had no significant difference between SA and PA communities. These contrast results indicated that production-decomposition cycling within communities was not the only mechanism to explain the soil carbon and nitrogen pool increase caused by SA invasion.
     Spartina obtained extra inorganic N subsidies during tidal exchange. Field manipulation experiment on soil columns in PVC tubes was conducted in 2007, and field observation experiment on soil-water inorganic nitrogen exchange was conducted during spring tide in 2008. Both results showed that SA communities acquired more inorganic nitrogen than PA communities during tidal exchange. In the manipulation experiment, inorganic nitrogen pool increase in soil columns caused by tidal subsidy was significantly higher in SA communities (14.84±0.67mg kg-1 month±1) than in PA communities (2.97±0.24mg kg-1 month-1), in spite of the original community which the soil column was sampled in, while inorganic nitrogen pool increase caused by net mineralization had no significant difference between SA (14.15±0.68mg kg-1 month-1)and PA (13.59±0.69mg kg-1 month-1)communities. In the observation experiment, soil inorganic nitrogen content increase was significantly higher in SA communities (9.43±1.18mg L-1) than in PA communities (4.92±0.51mg L-1), and inorganic nitrogen content decrease in tidal water was also significantly higher in SA communities (2.92±0.36mg L-1) than in PA communities (2.07±0.20mg L-1). All the results revealed that difference in tidal subsidy acquirement was a principal mechanism to explain the increase of aboveground total nitrogen pool and soil inorganic nitrogen pool after SA invasion.
     The C and N pool accumulated by Spartina were mainly composed of sediments. Bottles and PVC plates were buried in both communities to collect sediments from 2007 to 2008. Sediment load in both methods was significantly higher in SA communities (in bottle:6.69±0.68kg m-2 month-1; on plate:38.60±3.33kg m-2 yr-1) than in PA communities (in bottle:4.27±0.53kg m-2 month-1; on plate:21.42±2.16kg m-2 yr-1). Besides, the total carbon pool, total nitrogen pool and inorganic nitrogen pool of sediments on plate were also significantly higher in SA communities (TC:0.69±0.08kg m-2 yr-1; TN:40.05±4.50g m-2 yr-1; inorg-N:953±85mg m-2 yr-1) than in PA communities (TC:0.42±0.05kg m-2 yr-1; TN:24.56±2.97g m-2 yr-1; inorg-N:415±37mg m-2 yr-1). Standing dead litter of SA and PA was added to bare ground from 2007 to 2008. SA litter had significant higher aerial decomposition rate (K=0.0038 day-1) than PA litter (K=0.0021 day-1). In multiple comparison test, Soil total carbon pool in quadrates with SA litter addition (1.96±0.02kg m-2) was significantly higher than that in the control groups (bare ground without litter addition, 1.91±0.02kg m-2), soil total carbon pool in quadrates with P A litter addition (1.93±0.02kg m-2) had no significant difference with both. Soil total nitrogen and inorganic nitrogen pool showed no significant difference on the whole. Thus, the conclusion was that sediment accretion effect was an important mechanism for SA to raise soil total nitrogen and inorganic nitrogen pool as an invasive ecosystem engineer, while the rise of soil total carbon pool could be mainly explained by increase in NPP and decomposition rate.
     The impact of Spartina on N cycling also affected the expansion of this invasive plant itself. Nitrate reductase activities (NRA) in SA and PA leaves were measured in Jun 2008. The NRA in SA leaves (1.69±0.11, In value) were significantly higher than that in PA leaves (0.87±0.08, In value) on the whole. Nitrogen fertilization could significantly raise NRA in both leaves. Submerging treatment significantly increased NRA in SA leaves, and decreased NRA in PA leaves. When using multiple regressions and PCA method to analyze datasets in field observation and manipulation experiments, sediment properties were found to have significant correlation with plant community characteristics. These results suggested that the consequence of impact on nitrogen cycling in native ecosystem invaded by SA might affect the expansion of SA itself. Such interactions were likely to create potential feedbacks.
     All the results in this study emphasized the importance of the control on ecosystem exchange with environment by invasive engineers as an underlying mechanism to explain the impact on nitrogen cycling in native ecosystems caused by invasive plants. This conclusion provided basic information for invasive plants management, as well as an insight into the mechanisms that individual plant species (including non-invasive plants and native plants) changed ecosystem-level biogeochemical cycling.
引文
[1]Aerts R.1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J]. Oikos 79(3):439-449.
    [2]Alper J.1998. Ecosystem engineers shape habitats for other species[J]. Science 280 (5367):1195-1196.
    [3]An SQ, Gu BH, Zhou CF, et al.2007. Spartina invasion in China:implications for invasive species management and future research[J]. Weed Research 47:183-191.
    [4]Arens SM, Baas ACW, Van Boxel JH, et al.2001. Influence of reed stem density on foredune development[J]. Earth Surf. Process. Landforms 26:1161-1176.
    [5]Ashton IW, Hyatt LA, Howe KM, et al.2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest[J]. Ecological Applications 15(4):1263-1272.
    [6]Ayres DR, Smith DL, Zaremba K, et al.2004. Spread of exotic cordgrasses and hybrids(Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA[J]. Biological Invasions 6:221-231.
    [7]Badano El, Cavieres LA.2006. Ecosystem engineering across ecosystems:do engineer species sharing common features have generalized or idiosyncratic effects on species diversity? [J]. Journal of Biogeography. 33 (2):304-313.
    [8]Badano El, Jones CG, Cavieres LA, et al.2006. Assessing impacts of ecosystem engineers on community organization:a general approach illustrated by effects of a high cushion plant[J]. Oikos 115 (2):369-385
    [9]Barter M, Tokinson D, Tang SX, et al.1997. Wader number on Chongming Dao, Yangtze Estuary, China, during early 1996:northward migration and the conservation implications[J]. Stilt 30:7-13.
    [10]Berkenbusch K. Rowden AA.2003. Ecosystem engineering moving away from'just so'stories[J]. New Zealand Journal of Ecology.27 (1):67-73.
    [11]Bertness MD.1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh[J]. Ecology 72:138-148.
    [12]Bertness MD, Ewanchuk PJ, Silliman BR.2002. Anthropogenic modification of New England salt marsh landscapes[J]. PNAS.99:1395-1398.
    [13]Bertness MD, Gough L, Shumway SW.1992. Salt tolerances and the distribution of fugitive salt-marsh plants[J]. Ecology 73:1842-1851.
    [14]Bertness MD, Hacker SD.1994. Physical stress and positive associations among marsh plants[J]. American Naturalist 144:363-372.
    [15]Boogert NJ, Parterson DM, Laland KN.2006. The implication of niche construction and ecosystem engineering for conservation biology[J]. BioScience 56 (7):570-578.
    [16]Boorman LA.2003. Saltmarsh Review:an Overview of Coastal Saltmarshes, Their Dynamic and Sensitivity Characteristics for Conservation and Management[M]. Peterborough:JNCC Report 334.
    [17]Boyle CD, Patriquin DG.1981. Carbon metabolism of Spartina alterniflora Loisel. in relation to that of associated nitrogen-fixing bacteria[J]. New Phytologist 89(2):275-288.
    [18]Bradley PM, Morris JT.1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora[J].Ecology 71:282-287.
    [19]Bradley PM, Morris JT.1991. The influence of salinity on the kinetics of NH4 uptake in Spartina alterniflora[J]. Oecologia 85:375-380.
    [20]Breckle SW.1995. How do halophytes overcome salinity?. In:Khan MA, Ungar IA(eds.) Biology of Salt Tolerant Plants[M]. Karachi:Dept. of Botany, University of Karachi.
    [21]Bremner JM.1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen, nitrogen availability indexes. In:Black CA(ed.) Methods of Soil Analysis, Part 2, Agronomy 9[M]. Madison, Wis: Am. Soc. of Agron.. Inc.
    [22]Broome SW, Woodhouse WWJ, Seneca ED.1975. The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina. II. The effects of N, P, and Fe fertilizers[J]. Soil Science Society of America Proceedings 39:301-307.
    [23]Brown JH.1995. Organisms as engineers:a useful framework for studying effects on ecosystems? [J]. TREE. 10(2):51-52.
