自养菌—异养菌协同反硝化脱硫工艺的运行与调控策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高含硫含氮有机废水的水质复杂和现有生物处理技术工艺系统复杂,运行操作成本高,氮硫去除能力低下等技术瓶颈,提出了自养菌-异养菌协同反硝化脱硫技术,该技术基于自养微生物和异养微生物的协同作用,可实现硫化物、硝酸盐和有机碳的同步高效去除,同时将硫化物转化为单质硫实现资源化回收,消除二次环境污染,是一种高效、经济、稳定、先进的生物处理工艺。
     本研究主要围绕自养菌-异养菌协同反硝化脱硫工艺(A&H-DSR)的运行与调控策略展开研究,考察了反硝化脱硫工艺的运行效能和影响因素,提出了微氧强化技术来解决高浓度硫化物的抑制,分离筛选到高效脱硫异养菌株Pseudomonas sp. C27,打破了自养微生物反硝化脱硫的传统观念,对自养微生物和异养微生物协同规律的探索提供了崭新的思路;并分析了工艺系统内自养微生物和异养微生物对反硝化脱硫工艺的贡献,从而为提高工艺运行效能和解决高浓度有毒硫化物的抑制所采取的调控策略提供了重要的理论基础。
     通过不同反应器的运行确定了膨胀颗粒污泥床反应器(EGSB)为反硝化脱硫工艺的最佳形式,同时考察了碳氮比、硫化物浓度、负荷等对反硝化脱硫工艺的运行效能的影响,确定最佳的摩尔硫氮比和碳氮比为5:6和1.26:1;此外,反硝化脱硫工艺可实现的最大处理负荷为6.09 kgS/m~3.d~(-1),3.11 kgN/m~3.d~(-1),8.04kgAc-/m~3.d~(-1)。
     针对高浓度硫化物抑制反硝化脱硫工艺的运行效能,提出微氧强化技术;在微氧条件下,反硝化脱硫工艺耐受硫化物的上限由200mg/L提高到300mg/L;此外,通过对功能菌团功能酶的活性分析,发现微氧环境可以刺激硫化物氧化酶的分泌进而提高反硝化脱硫效能。
     从DSR-EGSB反应器的颗粒污泥中分离获得高效脱硫的异养菌株Pseudomonas sp. C27,该菌株在异养反硝化条件下可以同时高效氧化硫化物,是自养微生物降解硫化物速率的2倍以上;基于电子平衡和物料平衡分析,还提出了C27可能的代谢途径。此外,微氧条件同样可以强化菌株C27的反硝化脱硫能力,将菌株C27忍受硫化物浓度的上限提高到300mg/L。
     菌株C27在连续流运行下,进水硫化物浓度被提高到561.4mg/L,负荷为0.215 kgS/m~3.d~(-1)、0.146 kgN/m~3.d~(-1)、0.092 kgC/m~3d~(-1),硫化物和乙酸盐的去除率为84.7%和74.1%,硝酸盐去除率在99%以上,连续流运行相对间歇式试验有效缓解了高硫化物浓度的抑制。
     通过采用EGSB反应器考察自养、异养和混合营养条件下反硝化脱硫的运行效能发现,在自养条件下运行反应器,工艺所能忍受的最大负荷为1.6 kgS/m~3.d~(-1),当继续增加负荷,将会导致系统的崩溃,而将自养条件运行转到混养条件运行,系统的处理效能得到成功恢复;说明异养功能微生物在反硝化脱硫工艺系统中起到了关键的作用。此外,反硝化脱硫工艺系统在高负荷下崩溃的原因,主要是由于异养反硝化微生物受到了逐渐累积的高浓度硫化物的抑制,从而出现了亚硝酸盐的大量累积,而亚硝酸盐的累积又会导致乙酸盐的去除能力下降,进而导致了系统的崩溃;为了能够恢复崩溃的系统,可以采用微氧调控来缓解硫化物的抑制进而强化反硝化脱硫工艺使其具有更高的处理效能。
Based on the current complicated, high-cost and low efficiency bio-technology for high strength sulfur and nitrogen containing wasterwater treatment, the autotrophic and heterotrophic denitrifying sulfide removal process (A&H-DSR) was developed. The sulfide, nitrate and organic carbons are simultaneously converted to sulfur, N2 and CO2 by DSR process in which the symbiosis of autotrophs and heterotrophs exists. So, the DSR process is a high effective, low cost , high stable and advanced biotechnology for wasterwater treatment.
     This study mainly focuses on the operation and control strategy of DSR process. The performance and key parameters were determined in this study, and the high-effective sulfide-degrading strains Pseudomonas sp. C27 was isolated , indicating that the traditional metabolic pathway of sulfide removal by autotrophic bacterias are reversed. The high-effective abnormal behavior of sulfide removal for C27 provided a new way to study the cooperation of autotrophs and heterotrophs. On the other hand, the contribution of autotrophic and heterotrophic denitrification to the performance of DSR process was analyzed aiming to select reasnonable control strategies to enhance the performance and mitigate the inhibition by high levels of sulfide.
     The expanded granular sludge bed reactor was choosed as optimal operational mode for DSR process. The optimal molar ratios of S/N and C/N was determined as 5:6 and 1.26:1. Furthermore, the maximum sustainable loading rates of DSR process was 6.09 kgS/m~3.d~(-1),3.11 kgN/m~3.d~(-1),8.04kgAc-/m~3.d~(-1)。
     The technology of micro-aerobic enhancement successfully mitigated the sulfide inhibition to the performance of DSR process. The maximum sustainable sulfide concentration was increased from 200mg/L to 300mg/L; Also, based on the analysis for the activity of functional enzymes, the sulfide oxidase was stimulated to secrete by functional strains, hence enhancing the performance of DSR process.
     The high-effective sulfide-degrading strains C27 can oxidize sulfide under the denitrifying condition, and the sulfide-oxidizing rate was two times more than that of autotrophic sulfide-oxidizers. The suggested metabolic pathway for C27 was provided based on the electrion balance and mass balance. Futhermore, the micro-aerobic conditions also can enhance its performance of denitrifying sulfide removal and its sustainable sulfide level of 300mg/L.
     In continuous flow test for C27, at the sulfide concentration of 561.4mg/L corresponding to the loadings of 0.215 kgS/m~3.d~(-1)、0.146 kgN/m~3.d~(-1)、0.092 kgC/m~3d~(-1), the removal of sufide, acetate and nitrate was 84.7%, 74.1% and >99% .
     The performance of DSR process was estimated under autotrophic, heterotrophic and mixotrophic conditions, and the results showed that the maximum sustainable loadings for autotrophic conditions was 1.6 kgS/m~3.d~(-1), or the system will breakdown. The performance under the operations of mixotrophic meidum were much better than that under autotrophic conditions, and the operations of mixotrophic condition can restore the system breakdown under the running of autotrophic medium. Additionally, the reseaons for the systematic breakdown of DSR process were that the heterotrophic denitrifiers were inhibited by high levels of sulfide leading to the numerous nitrite accumulation and the worse capacity of acetate removal. To restore the systematic breakdown and enhance the performance, the technology of micro-aerobic enhancement can be used.
引文
[1]崔如春. 2005年我国城市社会经济发展概况.中国城市年鉴. 2006(1):250~253
    [2]张自杰.排水工程(下册).第四版.中国建筑工业出版社, 2000:4~12
    [3] P. H. Nielson. Biofilm Dynamics and Kinetics during High-rate Sulfate Reduction under Anaerobic Conditions. Appl. Environ. Microbiol.. 1987, 53: 27~32
    [4] E. Chio, J. M. Rim. Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment. Wat. Sci. Technol.. 1991, 23: 1259~1264
    [5] M. A. M. Reise. Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria. Biotech. Bioeng.. 1992, 40(5): 593~600
    [6] J. R. Postgate. The Sulfate Reducing Bacteria. UK. Cambridge University Press, 1984
    [7] A. W. Khan, T. M. Trottier. Effect of Sulfur Containing Compounds on Anaerobic Degradation of Cellulose to Methane by Mixed Cultures Obtained from Sewage Sludge. Appl. Environ. Microbiol.. 1978, 35: 1027~1034
    [8] I. W. Koster. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res.. 1986, 20(12): 1561~1567
    [9] F. J. Millero. Oxidation of H2S in Seawater as a Function of Temperature, pH, and Ionic Strength. Environ. Sci. & Technol.. 1987, 21(5): 439-443