    [24]Bruno JF.2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora[J]. Ecology 81:1179-1192.
    [25]Byers JE, Cuddington K. Jones CG, et al.2006. Using ecosystem engineers to restore ecological systems[J]. TREE.21:493-500.
    [26]Byers JE, Reichard S, Randall JM, et al.2002. Directing research to reduce the impacts of nonindigenous species[J]. Conservation Biology 16:630-640.
    [27]Callaway RM, Brooker RW, Choler P, et al.2002. Positive interactions among alpine plants increase with stress[J]. Nature 417:844-848.
    [28]Callaway RM. Maron JL.2006. What have exotic plant invasions taught us over the past 20 years? [J]. TREE. 21(7):369-374.
    [29]Chai C, Yu ZM, Shen ZL. et al.2009. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam[J]. Science of the Total Environment 407:4687-4695.
    [30]Cheng XL, Chen JQ, Luo YQ, et al.2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes[J]. Geoderma 145:177-184.
    [31]Cheng XL. Luo YQ. Chen JQ. et al.2006. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island[J]. Soil Biology and Biochemistry 38:3380-3386.
    [32]Chapin FS III, Matson PA, Mooney HA.2002. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer-Verlag.
    [33]Chung CH.2006. Forty years of ecological engineering with Spartina plantations in China[J]. Ecological Engineering.27:49-57.
    [34]Collins JN, May M.2001. Guidelines to Monitor the Distribution. Abundance, and Treatment of Non-indigenous Species of Cordgrass in the San Francisco Estuary[M]. Oakland:San Francisco Estuary Invasive Spartina Project, California Coastal Conservancy.
    [35]Collins JN.2002. Invasions of San Francisco Bay by Smooth Cordgrass. Spartina alterniflora:a Forecast of Geomorphic Effects on the Intertidal Zone[M]. Report. Oakland. CA:San Francisco Estuary Institute.
    [36]Costanza R, d'Arge R, de Groot R, et al.1997. The value of the world's ecosystem services and natural capital[J]. Nature 387:253-260.
    [37]Crain CA, Bertness MD.2006. Ecosystem engineering across environment gradients:implications for conservation and management[J]. BioScience 56 (3):211-218.
    [38]Crooks JA.2002. Characterizing ecosystem level consequences of biological invasion:the role of ecosystem engineers[J]. Oikos 97 (2):153-166.
    [39]Cuddington K, Hastings A.2004. Invasive engineers[J]. Ecological Modelling 178:335-347.
    [40]Cuddington K, Byers JE, Wilson WG, et al.2007. Ecosystem Engineers:Plant to Protests[M]. San Diego: Academic Press.
    [41]Currin CA, Joye SB, Paerl HW.1996. Diel rates of N2-fixation and denitrification in a transplanted Spartina alterniflora marsh:implications for N-flux dynamics[J]. Estuarine, Coastal and Shelf Science 42:597-616.
    [42]Currin CA, Pearl HW.1998. Epiphytic nitrogen fixation associated with standing dead shoots of smooth cordgrass, Spartina alterniflora[J]. Estuaries 21:108-117.
    [43]Daehler CC, Strong DR.1994. Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California:The influence of herbivory, pollination, and establishment site[J]. American Journal of Botany 81:307-313.
    [44]Daehler CC, Strong DR.1996. Status, prediction and prevention of introduced cordgrass Spartina spp.invasions in Pacific estuaries, USA[J]. Biological Conservation 78:51-58.
    [45]Delaune RD, Smith CJ, Patrick WH.1983. Relationship of marsh elevation, redox potential, and sulfide to Spartina alterniflora productivity [J]. Soil Science Society of America Journal 47:930-935.
    [46]Dukes JS, Mooney HA.1999. Does global change increase the success of biological invaders? [J]. TREE.14: 135-139.
    [47]Ehrenfeld JG.2003. Effects of exotic plant invasions onsoil nutrient cycling processes[J]. Ecosystems 6: 503-523.
    [48]Ehrenfeld JG, Ravit B, Elgersma K.2005. Feedback in the plant-soil system[J]. Annual Review of Environment and Resources 30:75-115.
    [49]Ehrenfeld JG, Scott N.2001. Invasive species and the soil:Effects on organisms and ecosystem processes[J]. Ecological Applications 11(5):1259-1260.
    [50]Emery NC, Ewanchuk PJ. Bertness MD.2001. Competition and salt-marsh plant zonation:stress tolerators may be dominant competitors[J]. Ecology 82:2471-2485.
    [51]Emery SL, Perry JA.1996. Decomposition rates and phosphorus concentrations of purple loosestrife (Lythrum salicaria) and cattail (Typha spp.) in fourteen Minnesota wetlands[J]. Hydrobiologia 323: 129-138.
    [52]Gallagher JL.1975. Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus[J]. American Journal of Botany 62:644-648.
    [53]Gallagher JL, Plumley FG.1979. Underground biomass profiles and productivity in Atlantic coastal marshes[J]. American Journal of Botany 66:156-161.
    [54]Gallagher JL, Reimold RJ, Linthurst RA, et al.1980. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh[J]. Ecology 61:303-312.
    [55]Galloway JN, Schlesinger WH. Levy H. et al.1995. Nitrogen fixation:Anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles 9:235-252.
    [56]Gordon DR.1998. Affects of invasive. nonindigenous plant species on ecosystem processes:Lessons from Florida [J]. Ecological Applications 8:975-989.
    [57]Gosselink JG.1970. Growth of Spartina patens and Spartina alterniflora as influenced by salinity and source of nitrogen [J]. Coastal Studies Bulletin, Louisiana State University 5:97-110.
    [58]Graham MH, Dayton PK.2002. On the evolution of ecological ideas:Paradigms and scientific progress[J]. Ecology 83:1481-1489.
    [59]Gratton C, Denno RF.2003. Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies[J]. Ecology 84:2692-2707
    [60]Grosholz E.2002. Ecological and evolutionary consequences of coastal invasions[J]. TREE.17:22-27.
    [61]Gruber N, Galloway JN.2008. An earth-system perspective of the global nitrogen cycle[J]. Nature 451:293-296.
    [62]Guntenspergen GR, Nordby JC.2006. The impact of invasive plants on tidal-marsh vertebrate Species: common reed(Phragmites australis) and smooth cordgrass(Spartina alterniflora) as case studies[J]. Studies in Avian Biology 32:229-237.
    [63]Gutierrez JL. Jones CG.2006. Physical ecosystem engineers as agents of biogeochemical heterogeneity[J]. BioScience 56 (3):219-225.
    [64]Haines BL. Dunn EL.1976. Growth and resource allocation responses of Spartina alterniflora Loisel. to three levels of NH4+-N, Fe, and NaCl in solution culture[J]. Botanical Gazette 137:224-230.
    [65]Hanson RB.1977. Comparison of nitrogen-fixation activity in tall and short Spartina alterniflora salt-marsh soils[J]. Applied and environmental microbiology 33(3):596-602
    [66]Haemon ME, Franklin JF, Swanson FJ, et al.1986.Ecology of coarse woody debris in temperate ecosystems[J]. Advance in ecological research 15:133-302.
    [67]Hastings A, Byers JE, Crooks JA, et al.2007. Ecosystem engineering in space and time[J]. Ecology Letters 10:153-164.
    [68]He WS, Feagin R, Lu JJ, et al.2007. Impacts of introduced Spartina alterniflora along an elevation gradient at the Jiuduansha Shoals in the Yangtze Estuary, suburban Shanghai, China[J]. Ecological Engineering 29: 245-248.
    [69]Hedges LV. Gurevitch J. Curtis PS.1999. The meta-analysis of response ratios in experimental ecology[J]. Ecology 80:1150-1156.
    [70]Hodges KE.2008. Defining the problem:terminology and progress in ecology[J]. Front. Ecol. Environ.6(1): 35-42.
    [71]Holland EA. Denter FJ. Braswell BH, et al.1999. Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry 46:1-37.
    [72]Howes BL. Dacey JWH. Goehringer DD.1986. Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity[J]. Journal of Ecology 74:881-898.