    [10] Y. Jackson. An Advanced Method of Hydrogen Sulfide Removal from Biogas. Anaerobic Treatment of Industrial Wastewater. 1990: 98-101
    [11] MAM Reis, LMD Goncalves, MJT Carronda. Sulfate Removal in acidogenic phase anaerobic digestion. Environ. Techno. Lett., 1988, (9):775~84
    [12] J. R. Postgate. The Sulfate Reducing Bacteria. UK. Cambridge University Press, 1984
    [13] A. W. Khan, T. M. Trottier. Effect of Sulfur Containing Compounds on Anaerobic Degradation of Cellulose to Methane by Mixed Cultures Obtained from Sewage Sludge. Appl. Environ. Microbiol.. 1978, 35: 1027~1034
    [14] I. W. Koster. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res.. 1986, 20(12): 1561~1567
    [15] C. J. Buisman. Kinetics of Chemical and Biological Sulfide Oxidation in Aqueous Solutions . Wat. Res. 1990, 24 (5): 667-671
    [16] C. J. Buisman and G. Lettinga. Sulfide from Anaerobic Waste Treatment Effluent of a Papermill . Wat. Res.. 1990, 24 (3): 313-319
    [17] C. J. N. Buisman. Biotechnological Sulfide Removal from Effluent. Wat. Sci.Tech. 1991, 24(3/4): 347-356
    [18] P. F. Henshaw. Biotechnological Removal of Hydrogen Sulfide from Refinery Wastewater and Conversion to Elemental Sulfur. Wat. Sci.& Tech.. 1992, 25(3): 265-267
    [19] G. C. Stefess and J. G. Kuenen. Factors Influencing Elemental Sulfur Production from Sulfide or Thiosulfate by Autotrophic Thiobacilli . Forum Microbiology. 1989, 12: 92
    [20] K. L.Lee, Sublette. A New Biotechnological Process for Sulfide Removal with Sulfur Production [A]. Proc. of the 5th International Symp. of Anaerobic Digestion, Bologna, Italy, 1988: 19-22
    [21] P. Dezham. Digester Gas H2S Control Using Iron Salts . JWPCF. 1998, 60 (4): 514-517
    [22] J. P. Maree and W. F. Strydom. Biological Sulfate Removal from Industrial Effluent in an Up flow Packed Bed Reactor. Wat. Res.. 1987, 21(2): 141-146
    [23] D. Y. Sorokin. Oxidation of Inorganic Sulfur Compounds by Obligately Organotrophic Bacteria. Microbiology. 2003, 72(6): 641~653
    [24] S. W. Effler, C. M. Brooks, M. T. Auer, S. M. Doerr. Free Ammonia and Toxicity Criteria in a Polluted Urban Lake. J Water Pollut Control Fed 1990, 62: 771–779
    [25] C. P. L. Grady Jr., H.C. Lim, Biological Wastewater Treatment: Theory and Applications, Marcel Dekker, New York, 1980
    [26] S. S. Cheng, W. C. Chen. Organic Carbon Supplement Influencing Performance of Biological Nitritification in a Fluidized Bed Reactor. Wat. Sci. Technol.. 1994, 30(11): 131–142
    [27] E. Van, P. Arts, B. J. Wesselink, L. A. Robertson, J. G. Kuenen. Competition Between Heterotrophic and Autotrophic Nitrifiers for Ammonia in Chemostat Cultures. FEMS Microbiol Ecol.. 1993, 102:109–118
    [28]王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究.环境导报. 2001, 1:22~25
    [29]杨景亮,左剑恶.两相厌氧工艺处理硫酸盐有机废水的研究.环境科学. 1995,6(3):8~11
    [30]李亚新,苏冰琴.硫酸盐还原菌和酸矿废水生物处理技术.环境污染控制技术. 2000,1(5): 1~11
    [31] S.Kalyuzhnyi, M. Gladchenk, A.Mulder, B. Versprille.DEAMOX—New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Research 2006,40 ,3637– 3645
    [32] C. T. Driscoll, J. J. Bisogni. The Use of Sulfur and Sulfide in Packed-bedReactors for Autotrophic Denitrification. JWPCF. 1978, 50(3): 569–577
    [33] B. Batchelor and A. W. Lawrence. Autotrophic Denitrification Using Elemental Sulfur. JWPCF. 1978b, 50: 1986?2001
    [34] A. W. Lawrence, J. J. Bisogni Jr., B. Batchelor, C. T. Driscoll Jr.. Autotrophic Denitrification Using Sulfur Electron Donors. Environmental Protection Tecnology Series. EPA. n600/2-78-113, Jul, 1978, 127p
    [35] J. C. Kruith. Nitrate Removal from Ground Water by Sulfur/Limestone Filtration. Water Supply. 1988, 6: 207-217
    [36] A. Darbi, T. Viraraghavan, R. Butler and D. Corkal. Column Studies on Nitrate Removal from Potable Water. Water, Air, and Soil Pollution. 2003, 150: 235-254
    [37] S. E. Oh, Y. B. Yoo, J. C. Young, I. S. Kim. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Mixotrophic Conditions. J. of Biotechnology. 2001, 92: 1-8.
    [38] K. L. Londry and J. M. Suflita. Use of Nitrate to Control Sulfide Generation by Sulfate-reducing Bacteria Associated with Oily Waste. J. of Industrial Microbiology & Biotechnology. 1992, 22: 582-589
    [39] M.S.Cecilia, M. Gerard and B.Dirk. Biofilm Dynamics Studied With Microsensors and Molecular Techniques. Wat. Sci. TecH.. 1998, 37: 125-129
    [40] C. Chen, A.Wang, N. Ren, D. J. Lee, J. Lai. Optimal Process Pattern for Simultaneous Sulfur, Nitrogen and Carbon Removal. Water Science and Technology. 2009, 59 (4): 833-837
    [41] S. Okabe, M. Santegoeds, D. Dirk. Effects of Nitrite and Nitrate on in situ Sulfide Production in an Activated Sludge Immobilized Agar Gel File as Determined by Use of Microelectrodes. Biotech. Bioeng.. 2003, 81(5): 570~577
    [42]于振国,自养脱硫反硝化反应器微生物群落动态及功能菌群分析,哈尔滨工业大学硕士学位论文,2007
    [43] J Weijma., J.P Haerkens and A.J.M Stams et al. Thermophilic Sulfate and Sulfite Reductiong with Methanol in A High Rate Anaerobic Reactor. Wat. Sci. Tech..,2000, 42(5-6): 251~258
    [44] W.W.O.Eckenfelder, D.J.Conor. Biological Waste Treatment. New York; Pergamom Press, 1961:68~156
    [45] R.E.Mckinney, J.San. Mathematics of Complete Mixing Activated Sludge. Eng. Div, ASCE. 1962,88(3):87~113
    [46] A.W.Larrence, P.L.McCarty. Kinetics of Methane Fermentation in Anaerobic Treatment. JWPCF. 1969,41(2):1~17
    [47] M.Wichern, F.Obenaus, P.Wulf et al. Modelling of Full-Scale Wastewater Treatment Plants with Different Treatment Processes Using the Activated SludgeModel no.3. Wat. Sci. Tech. 2001,44(1):49~56
    [48] A.Brenner. Modeling of N and P Transformation in an SBR Treating Municipal Wastewater. Wat. Sci. Tech. 2001,44(1~2):55~63
    [49] J.Mikose. Use of Computer Simulation for Cycle Length Adjustment in Sequencing Batch Reactor. Wat. Sci. Tech. 2001,42(3):61~68
    [50]任南琪,王爱杰.硫化物氧化及新工艺.哈尔滨工业大学学报. 2003,35(3):265~268
    [51]胡晓东.制药废水处理技术与工程实例.化学工业出版社. 2008:100-102
    [52]李清雪,范超,李龙和. ABR处理高浓度硫酸盐有机废水的性能.中国给水排水. 2007, 23(15):47~48
    [53]刘广民,任南琪,王旭.连续流完全混合生物膜法处理硫酸盐废水.中国给水排水. 2003,19(10): 10~13
    [54] K. Hanaki, C. Wantawin, S. Ohgaki. Effects of the Activity of Heterotrophs on Nitrification in a Suspended-growth Reactor. Water Res.. 1990, 24: 289–296
    [55] D. Y. Sorokin and A. M. Lysenko. Characterization of Heterotrophic Bacteria from the Black Sea Able To Oxidize Sulfur Compounds to Sulfate. Mikrobiologiya. 1993, 62: 1018–1031
    [56] D. Y. Sorokin, A. M. Lysenko and L. L. Mityushina. Isolation and Characterization of Alkaliphilic Chemoorganoheterotrophic Bacteria Oxidizing Reduced Inorganic Sulfur Compounds to Tetrathionate. Mikrobiologiya. 1996, 65: 370–383
    [57] H. Furumai, Chiyoko N., N.Kamiko. Nitrate Removal from Ground Water by Biological Granular Filter using Sulfur Denitrification-Effects of Substrate Concentrations on Removal Performance. J. of Japan Wat Wor Assoc. 1999, 68(12):12~21
    [58] E. Choi, J. M. Rim. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci Technol. 1991, 23(7):259~264
    [59]周少奇,周吉林.生物脱氮新技术研究进展.环境污染技术与设备. 2000,1(6):11-18
    [60] S. K. Gupta, S. M. Raja. Simultaneous Nitrification Denitrification in a Rotating Biological Contactor. Envir. Tech.. 1994, 15(3): 145-153