    [73]Howarth RW. Billen G, Swaney D, et al.1996. Regional nitrogen budget and N and P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J]. Biogeochemistry 35:75-139.
    [74]Hubbard.ICE.1965. Spartina marshes in southern England. VI. Pattern of invasion in Poole Harbour[J]. Journal of Ecology 53:799-813.
    [75]Hughes RF. Uowolo A.2006. Impacts of Falcataria moluccana Invasion on Decomposition in Hawaiian Lowland Wet Forests:The Importance of Stand-level Controls[J]. Ecosystems 9:977-991.
    [76]Ivancic I. Degobbis D.1984. An optimal manual procedure for ammonia analysis in natural-waters by indophenol blue method[J]. Water Research 18(9):1143-1147.
    [77]Jiang LF. Luo YQ, Chen JK. et al.2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China[J]. Estuarine, Coastal and Shelf Science 81:74-82.
    [78]Jones CG, Gutierrez JL, Groffman PM, et al.2006. Linking ecosystem engineers to soil processes:a framework using the Jenny state factor equation[J]. European Journal of Soil Biology 42 (Suppl):S39-S53.
    [79]Jones CG, Lawton JH.1994. Linking Species and Ecosystems[M]. London:Chapman & Hall.
    [80]Jones CG. Lawton JH. Shachak M.1994. Organisms as ecosystem engineers[J]. Oikos 69 (3):373-386.
    [81]Jones CG, Lawton JH, Shachak M.1997. Positive and negative effects of organisms as physical ecosystem engineers[J]. Ecology 78 (7):1946-1957.
    [82]Knops JMH, Bradley KL, Wedin DA.2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling[J]. Ecology Letters 5:454-466.
    [83]Knops JMH, Nash TH, Schlesinger WH.1996. The influence of epiphytic lichens on the nutrient cycling of an oak woodland[J]. Ecological Monographs 66:159-179.
    [84]Koretsky C, Meile C, Curry B, et al.2000. The effect of colonization by Spartina alterniflora on pore water redox geochemistry at a saltmarsh on Sapelo Island, GA[J]. Journal of Conference Abstracts 5:599.
    [85]Kourtev PS, Ehrenfeld JG, Haggblom M.2002. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology 83:3152-3166.
    [86]Kourtev PS, Ehrenfeld JG, Huang WZ.1998. Effects of exotic plant species on soil properties in hardwood forests of New Jersey[J]. Water air and soil pollution 105(1-2):493-501.
    [87]Laland KN, Odling-Smee FJ, Feldman MW.1999. Evolutionary consequences of niche construction and their implications for ecology[J]. PNAS.96:10242-10247.
    [88]Lambrinos, JG.2007. Managing invasive ecosystem engineers:the case of Spartina in pacific esturies. In: Cuddington K, Byers JE, Wilson WG, et al. Ecosystem Engineers:Plant to Protests[M]. San Diego:Academic Press.
    [89]Landin MC.1991. Growth Habits and Other Considerations of Smooth Cordgrass, Spartina alterniflora Loisel[M]. Washington Sea Grant Program. Seattle:University of Washington.
    [90]Lathrop RG, Windham L, Montesano P.2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited[J]. Estuaries 26(2B):423-435.
    [91]Lawton JH.1994. What do species do in ecosystems? [J]. Oikos 71(3):367-374.
    [92]Lawton JH, JonesCG.1993. Linking species and ecosystem perspectives[J]. TREE.8 (9):311-313.
    [93]Lessmann JM, Mendelssohn IA, Hester MW, et al.1997. Population variation in growth response to flooding of three marsh grasses[J]. Ecological Engineering 8:31-47.
    [94]Levine JM, Brewer JS. Bertness MD.1998. Nutrients, competition and plant zonation in a New England salt marsh[J]. Journal of Ecology 86:285-292.
    [95]Levine JM. Vila M, D'Antonio CM, et al.2003. Mechanisms underlying the impacts of exotic plant invasions[J]. Proc. R. Soc. Lond. B 270:775-781.
    [96]Lewis MA. Weber DE.2002. Effects of substrate salinity on early seedling survival and growth of Scirpus robustus Pursh. and Spartina alterniflora Loisel. [J]. Ecotoxicology 11:19-26.
    [97]Ley RE. D'Antonio CM.1998. Exotic grass invasion alters potential rates of N fixation in Hawaiian woodlands[J]. Oecologia 113:179-187.
    [98]Liao CZ, Luo YQ, Fang CM, et al.2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary[J]. Oecologia 156(3):589-600.
    [99]Liao CZ, Luo YQ, Jiang LF, et al.2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems 10(8):1351-1361.
    [100]Liao CZ, Peng RH, Luo YQ, et al.2008. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis[J]. New Phytologist 177:706-714.
    [101]Liu JG, Dietz T, Carpenter SR, et al.2007. Complexity of Coupled Human and Natural Systems[J]. Science 317(5844):1513-1516.
    [102]Lodge DM.1993. Biological invasions:lessons for ecology[J]. TREE.8:133-137.
    [103]Lonsdale WM.1999. Global patterns of plant invasions and the concept of invasibility[J]. Ecology 80(5):1522-1536.
    [104]Lovei GL.1997. Global change through invasion[J]. Nature 388:627-628.
    [105]Luo YQ, Hui DF, Zhang DQ.2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis[J]. Ecology 87:53-63.
    [106]Luo YQ, Su B. Currie WS, et al.2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J]. Bioscience 54(8):731-739.
    [107]Ma ZJ, Li B, Zhao B, el al.2004. Are artificial wetlands good alternatives to natural wetlands for waterbirds?-a casestuday on Chongming Island, China[J]. Biodiversity and Conservation 13:333-350.
    [108]Mack MC, D'Antonio CM.2003.The effects of exotic grasses on litter decomposition in a Hawaiian woodland:the importance of indirect effects[J]. Ecosystems 6:723-738.
    [109]Mack MC, D'Antonio CM. Ley RE.2001. Alteration of ecosystem nitrogen dynamics by exotic plants:a case study of C4 grasses in Hawaii[J]. Ecological Applications 11 (5):1323-1335.
    [110]Mack RN, Simberloff D, Lonsdale WM, et al.2000. Biotic invasions:causes, epidemiology, global consequences and control [J]. Ecological Applications 10(3):689-710.
    [111]McClung CR. Patriquin DG.1980. Isolation of a nitrogen-fixing campy lobacter species from the roots of Spartina alterniflora Loisel. [J]. Canadian Journal of Microbiology 26(8):881-886.
    [112]Mckee KL, Patrick WH.1988. The relationship of smooth cordgrass(Spartina alterniflora) to tidal datums: a review[J]. Estuaries 11:143-151.
    [113]Mendelssohn IA.2004. Why Is the Salt Marsh Grass. Spartina alterniflora, an Effective Invasive Species? [M]. Report. Beijing:Beijing International Symposium on Biological Invasions.
    [114]Mendelssohn IA, Mckee KL.1988. Spartina alterniflora die-back in Louisiana:time-course investigation of soil waterlogging effects[J]. Journal of Ecology 76:509-521.
    [115]Mendelssohn IA. McK.ee KL. Patrick JWH.1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia[J]. Science 214:439-441.
    [116]Mendelssohn IA. Morris JT.2000. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In:Weinstein MP, Kreeger DA(eds.) Concepts and Controversies in Tidal Marsh Ecology[M]. Dordrecht:Kluwer Academic Publishers.
    [117]Mendelssohn IA. Postek MT.1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel[J]. American Journal of Botany 22:904-912.
    [118]Metcalfe WS, Ellison AM, Bertness MD.1986. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a New England salt marsh[J]. Annals of Botany 58:249-258.
    [119]Meyerson LA, Saltonstall K. Windham L, Kiviat E, Findlay S.2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America[J]. Wetlands Ecology and Management 9:89-103.
    [120]Mills LS, Soule ME, Doak DF.1993. The keystone-species concept in ecology and conservation[J]. BioScience 43:219-224.
    [121]Minchinton TE, Simpson JC, Bertness MD.2006. Mechanisms of exclusion of native coastal marsh plants by an invasive grass[J]. Journal of Ecology 94(2):342-354.