    [61] H. Yoo, K. H. Ahn. Nitrogen Removal from Synthetic Waste Water by Simultaneous Nitrification and Denitrification (SND) via Nitrate in an Intermittently-aerated Reactor. Water Res.. 1999, 33(1): 145-154
    [62] S. Villaverde, FDZ– Ploanco, P. A. Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters: Start-up Influence. Water Res.. 2000, 34(2): 602-610
    [63] S. Villaverde, FDZ– Ploanco, P. A. Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters: Start-up Influence. Water Res.. 2000, 34(2): 602-610
    [64] C. Hellingga, M. C. M. Van Loosdrecht. The SHARON Process for Nitrogen Removal in Ammonium Rich Wastewater. Mededelingen Faculteit Landbouwwetenschappen. Unibersiteit Gent 62(4b): 1743-1750
    [65]周少奇,周吉林.生物脱氮新技术研究进展.环境污染技术与设备. 2000,1(6):11-18
    [66] E. B. Muller. Simultaneous NH3 Oxidation and N2 Production at Reduced O2 Tensions by Sewage Sludge Subcultured With Chemolithotrophic Medium. Biodegradation. 1995, 6: 339-349
    [67] A. Mulder, Van de Graaf L. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbial Ecol.. 1995, 16(3): 177-183
    [68] M. S. M. Jetten. Towards a More Sustainable Waste Water System. Wat. Sci. Tech.. 1997, 35(9): 171-180
    [69]王爱杰,杜大仲,任南琪.脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用.哈尔滨工业大学学报. 2004,36(4):423~425
    [70] A. Koenig and L. H. Liu. Autotrophic Denitrification of Landfill Leachate Using Elemental Sulfur. Wat. Sci. Tech.. 1996, 34(5~6): 469~476
    [71] A. Koenig and L. H. Liu. Kinetic Model of Autotrophic Denitrification in Sulfur Packed-bed Reactors. Water Research. 2001, 35(8): 1969-1978
    [72]杜大仲.脱氮硫杆菌的同步脱硫反硝化技术关键因素与运行效果研究.哈尔滨:哈尔滨工业大学,2004
    [73] A.Wang, D.Du, N.Ren. An Innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrifican. Journal of Environmental Science and Health. 2005, 40A (10): 1939-1950
    [74] Hiroaki Furumai, Hideki Tagui and Kenji Fujita. Effects of pH and Alkalinity on Sulfur-Denitrification in a Biological Granular Filter. Wat. Sci. Tech.. 1996, 34(1-2): 355-362
    [75] C.J.N. Buisman, B.G. Geraats, P. Ljspeert. Optimization of sulphur production in a biotechnological sulphide-removing reactor, Biotech. Bioeng.. 1990, (35):50~56
    [76] Y.X. Li, B.Q. Su, Z.Y. Geng. Biological treatment of acidicwastewater containing sulfate and recovery of elementary sulfur, Water Wastewater Eng. 2000, (26):28~30
    [77] J. J. Bisogni Jr., C. T. Driscoll Jr.. Denitrification Using Thiosulfate and Sulfide. J. Env. Eng.. 1977, 103: 593–604
    [78] P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. SimultaneousSulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor-Ⅰ. Water Research. 1988, 22(9): 1075-1083
    [79] P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor-Ⅱ. Water Research. 1988, 22(9): 1085-1092
    [80] Reyes-Avilla Jesus, R.F. Elias and J. Gomez. Simultaneous Biological Removal of Nitrogen, Carbon and Sulfur by Denitrification. Water Research. 2004, 38: 3313-3321
    [81] M.Henze, W.Gujer, T.Mino et al. Activated Sludge Models ASM1, ASM2 and ASM3. IAW Scientific and Technical Report. IAW Publishing. 2000:1~28
    [82]邓旭亮,同步脱硫反硝化运行效能及关键影响因素研究,哈尔滨工业大学硕士学位论文,2006