    [122]Mobberley DG.1956. Taxonomy and distribution of the genus Spartina[J]. Iowa State College Journal of Science 30:471-574.
    [123]Moisander PH, Piehler MF, Paerl HW.2005. Diversity and activity of epiphytic nitrogen-fixers on standing dead stems of the salt marsh grass Spartina alterniflora[J]. Aquatic Microbial Ecology 39:271-279.
    [124]Moore JW.2006. Animal ecosystem engineers in streams[J]. BioScience 56:237-246.
    [125]Mooring MT, Cooper AW, Seneca ED.1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina[J]. American Journal of Botany 58(1):48-55.
    [126]Morris JT.1980. The nitrogen uptake kinetics of Spartina alterniflora in culture[J]. Ecology 61:1114-1121.
    [127]Munzarova E, Lorenzen B, Brix H, et al.2006. Effect of NH4+/NO3-availability on nitrate reductase activity and nitrogen accumulation in wetland helophytes Phragmites australis and Glyceria maxima[J]. Environmental and Experimental Botany 55:49-60.
    [128]Naidoo G, Mckee KL, Mendelssohn IA.1992. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae) [J]. American Journal of Botany 79:765-770.
    [129]Nelson DW, Bremner JM.1972. Preservation of soil samples for inorganic nitrogen analysis[J]. Agronomy Journal 64:196-199.
    [130]Newell SY, Hopkinson CS. Scott LA.1992. Patterns of nitrogenase activity (acetylene reduction) associated with standing, decaying shoots of Spartina alterniflora[J]. Estuarine, Coastal and Shelf Science 35(2): 127-140.
    [131]Norman RJ, Edberg JW, Stucki JW.1985. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry[J].Soil Science Society of America Journal 49:1182-1185.
    [132]Norman RJ, Stucki JW.1981. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry[J]. Soil Science Society of America Journal 45:347-353.
    [133]Nosshia MI, Butler J, Trlica MJ.2007. Soil nitrogen mineralization not affected by grass species traits[J]. Soil Biology and Biochemistry 39:1031-1039.
    [134]O'Brien DL, Freshwater DW.1999. Genetic diversity within tall form Spartina alterniflora Loisel. along the Atlantic and Gulf coasts of the United States[J]. Wetlands 19:352-358.
    [135]Odling-Smee FJ, Laland KN, Feldman MW.2003. Niche Construction:A Neglected Process in Evolution[M]. Princeton, NJ:Princeton University Press.
    [136]Odum EP.2000. Tidal marshes as outwelling/pulsing systems. In:Weinstein MP, Kreeger DA(eds.) Concepts and Controversies in Tidal Marsh Ecology[M]. Dordrecht:Kluwer Academic Publishers.
    [137]Odum HT. Odum B.2003. Concepts and methods of ecological engineering[J]. Ecological Engineering 20:339-361.
    [138]Parker IM, Simberloff D. Lonsdale WM. et al.1999. Impact:toward a framework for understanding the ecological effects of invaders[J]. Biological Invasions 1:3-19.
    [139]Partridge TR.1987. Spartina in New Zealand[J]. New Zealand Journal of Botany 25:567-575.
    [140]Patrick WH, Delaune RD.1976. Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana[J]. Estuarine and Coastal Marine Science 4:59-64.
    [141]Patriquin DG. McClung CR.1978. Nitrogen accretion, and nature and possible significance of N2 fixation(acetylene-reducition) in a nova Scotian Spartina alterniflora stand[J]. Marine Biology 47(3): 227-242.
    [142]Pennings SC, Callaway RM.1992. Salt marsh plant zonation:the relative importance of competition and physical factors[J]. Ecology 73:681-690.
    [143]Pennings SC. Grant MB. Bertness MD.2005. Plant zonation in low-latitude salt marshes:disentangling the roles of flooding, salinity and competition[J]. Journal of Ecology 93:159-167.
    [144]Pennings SC. Selig ER, Houser LT, et al.2003. Geographic variation in positive and negative interactions among salt marsh plants[J]. Ecology 84:1527-1538.
    [145]Phleger CF.1971. Effect of salinity on growth of a salt marsh grass[J]. Ecology 52:908-911.
    [146]Pimentel D, Lach L, Zuniga R, et al.2000. Environmental and economic costs of nonindigenous species in the United States[J]. BioScience 50:53-65.
    [147]Power ME.1997. Ecosystem engineering by organisms:why semantics matters—reply[J]. TREE.12: 275-276.
    [148]Power ME, Tilman D, Estes JA, et al.1996. Challenges in the quest for keystones[J]. BioScience 46: 609-620.
    [149]Ravit B, Ehrenfeld JG, Haggblom M.2003. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey[J]. Estuaries 26: 465-474.
    [150]Reichman OJ, Seabloom EW.2002. Ecosystem engineering:a trivialized concept? Response from Reichman and Seabloom[J]. TREE.17 (7):308.
    [151]Rooth JE. Stevenson JC. Cornwall JC.2003. Increased sediment accretion rates following invasion by Phragmites australis:The role of litter[J]. Estuaries 26(2B):475-483.
    [152]Rout ME, Callaway RM.2009. An invasive plant paradox[J]. Science 324:734-735.
    [153]Sala OE, Chapin FS, Armesto JJ, et al.2000. Biodiversity-Global biodiversity scenarios for the year 2100 [J]. Science 287:1770-1774.
    [154]Sax DF, Stachowicz JJ, Brown JB,et al.2007. Ecological and evolutionary insights from species invasions[J]. TREE.22(9):465-471
    [155]Scheiner D.1976. Determination of ammonia and kjeldahl nitrogen by indophenol method[J]. Water Research 10(1):31-36.
    [156]Schimel JP, Bennett J.2004. Nitrogen mineralization:challenges of a changing paradigm[J]. Ecology 85(3):591-602.
    [157]Shea ML, Warren RS, Niering WA.1975. Biochemical and transplantation studies of the growth form of Spartina alterniflora on Connecticut salt marshes[J]. Ecology 56:461-466.
    [158]Silvestri S, Defina A. Marani M.2005. Tidal regime, salinity and salt marsh plant zonation[J]. Estuarine, Coastal and Shelf Science 62:119-130.
    [159]Simenstad CA. Thom RM.1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries[J]. Hortus Northwest 6:9-12.38-40.
    [160]Smart RM.1982. Distribution and environmental control of productivity and growth form of Spartina alterniflora (Loisel.). In:Sen DN. Rajpurohit KS(eds.) Tasks for Vegetation Science 2[M]. The Hague:Dr W. Junk Publishers.
    [161]Smart RM. Barko JW.1980. Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora[J]. Ecology 61:630-638.
    [162]Stalter R. Batson WT.1969. Transplantation of salt marsh vegetation. Georgetown. South Carolina[J]. Ecology 50(6):1087-1089
    [163]Strauss SY, Lau JA. Schoener TW.et al.2008. Evolution in ecological field experiments:implications for effect size[J]. Ecology Letters 11:199-207.
    [164]Taylor CM, Davis HG, Civille JC, et al.2004. Consequences of an Allee effect in the invasion of a pacific estuary by Spartina alterniflora[J]. Ecology 85:3254-3266.
    [165]Travis SE. Proffitt CE. Lowenfeld RC. et al.2002. A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands[J]. Restoration Ecology 10:37-42.
    [166]Turner MG.1988. Multiple disturbances in a Spartina alterniflora salt marsh:Are they additive? [J]. Bulletin of the Torrey Botanical Club 115:196-202.
    [167]Tyler AC, Mastronicola TA, McGlathery KJ.2003. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence[J]. Oecologia 136:431-438.
    [168]Usher MB.1998. Biological invasions of nature reserves:a search for generalizations[J]. Biological Conservation 44:119-135.
    [169]Valiela I.1995. Marine Ecological Processes[M]. New York:Springer-Verlag.
    [170]Valiela I, Teal JM.1974. Nutrient Limitation in Salt Marsh Vegetation[M]. New York:Academic Press.