    [83]陈川,EGSB同步脱硫反硝化的运行效能和颗粒污泥的特性研究,哈尔滨工业大学硕士学位论文,2007
    [84] L. Seghezzo, G. Zeeman, Jules B. van Liel, H. V. M. Hamelers and Gatze Lettinga. A review: the anaerobic treatment of sewage in UASB and EGSB reactors. 1998, 65:175~190
    [85] De Smul A., L. Geothals and W. Verstraete. Effect of COD to Sulphate Ratio and Temperature in Expanded-Granular-Sludge-Bed Reactors for Sulphate Reductio- n. Process Biochemistry . 1999,34(4): 407~416
    [86] J. Dries, De Smul A.and L. Goethals et al. High Rate Biological Treatment of Sulfate-rich Waste-water in An Acetate-fed EGSB Reactor. Biodegradation. 1998,9(2): 103~111
    [87] .F.Andrews. Control Strategies for the Anaerobic Digestion Process. Water & Sewage Works. 1975,122(3):62~65
    [88] G.L.Jones. Bacterial Growth Kinetics: Measurement and Significance in the Activated Sludge Process. Wat. Res. 1973,7(1):117~125
    [89] G.V.R.Marais, G.A.Ekama. The Activated Sludge Process PartⅡ-Dynamic Behaviour. Water SA. 1977,(1):18~50
    [90] M.Henze, W.Gujer, T.Mino et al. Activated Sludge Model no.1 IAWPRC Scientific and Technical report. No.1, London,1999: 18~25
    [91] W.Gujer, M.Henze, T.Mino et al. Activated Sludge Model no.2: Biological Phosphorus Removal. Wat. Sci. Tech. 1995,31(2):183~193
    [92] M.Henze, W.Gujer, T.Mino et al. Activated Sludge Model no.2d. Wat. Sci. Tech. 1999,39(1):165~182
    [93] W.Gujer, M.Henze, T.Mino et al. Activated Sludge Model no.3. Wat. Sci. Tech. 1999,39(1):183~193
    [94] G.Andreottola, G.Bortone. Experimental Validation of a Simulation and Design Model for Nitrogen Removal in Sequencing Batch Reactors. Wat. Sci. Tech. 1997,43(3):69~76
    [95] J.Manga, J.Ferrer, F.Garcia-Usach et al. A Modification to the Activated Sludge Model No2 Based on the Competition between Phosphorus-Accumulating Organisms and Glycogen- Accumulating Organisms. Wat. Sci. Tech. 2001,41(11):161~171
    [96] S.Marsili Libelli, P.Ratini, A.Spagni et al. Implementation, Study and Calibration of a Modified ASM2 for the Simulation of SBR Process. Wat. Sci. Tech. 2001,43(3):69~76
    [97] U.Jeppsson. Reduced Order Models for On-linc Parameter Identification of the Activated Sludge Process. Wat. Sci. Tech. 1993,28(11):173~183
    [98] Hyunook Kim. SBR System for Phosphorus Removal:ASM2 and Simplified Linear Model. Journal of Environmental Engineering. 2001,(2):98~104
    [99] J.J.W.Hulsbeek, J.Kruit, P.J.Roeleveld et al. A Practical Protocol for Dymamic Mofelling of Activated Sludge Systems. Wat. Sci. Tech. 2002,45(6):127~136
    [100] H.Siegrist, L.Rieger, G.Koch et al. The EAWAGBIO-P Model for Activated Sludge Model No.3. Wat. Sci. Tech. 2002,45(6):61~76
    [101] P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in A Denitrifying Fluidized Bed Reactor-Ⅱ. Water Research. 1988, 22(9): 1085~1092
    [102] B Krishnakumar, S Majumdar, V B.Manilal Treatment of sulfide containing wastewater with sulfur recovery in a novel reverse fluidized loop reactor (RFLR). Water Research. 2005,39: 639~647
    [103] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.j. Ramdall.. Protain measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193: 265-275.
    [104] B. R. Mohapatra, W. D. Gould, O. Dinardo, S. Papavinasam, R. W. Revie. Optimization of culture conditions and properties of immobilized sulfide oxidase from Arthrobacter species. Journal of Biotechnology. 2006,124: 523-531.
    [105] C. L., Hulse, J. M. Tiedje, B. A. Averill. A spectrophotometric assay for dissimilatory nitrite reductases. Analytical Biochemistry. 1988, 172: 420-426.
    [106] J. J. Smarrelli, W. H. Campbell. Biochimica et Biophysica Acta. 1983, 742: 435-445.
    [107] B. C. Ricardo, Sierra-Alvarez Reyes, P. Rowlette. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioenigeering. 2006, 95(6):1148~1157
    [108] C. Chen, N. Ren , A. Wang, Z. Yu ,Duu-Jong Lee.Simultaneous biologicalremoval of sulfur, nitrogen and carbon using EGSB reactor. Appl. Microbiol. Biotechnol. 2008, 78:1057~1063
    [109] P.N.L. Lens, A. Visser, A.J.H. Janssen. Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Environ. Sci. Technol. 1998, 28(1):41~88
    [110] L.Larrea, I.Irizar, M.E.Hidalgo. Improving the Predictions of ASM2d through Modeling in Practice. Wat. Sci. Tech. 2002,45(6):199~208
    [111] C. Chen, N. Q. Ren, A. J. Wang, Z. G. Yu, D. J. Lee. Microbial community of granules in expanded granular sludge bed reactor for simulaneous biological removal of sulfate, nitrate and lactate. Appl. Microbiol. Biotechnol. 2008, 79: 1071-1077.
    [112] J.Makinia, M.Swinarski, E.Dobiegala. Experimence with Computer Simulation at Two Large Wastewater Treatment Plants in Northern Piland. Wat. Sci. Tech. 2002,45(6):209~218
    [113] C.Chen , A.Wang, N. Ren , H, Kan, Duu-Jong Lee, Biological breakdown of denitrifying sulfide removal processin high-rate expanded granular bed reactor, Appl Microbiol Biotechnol 2008, 81:765–770
    [114] J.Wang, H. Lu, G. Chen. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Research. 2009, (43):2363~2372
    [115]张琳,张元月.新型污水处理装置—膜生物反应器.重庆环境科学. 1996,18(4):51~55
    [116]蔡靖,郑平.硫氮比对厌氧生物同步脱氮除硫工艺性能的影响.环境科学学报. 2008, 28(8): 1506~1508
    [117]旭保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社,2000:154~207
    [118] R.Carrette, D.Bixio, C.Thoeye et al. Full-Scale Application of the IAWQ ASM No.2d Model. Wat. Sci. Tech. 2001,44(2~3):17~23
    [119] W.Wu. Simulation and Application of a Novel Modified SBR System for Biological Nutrient Removal. Wat. Sci. Tech. 2001,42(3):215~222
    [120] W. Li, Q. Zhao, H. Liu. Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization denitrification process. Journal of Hazardous Materials. 2009, 162(2):848~853
    [121] Q.Mahmood, P. Zheng, D. Wu, Baolan, H. Anoxic sulfide biooxidation using nitrite as electron acceptor. J.Hazard. Mater.2007,56,207-312
    [122] Q.Mahmood, P. Zheng, Y. Hayat, E. Islam,D. Wu, Jin Ren-cun. Effect of pH on anoxic sulfide oxidizing reactor performance. Bioresource Technology. 2008, 99 3291–3296
    [123] G. L.Juan, C.Alfonso, M. G. Juan et al.. Nitrate Prmotes Biological Oxidation of Sulfide in Wastewaters: Experiment at Plant-scale. Biotech. Bioeng. 2006, 93(4):801-811

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700