    [171]Valiela I, Teal JM. Deuser WG.1978. The nature of growth forms in the salt marsh grass Spartina alterniflora[J].The American Naturalist 112:461-470.
    [172]van Breemen N, Finzi AC.1998. Plant-soil interactions:ecological aspects and evolutionary implications[J]. Biogeochemistry 42:1-19.
    [173]Vitousek PM.1990. Biological invasions and ecosystem processes:towards an integration of population biology and ecosystem studies[J]. Oikos 57(1):7-13.
    [174]Vitousek PM, Cassman K, Cleveland C, et al.2002. Towards an ecological understanding of biological nitrogen fixation[J]. Biogeochemistry 57/58:1-45.
    [175]Vitousek PM, D'Antonio CM, Loope LL, et al.1997. Introduced species:a significant component of human-caused global change[J]. New Zealand Journal of Ecology 21:1-16.
    [176]Vitousek PM, Walker LR.1989. Biological invasion by Myrica Faya in Hawai'i:plant demography, nitrogen fixation, ecosystem effects[J]. Ecological Monographs 59(3):247-265.
    [177]Wang Q, Wang CH, Zhao B, et al.2006. Effects of growing conditions on the growth of and interactions between salt marsh plants:implications for invasibility of habitats[J]. Biological Invasions 8:1547-1560.
    [178]Weinstein MP, Kreeger DA(eds.) 2000. Concepts and Controversies in Tidal Marsh Ecology[M]. Dordrecht: Kluwer Academic Publishers.
    [179]Welsh DT.2000. Nitrogen fixation in seagrass meadows:Regulation, plant-bacteria interactions and significance to primary productivity[J]. Ecology Letters 3:58-71.
    [180]Wijte A, Gallagher JL.1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants.2. Early seedling development advantage of Spartina alterniflora over Phragmites australis(Poaceae) [J]. American Journal of Botany 83:1343-1350.
    [181]Wilcove DS. Rothstein D, Dubow J, et al.1998. Quantifying threats to imperiled species in the United States [J]. Bioscience 48:607-615.
    [182]Wilby A.2002. Ecosystem engineering:a trivialized concept? [J]. TREE.17 (7):307.
    [183]Wilby A, Shachak M, Boken B.2001. Integration of ecosystem engineering and trophic effects of herbivores[J]. Oikos 92(3):436-444.
    [184]Williamson M, Fitter A.1996. The varying success of invaders[J]. Ecology 77 (6):1661-1666.
    [185]Windham L.2001. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay) in brackish tidal marsh of New Jersey[J]. Wetlands 21:179-188.
    [186]Windham L, Ehrenfeld JG.2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh[J]. Ecological Applications 13:883-896.
    [187]Windham L, Lathrop RG.1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey[J]. Estuaries 22: 927-935.
    [188]Wright JP. Jones CG.2004. Predicting effects of ecosystem engineers on patch scale species richness from primary productivity[J]. Ecology 85(8):2071-2081.
    [189]Wright JP, Jones CG.2006. The concept of organisms as ecosystem engineers ten years on:progress, limitations, and challenges[J]. BioScience 56(3):203-209.
    [190]Wright JP, Gurney WSC, Jones CG.2004. Patch dynamics in a landscape modified by ecosystem engineers[J]. Oikos 105 (2):336-348.
    [191]Wu J.1997. Halophyte Salt Tolerance Mechanisms:An Investigation of the Role of Plasma Membrane Lipid Composition and Proton-ATPase Salinity Responses of Spartina species[D]. Ph.D. Dissertation. Lewes, Delaware:University of Delaware.
    [192]Yang SL.1998. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary [J]. Estuarine, Coastal and Shelf Science 47:227-233.
    [193]Yang SL.1999. Sedimentation on a growing intertidal Island in the Yangtze River Mouth [J]. Estuarine Coastal and Shelf Science 49:401-410.
    [194]Yang SL, Li H. Ysebaert T, et al.2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:On the role of physical and biotic controls[J]. Estuarine Coastal and Shelf Science 77:657-671.
    [195]Zedler JB, Kercher S.2004. Causes and consequences of invasive plants in wetlands:opportunities, opportunists, and outcomes[J].Critical Reviews in Plant Sciences 23(5):431-452.
    [196]Zedler JB, Kercher S.2005. Wetland resources:status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30:39-74.
    [197]Zhou HX, Liu JE, Zhou J, et al.2008. Effect of an alien species Spartina alterniflora Loisel. on biogeochemical processes of intertidal ecosystem in the Jiangsu coastal region, China[J]. Pedosphere 18(1): 77-85.
    [198]陈慧丽,李玉娟,李博.等.2005.外来植物入侵对土壤生物多样性和生态系统过程的影响[J].生物多样性13(6):555-565.
    [199]陈家宽主编.2003.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社.
    [200]陈中义.李博,陈家宽.2004.米草属植物入侵的生态后果及管理对策[J].生物多样性12:280-289.
    [201]陈中义.2004.互花米草入侵国际重要湿地崇明东滩的生态后果[D].上海:复旦大学博士学位论文.
    [202]程晓莉.2005.互花米草的入侵对盐沼湿地温室气体及十壤碳氮动态的影响[D].上海:复旦大学博士后出站报告.
    [203]樊安德.1995.长江河口及其临近海区的总化学耗氧有机质与营养盐[J].东海海洋13(3-4):15-36.
    [204]方炜.2000.生物入侵与全球变化.见:方精云主编.全球生态学[M].北京:高等教育出版社.
    [205]葛振鸣.王天厚,王开运.等.2008.长江口滨海湿地生态系统特征及关键群落的保育[M].北京:科学出版社.
    [206]何小勤.2004.长江口崇明东滩现代地貌过程研究[D].上海:华东师范大学硕士学位论文.
    [207]孔亚珍,贺松林.丁平兴,等.2004.长江口盐度的时空变化特征及其指示意义[J].海洋学报26:9-18
    [208]李贺鹏.张利权.王东辉.2006.上海地区外来种互花米草的分布现状[J].生物多样性 14:114-120.
    [209]李华.杨世伦.2007.潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J].地球科学进展22(6):583-591.
    [210]李加林.杨晓平,童亿勤.等.2005.互花米草入侵对潮滩生态系统服务功能的影响及其管理[J].海洋通报24(5):33-38
    [211]李振宇,解焱.2002.中国外来入侵种[M].北京:中国林业出版社.
    [212]廖成章.2007.外来植物入侵对生态系统碳、氮循环的影响:案例研究与整合分析[D].上海:复旦大学博士学位论文.
    [213]刘光崧主编.1996.土壤理化分析与剖面描述:“中国生态系统研究网络观测与分析标准方法”十壤分册[M].北京:中国标准出版社.
    [214]刘敏,许世远,侯立军.2007.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程[M].北京:科学出版社.
    [215]鲁如坤主编.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    [216]欧善华,杨斌生主编.1992.上海市海岸滩涂海三棱藨草(Scirpus X mariqueter)种群特性及其促淤效能研究论文集[J].上海师范大学学报(自然科学版)21卷增刊.
    [217]钦佩,经美德,谢民.1985.福建罗源湾海滩三个生态型互花米草(Spartina alterniflora Loisel.)群落生物量的比较[J].南京大学学报(自然科学专刊)40:226-236.
    [218]沈焕庭主编.2001.长江河口物质通量[M].北京:海洋出版社.
    [219]时钟,杨世伦,缪莘.1998.海岸盐沼泥沙过程现场实验研究[J].泥沙研究(4):28-35.
    [220]宋歌,孙波,教剑英.2007.测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报44(2):288-293.
    [221]孙书存,蔡永立,刘红.2001.长江口盐沼海三棱藨草在高程梯度上的生物量分配[J].植物学报43(2):178-185.
    [222]孙振华,高峻,赵仁泉.1992.崇明东滩鸟类自然保护区的滩涂植被[J].上海环境科学11(3):22-25.
    [223]唐龙,高扬,赵斌,等.2008.生态系统工程师:理论与应[J].生态学报28(7):3344-3355.
    [224]唐龙.2008.刈割、淹水及芦苇替代综合控制互花米草的生态学机理研究[D].上海:复旦大学博士学位论文.
    [225]汪承焕,王卿,赵斌,等.2007.盐沼植物群落的分带及其形成机制[J].南京大学学报(自然科学版).43:41-55.
    [226]王卿,安树青,马志军,等.2006.入侵植物互花米草—生物学、生态学及管理[J].植物分类学报44(5):559-588.
    [227]王卿,汪承焕,赵斌,等.2007.二十年来上海市崇明东滩潮间带植被的时空动态[J].南京大学学报(自然科学版)43:15-25.
    [228]王卿.2007.长江口盐沼植物群落分布动态及互花米草入侵的影响[D].上海:复旦大学博士学位论文.
    [229]吴征镒主编.1980.中国植被[M].北京:科学出版社.
    [230]向言词,彭少麟,饶兴权.2003.植物外来种对土壤理化特性的影响[J].广西植物23(3):253-258.
    [231]谢一民.2004.上海湿地[M].上海:上海科学技术出版社.
    [232]徐国万,卓荣宗.1985.我国引种互花米草(Spartina alterniflora)的初步研究(Ⅰ)[J].南京大学学报(自然科学版)40:212-225.
    [233]徐宏发,赵云龙主编.2005.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社.
    [234]易小琳.李酉开,韩琅丰.1983.紫外分光光度法测定土壤硝酸盐[J].土壤通报(6):35-40.
    [235]张亦默,王卿,卢蒙,等.2008.中国东部沿海互花米草种群生活史特征的纬度变异与可塑性[J].生物多样性16(5):462-469.
    [236]张正仁.经美德,钦佩,等.1985.自动砂培装置下互花米草(Spartina alterniflora Loisel)耐盐生理反应初报[J].南京大学学报(自然科学版)40:268-279.
    [237]赵可夫,李法曾主编.1999.中国盐生植物[M].北京:科学出版社.
    [238]仲崇信主编.1985.米草研究的进展-22年来的研究成果论文集[J].南京大学学报(自然科学版)40卷增
    [1]. Allison SD, Vitousek PM.2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i[J]. Oecologia 141:612-619.
    [2]. Asner GP, Beatty SW.1996. Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry[J]. Plant and Soil 186:205-211.
    [3]. Baruch Z, Goldstein G.1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii[J]. Oecologia 121:183-192.
    [4]. Belnap J, Phillips SL.2001. Soil biota in an ungrazed grassland:response to annual grass (Bromus tectorum) invasion[J]. Ecological Applications 11 (5):1261-1275.
    [5]. Bhatt YD, Rawat YS. Singh SP.1994. Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya[J]. Journal of Vegetation Science 5:67-70.
    [6]. Bolton H. Smith JL, Wildung RE.1990. Nitrogen mineralization potentials of shrub-steppe soils with different disturbance histories[J]. Soil Science Society of America Journal 54:887-891.
    [7]. Christian JM. Wilson SD.1999. Long-term ecosystem impacts of an introduced grass in the northern Great Plains[J]. Ecology 80:2397-2407.
    [8]. Dudley TL.2000. Arundo donax. In:Bossard C, Randall J, Hoshovsky MC(eds.) Invasive Plants of California's Wildlands[M]. Berkeley. CA:University of California Press.
    [9]. Ehrenfeld JG. Kourtev P. Huang WZ.2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests[J]. Ecological Applications 11 (5):1287-1300.
    [10]. Evans RD. Rimer R. Sperry L. et al.2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland[J].Ecological Applications 11(5):1301-1310.
    [11]. Feller MC,1983. Effects of an exotic conifer (Pinus radiata) plantation on forest nutrient cycling in south-eastern Australia[J]. Forest Ecology and Management 7:77-102.
    [12]. Hook PB. Olson BE. Wraith JM.2004. Effects of the invasive forb Centaurea maculosa on grassland carbon and nitrogen pools in Montana. USA[J]. Ecosystems 7:686-694.
    [13]. Kourtev PS. Ehrenfeld JG. Haggblom M.2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities[J]. Soil Biology and Biochemistry 35:895-905.
    [14]. Kourtev PS. Huang WZ. Ehrenfeld JG.1999. Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species[J]. Biological Invasions 1:237-245.
    [15]. Lindsay EA. French K.2004. Chrysanthemoides monilifera ssp. rotundata invasion alters decomposition rates in coastal areas of south-eastern Australia[J]. Forest Ecology and Management 198:387-399.
    [16]. Mack MC. D'Antonio CM.2003. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland[J]. Ecological Applications 13:154-166.
    [17]. Otto S. Groffman PM. Findlay SEG, et al.1999. Invasive plant species and microbial processes in a tidal freshwater marsh[J]. Journal of Environmental Quality 28:1252-1257.
    [18]. Pattison RR. Goldstein G, Ares A.1999. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species[J]. Oecologia 117:449-459.
    [19]. Porazinska DL, Bardgett RD, Blaauw MB. et al.2003. Relationships at the aboveground-belowground interface:plants, soil biota and soil processes[J]. Ecological Monographs 73:377-395.
    [20]. Saggar S, McIntosh PD, Hedley CB, et al.1999. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.)[J]. Biology and Fertility of Soils 30:232-238.
    [21]. Scott NA, Saggar S, McIntosh PD.2001. Biogeochemical impact of Hieracium invasion in New Zealand's grazed tussock grasslands:Sustainability implications[J]. Ecological Applications 11(5):1311-1322.
    [22]. Standish RJ, Williams PA, Robertson AW, et al.2004. Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants[J]. Biological Invasions 6: 71-81.
    [23]. Stock WD, Wienand KT. Baker AC.1995. Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems-evidence from soil incubation studies and 15N natural abundance values[J]. Oecologia 101:375-382.
    [24]. Trent JD, Young JA, Blank RR.1994. Potential role of soil microorganisms in medusahead invasion. In: Monsen SB, Kitchen SG(eds.) Proceedings of Ecology and Management of Annual Rangelands[M]. Report Number INTGTR 313. Ogden, Utah, USA:USDA Forestry Service, Intermountain Research Station.
    [25]. Valery L, Bouchard V, Lefeuvre JC.2004. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh[J]. Wetlands 24:268-276.
    [26]. Vinton MA, Burke IC.1995. Interactions between individual plant species and soil nutrient status in shortgrass steppe[J]. Ecology 76:1116-1133.
    [27]. Vitousek PM, Walker LR. Whiteaker LD. et al.1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii[J]. Science 238:802-804.
    [28]. Windham L, Ehrenfeld JG.2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh[J]. Ecological Applications 13:883-896.
    [29]. Windham L.2001. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay) in brackish tidal marsh of New Jersey[J]. Wetlands 21:179-188.
    [30]. Wolf JJ. Beatty SW, Seastedt TR.2004. Soil characteristics of Rocky Mountain National Park grasslands invaded by Melilotus officinalis and M. alba[J]. Journal of Biogeography 31:415-424.
    [31]. Yelenik SG, Stock WD, Richardson DM.2007. Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function[J]. Biological Invasions 9:117-125.
    [32].贺握权,黄忠良.2004.外来植物种对鼎湖山自然保护区的入侵及其影响[J].广东林业科技20(3):42-45.
    [1]. Anderson F, Kristensen E.1991. Effects of burrowing macrofauna on organic matter decomposition in coastal marine sediments[J]. Symp. zool. Soc. Lond.63:69-88.
    [2]. Anderson RA.1992. Diversity of eukaryotic algae[J]. Biodiversity and Conservation 1:267-292.
    [3]. Baret S, RougetM, Richardson DM, et al.2006. Current distribution and potential extent of the most invasive alien plant species on La Reunion (Indian Ocean, Mascarene islands)[J]. Austral Ecology 31 (6):747-758.
    [4]. Bertness MD.1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh[J]. Ecology 66:1042-1055.
    [5]. Brusati ED, Grosholz ED.2007. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures[J]. Estuarine, Coastal and Shelf Science 71 (324):517-522.
    [6]. Buddenhagen CE, Renteria JL. GardenerM, et al.2004. The control of a highly invasive tree Cinchona pubescens in Galapagos[J]. Weed Technoloy18(Suppl):1194-1202.
    [7]. Clements F E.1916. Plant Succession:an Analysis of the Development of Vegetation[M]. Washington DC. USA:Carnegie Institute of Washington, Publication.
    [8]. Darwin C.1881. The Formation of Vegetable Mould, through the Action of Worms, with Observations on their Habits[M]. London:Murray.
    [9]. Dayton PK.1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In:Parker BC(ed.). Proceedings of the Colloquium on Conservation Problems in Antarctica[M]. Lawrence, KS:Allen Press.
    [10]. de Santayana PM, Tardio J, Heinrich M, et al.2006. Plants in the works of Cervantes[J]. Econ Bot 60 (2):159-181.
    [11]. de Wilde AWJ.1991. Interactions in burrowing communities and their effects on the structure of marine ecosystems [J]. Symp. zool. Soc. Lond.63:107-117.
    [12]. Facelli JM, Pickett STA.1991. Plant litter:its dynamics and effects on plant community structure[J]. Botany Review 57:1-32.
    [13]. Finlayson M. Moser M 1991. Wetlands[M]. Oxford:International Waterfowl and Wetlands Research Bureau.
    [14]. Gurney WSC, Lawton JH.1996. The population dynamics of ecosystem engineers[J]. Oikos 76 (2) 273-283.
    [15]. Hodur NM, Leistritz FL, Bangsund DA.2006. Biological control of leaf)'spurge:utilization and implementation[J]. J. Range Manage 59 (5):445-452.
    [16]. Jones CG, Lawton JH. Shachak M.1994. Organisms as ecosystem engineers[J]. Oikos 69 (3):373-386.
    [17]. Jones CG, Lawton JH, Shachak M.1997. Positive and negative effects of organisms as physical ecosystem engineers[J]. Ecology 78 (7):1946-1957.
    [18]. Jones CG. Shachak M.1990. Fertilization of the desert soil by rock-eating snails[J]. Nature 346:839-841.
    [19]. Kelty MJ.2006. The role of species mixtures in plantation forestry[J]. Forest Ecology and Management 233 (223):195-204.
    [20]. Kohli RK. Batish DR. Singh HP. et al.2006. Status. invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L.. Ageratum conyzoides L.. Lantana camara L.) in India[J]. Biological Invasions 8 (7):1501-1510.
    [21]. Komatsu H, Hotta N.2007. Relationship between stem density and dry canopy evaporation rates in coniferous forests[J]. Journal of Hydrology 332 (3-4):271-275.
    [22]. Koop AL, Horvitz CC.2005. Projection matrix analysis of the demography of an invasive, nonnative shrub (Ardisia elliptica) [J]. Ecology 86 (10):2661-2672.
    [23]. Lal R.1991. Soil conservation and biodiversity. In:Hawksworth DL(ed.) The Biodiversity of Microorganisms and Invertebrates:its Role in Sustainable Agriculture[M]. Wallingford:CABI Publishing.
    [24]. Laland KN, Odling-Smee FJ, Feldman MW.1999. Evolutionary consequences of niche construction and their implications for ecology[J]. PNAS.96:10242-10247.
    [25]. Loope L, Starr F, Starr K.2004. Protecting endangered plant species from displacement by invasive plants on Maui, Hawaii[J]. Weed Technology 18 (Supp 1):1472-1474.
    [26]. MacDonald GE.2004. Cogongrass(Imperata cylindrica):biology, ecology and management[J]. Critical Reviews in Plant Sciences 23 (5):367-380.
    [27]. Matlack GR.2002. Exotic plant species in Mississippi, USA:critical issues in management and research[J]. Nat Areas J.22 (3):241-247.
    [28]. Meadows PS, Meadows A.1991. The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems[J]. Symp. zool. Soc. Lond.63:157-181.
    [29]. Naiman RJ.1988. Animal influences on ecosystem dynamics[J]. BioScience 38:750-752.
    [30]. Neal EG, Roper TJ.1991. The environmental impact of badgers (Meles meles) and their sets[J]. Symp. zool. Soc. Lond.63:89-106.
    [31]. Reichelt AC.1991. Environmental effects of meiofaunal burrowing[J]. Symp. zool. Soc. Lond.63:33-52.
    [32]. Rodriguez LF.2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur[J]. Biological Invasions 8 (4):927-939.
    [33]. Shachak M, Jones CG, Granot Y.1987. Herbivory in rocks and the weathering of a desert[J]. Science 236: 1098-1099.
    [34]. Shaler N.1892. Effect of animals and plants on soils, in origin and nature of soils[J].12th Ann. Rpt Director U.S. Geol. Survey, Part J. Geology Ann. Rpt Sect. Int.4(part Ⅰ):213-345.
    [35]. Shreve F.1931. Physical conditions in sun and shade[J]. Ecology 12:96-104.
    [36]. Southern HN.1964. The Handbook of British Mammals[M]. Oxford:Blackwell Scientific.
    [37]. Tansley AG.1949. Britain's Green Mantle[M]. London:George Allen and Unwin.
    [38]. Tassin J, Riviere JN, CazanoveM, et al.2006. Ranking of invasive woody plant species for management on Reunion Island[J]. Weed Research 46 (5):388-403.
    [39]. Taylor JP, Smith LM, Haukos DA.2006. Evaluation of woody plant restoration in the Middle Rio Grande: ten years after[J]. Wetlands 26 (4):1151-1160.
    [40]. Thieltges DW, Strasser M, Reise K.2006. How bad are invaders in coastal waters? The case of the American slipper limpet Crepidula fornicata in western Europe[J]. Biological Invasions 8 (8):1673-1680.
    [41]. Thompson L, Thomas CD, Radley JMA, et al.1993. The effect of earthworms and snails in a simple plant community[J]. Oecologia 95:171-178.
    [42]. Townsend DW. Keller MD. Sieracki ME. et al.1992. Spring phytoplankton blooms in the absence of vertical water column stratification[J]. Nature 360:59-62.
    [43]. Varga L.1928. Ein interessanter biotop der bioconose von wasserorganismen[J]. Biol. Zent. Bl.48:143-162.
    [44]. West NE.1990. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J].Adv. Ecol. Res.20:180-223.
    [45]. Whicker AD, Detling JK.1988. Ecological consequences of prairie dog disturbances[J]. BioScience 38:778-785.
    [46]. Wilby A, Shachak M, Boken B.2001. Integration of ecosystem engineering and trophic effects of herbivores[J]. Oikos 92(3):436-444.
    [47].高雷.李博.2004.入侵植物凤眼莲研究现状及存在的问题[J].植物生态学报28(6):735-752.
    [48].鲁萍,桑卫国,马克平.2005.外来入侵种紫茎泽兰研究进展与展望[J].植物生态学报29(6)1029-1037.
    [49].周先叶,王伯荪,李鸣光,等.2005.薇甘菊对内伶仃岛植被危害的相关分析[J].应用生态学报16(2):350-354.
    [1]Alpert P, Bone E, Holzapfel C.2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants[J]. Perspectives in Plant Ecology, Evolution and Systematics 3:52-66.
    [2]Blumenthal Dana.2005. Interrelated causes of plant invasion[J]. Science 310:243.
    [3]Blumenthal Dana.2006. Interactions between resource availability and enemy release in plant invasion[J]. Ecology Letters 9:887-895.
    [4]Colautti RI, MacIsaac HJ.2004. A neutral terminology to define'invasive'species[J]. Diversity and Distributions 10:135-141.
    [5]Crawley MJ.1986. The population biology of invaders[J]. Proc. R. Soc. Lond.B314:711-731.
    [6]Crawley MJ.1997. Biodiversity. In:Crawley MJ (ed.) Plant Ecology[M]. Oxford:Blackwell.
    [7]Cronk QCB. Fuller JL.1995. Plant Invaders:the Threat to Natural Ecosystems[M]. New York:Chapman and Hall.
    [8]Crooks JA.2002. Characterizing ecosystem level consequences of biological invasion:the role of ecosystem engineers[J]. Oikos 97 (2):153-166.
    [9]Cuddington K, Hastings A.2004. Invasive engineers[J]. Ecological Modelling 178:335-347.
    [10]D'Antonio CM. Vitousek PM.1992. Biological invasions by exotic grasses. the grass-fire cycle. and global change[J]. Annual Review of Ecology and Systematics.2(3):63-87.
    [11]Daehler CC.2001. Two ways to be an invader. but one is more suitable for ecology[J]. Bulletin of the Ecological Society of America 82:101-102.
    [12]Davis HG. Taylor CM, Civille JC. et al.2004. An Allee effect at the front of a plant invasion:Spartina in a Pacific estuary [J]. Journal of Ecology 92:321-327.
    [13]Davis MA. Grime JP. Thompson K.2000. Fluctuating resources in plant communities:a general theory of invisibility[J]. Journal of Ecology 88:528-534
    [14]Davis MA, Pergl J. Truscott A.2005. Vegetation change:a reunifying concept in plant ecology[J]. Perspectives in Plant Ecology, Evolution and Systematics 7:69-76.
    [15]Davis MA, Thompson K.2001. Invasion terminology:should ecologists define their terms differently than others? No, not if we want to be of any help![J]. Bulletin of the Ecological Society of America 82:206.
    [16]Elton CS.1958. The Ecology of Invasions by Animals and Plants[M]. London:Methuen.
    [17]Facon B, Genton BJ, Shykoff J, et al.2006. A general eco-evolutionary framework for understanding bioinvasions[J]. TREE.21 (3):130-135.
    [18]Geng YP. Pan XY, Xu CY. et al.2007. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats[J]. Biological invasions 9(3):245-256.
    [19]Heger T, Trepl L.2003. Predicting biological invasions[J]. Biological Invasions 5:313-321.
    [20]Hengeveld R.1989. Dynamics of Biological Invasions[M]. London:Chapman and Hall.
    [21]IUCN-SSC(世界自然保护联盟下属物种生存委员会),防止外来入侵种导致生物多样性丧失的指南,世界 自然保护联盟理事会第51次会议,瑞士格兰特,2000中文版网址http://www.chinabiodiversity. com/read. php?tid=572英文版网址http://iucn.org/themes/ssc/pubs/policy/invasivesEng.htm
    [22]Larson BMH.2005. The war of the roses:demilitarizing invasion biology[J]. Front. Ecol. Environ. 3:495-500.
    [23]Levine JM.2000. Species diversity and biological invasions:Relating local process to community pattern[J]. Science 288:852-854.
    [24]Levine JM, Pachepsky E, Kendall BE, et al.2006. Plant-soil feedbacks and invasive spread[J]. Ecology Letters 9:1005-1014.
    [25]Lewis MA, Kareiva P.1993. Allee dynamics and the spread of invading organism[J]. Theor Popul Biol 43:141-158.
    [26]Ludsin SA, Wolfe AD.2001. Biological invasion theory:Darwin's contributions from the origin of species[J]. BioScience 51:780-789.
    [27]Mack RN.1989. Temperate grasslands vulnerable to plant invasion:characteristics and consequences. In: Drake J A, Mooney H A, di Castri F, et al. (eds.) Biological Invasions:A Global Perspective[M]. Chichester:John Willey.
    [28]Mack RN.1996. Predicting the identity and fate of plant invaders:Emergent and emerging approaches[J]. Biological Conservation 78:107-121.
    [29]Mack RN.2003. Phylogenetic constraint, absent life forms, and preadapted alien plants-a prescription for biological invasions[J]. International Journal of Plant Science 164(3 Suppl.):S185-S196.
    [30]Mack RN, Simberloff D, Lonsdale WM. et al.2000. Biotic invasions:causes, epidemiology, global consequences and control[J]. Ecological Applications 10(3):689-710.
    [31]McNeely JA.2001. The Great Reshuffling:Human Dimensions of Invasive Alien Species[M]. Gland, Switzerland and Cambridge. UK:IUCN.
    [32]Mooney HA, Cleland EE.2001.The evolutionary impacts of invasive species[J]. PNAS.98:5446-5451.
    [33]Parker IM. Simberloff D. Lonsdale WM. et al.1999. Impact:toward a framework for understanding the ecological effects of invaders[J]. Biological Invasions 1:3-19.
    [34]Pimentel D, Lach L, Zuniga R. et al.2000. Environmental and economic costs of nonindigenous species in the United States[J]. BioScience 50:53-65.
    [35]Richardson DM, Pysek P, Rejmanek M, et al.2000. Naturalization and invasion of alien plants:concepts and definitions [J]. Diversity and Distributions 6:93-107.
    [36]Sakai AK, Allendorf FW, Holt JS, et al.2001. The population biology of invasive species[J]. Annual Review of Ecology and Systematics.32:305-332.
    [37]Sax DF, Brown JH.2000. The paradox of invasion[J]. Global Ecology and Biogeography 9:363-371.
    [38]Sax DF. Stachowicz JJ. Brown JH, et al.2007. Ecological and evolutionary insights from species invasions[J]. TREE.22(9):465-471.
    [39]Shea K, Chesson P.2002. Community ecology theory as a framework for biological invasions[J]. TREE.17(4):170-176.
    [40]Sher AA, Hyatt LA.1999. The disturbed resource-flux invasion matrix:a new framework for patterns of plant invasion[J]. Biological Invasions 1:107-114.
    [41]Simberloff D.1995.Why do introduced species appear to devastate island more than mainland areas?[J] Pacific Sci.49:87-97.
    [42]Simberloff D.2006. Invasional meltdown 6 years later:important phenomenon, unfortunate metaphor, or both? [J]. Ecological Letters 9(8):912-919.
    [43]Simberloff D, von Holle B.1999. Positive interactions of nonindigenous species:invasional meltdown? [J]. Biological Invasions 1:21-32.
    [44]Tilman D.1997. Community invasibility, recruitment limitation, and grassland biodiversity[J]. Ecology 78(1):81-92.
    [45]Townsend CR.1991. Exotic species management and the need for a theory of invasion ecology[J]. New Zealand Journal of Ecology 15(1):1-3.
    [46]Vitousek PM, D'Antonio CM, Loope LL.1996. Biological invasions as global environmental change[J]. American Scientist 84:468-478.
    [47]Vitousek PM, D'Antonio CM, Loope LL, et al.1997. Introduced species:A significant component of human-caused global change[J]. New Zealand Journal of Ecology 21:1-16.
    [48]Vitousek PM, Walker LR, Whiteaker LD, et al.1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii[J]. Science 238:802-804.
    [49]Walther GR, Post E, Convey P, et al.2002. Ecological responses to recent climate change[J]. Nature 416: 389-395.
    [50]Wang MH, Kot M, Neubert MG.2002. Integrodifference equations:Allee effects and invasions[J]. Math Biol.44:150-168.
    [51]Webb SL, Kaunzinger CK.1993. Biological invasion of Drew University New Jersy forest p reserve by Norway maple (Acer platanoides) [J]. Bulletin of the Torrey Botanical Club 120 (3):343-349.
    [52]Weber E.2003. Invasive Plant Species of the World[M]. Cambridge:CABI Publishing.
    [53]Williams CE.1997. Potential valuable ecological functions of nonidigenous plants. In:Luken JO. Thieret JW(eds.) Assessment and Management of Plant Invasions[M]. New York:Springer.
    [54]Williamson M.1996. Biological Invasions[M]. London:Chapman and Hall.
    [55]Young AM.1999. Invaders today, natives tomorrow?[J]. Science 286:901.
    [56]方炜.2000.生物入侵与全球变化.见:方精云主编.全球生态学[M].北京:高等教育出版社.
    [57]黄建辉,韩兴国,杨亲二,等.2003.外来种入侵的生物学与生态学基础的若干问题[J].生物多样性 11(3):240~247.
    [58]李博.陈家宽.2002.生物入侵生态学:成就与挑战[J].世界科学技术研究与发展 24:26-36.
    [59]彭少麟.向言词.1999.植物外来种入侵及其对生态系统的影响[J].生态学报19(4):560-568.
    [60]徐汝梅,叶万辉主编.2003.生物入侵—理论与实践[M].北京:科学出版社
    [61]徐汝梅主编.2004.生物入侵—数据集成、数量分析与预警[M].北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700