土地利用方式对中国东南部红壤微生物特性及氮转化作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东南部的热带和亚热带红壤总面积113.3万km2,占全国总面积的11.8%,供给着全国22.5%的人口。红壤具有低pH、低养分含量、氮相对富集、硝化与反硝化活性低、N20排放量却较大的特点,红壤的分布具有明显的地域特征,而土地利用方式的变化可能引起对该地区的土壤肥力以及土壤功能变化,甚至衰退。因此,研究该地区农业、林地等不同利用方式对红壤微生物特性及氮转化作用的影响对维持我国红壤的可持续发展具有重要的科学意义。
     本文以我国东南部热带和亚热带地区典型利用方式的红壤为研究对象,选取了海南琼中香蕉林(BAN)、桉树林(EUC)、橡胶林(RUB)和天然次生林(NSF)4种利用方式土壤,福建建瓯万木林自然保护区内观光木(TSO)、细柄阿丁枫(ALG)、椤浮栲(CAF)、浙江桂(CIC)4种天然林和杉木(CUL)、桔园(ORG)2种人工种植林土壤,以及江西鹰潭市周边地区花岗岩(G)、第三纪红砂岩(R)和第四纪红粘土(Q)3种母质和阔叶林(B)、针叶林(C)、灌丛(S)、农用地(U/F)4种利用方式红壤。本文测定了土壤微生物生物量碳、氮,土壤酶活性;硝化潜势(NP)、硝化回复势(RNP);用淹水厌氧密闭培养-乙炔抑制法测定了反硝化势(DNP)及其气态产物;利用实时荧光定量PCR (Real-time PCR, qPCR)检测了氨氧化细菌(AOB)和氨氧化古菌(AOA)的amoA基因拷贝数,反硝化功能基因即硝酸盐还原酶基因(narG)、亚硝酸还原酶基因(nirK)、一氧化氮还原酶基因(norB)和氧化亚氮还原酶基因(nosZ)的拷贝数,以及细菌16SrRNA基因拷贝数;采用PCR-DGGE技术研究了土壤中细菌的群落结构差异;采用磷脂脂肪酸(PLFA)方法分析土壤微生物群落多样性。
     土壤微生物生物量以及土壤酶活性在不同利用方式土壤中有显著差异,海南、福建和江西三个地区农用地中微生物生物量碳和氮、土壤脲酶和脱氢酶活性均低于天然林等其他利用方式土壤,相关性分析显示不同利用方式对土壤营养因子(土壤有机碳、全氮、水解氮、速效钾等)的改变是引起土壤微生物生物量和土壤酶活性的关键因素。对福建不同土地利用方式对微生物群落多样性的影响研究发现,天然林(CIC,CAF, ALG, TSO)的年落叶量、土壤养分含量、微生物群落多样性指标显著高于两种种植园土壤(CUL, Orchard),不同土壤利用方式对土壤微生物群落多样性有显著影响;天然林改造成为农用经济林地后减少了土壤微生物多样性;年落叶量、土壤有机碳和总氮等是引起天然林和种植园土壤微生物多样性差异的关键因素。
     对于硝化微生物和硝化作用的研究发现,江西天然林的硝化势(NP)显著低于福建与海南地区土壤的NP,所有调查地区农用利用方式土壤的NP较天然林大,说明人为管理方式提高了土壤硝化活性;AOA和AOB对于红壤硝化作用的相对贡献率在不同地区不同和并受不同利用方式的影响:qPCR结果与NP的相关性分析显示福建和海南地区NP可能主要由AOB承担,而江西鹰潭地区NP可能主要由AOA承担;土壤RNPs对于抗生素的敏感性实验显示,海南地区BAN、EUC、RUB,福建地区CIC、CUL、ORG六种土壤的NP可能主要由AOB承担,而海南的NSF、福建的ALG、江西的RB、RC、RS和RU土壤NP主要由AOA承担。
     对于反硝化微生物、反硝化作用及其气态产物的研究表明,不同母质和不同利用方式土壤反硝化势和气态产物中氮氧化物的比例差异较大:不同土壤的反硝化势顺序为:GF(0.120mg·kg-1·h-1)>GS (0.056mg·kg-1·h-1)>GC (0.052mg·kg-1·h-1)>QF (0.018mg·kg-1·h-1)>QC (0.010mg·kg-1·h-1)>QS (0.009mg·kg-1·h-1);红粘土的NO占反硝化气体比例较花岗岩大,而N20是针叶林与灌丛土壤反硝化的主要产物;而农用地土壤反硝化的主要产物是N2;农业利用方式的反硝化作用高于针叶林与灌丛,pH是影响亚热带红壤的主要影响因子;在四种编码反硝化酶的基因narG、nirK、norB和nosZ中,norB基因是引起不同土地利用方式土壤之间反硝化势和反硝化气态产物组成差异的关键因子。
Tropical and subtropical red soil in southeast China cover about1.13million km2or11.8%of the country's land surface, and support22.5%of the nation's population. Red soil is characterized with low pH, poor nutrition, higher nitrogen, low nitrification, low denitrification and abundant N2O emission. The distribution of red soil has obvious regional characteristic. The land use change, such as the conversion of the natural forests to agricultural purpose, might affect soil fertility and soil function. Therefore, it will be instructive to progress of the effect of land-use types on microbial properties and nitrogen transformation for sustainable development of red soil in China.
     The representative land-use types of tropical and subtropical red soils in southeastern China were investigated in this paper:the first series including a natural secondary forest (NSF), a banana plantation (BAN), a eucalyptus forest (EUC), and a rubber plantation (RUB) in Qiongzhong, Hainan province; the sencond series including four natural forests, Altingia gralilipes (ALG), Cinnamomum chekiangense (CIC), Castanopsis fargesii (CAF), Tsoongiodendron odorum (TSO), and two plantations, Cunninghamia lanceolata (CUL) and Citrus reticulata orchard (ORG) in Jian'ou, Fujian province; the third series including three soil parent materials:granite (G), tertiary red sandstone (R), and quaternary red earth (Q) and four land use patterns:broad-leaf forest (B), conifer forest (C), shrub land (S) and upland/farmland (U/F) in Yingtan, Jiangxi province. In this study, soil nitrification potential (NP) and recovery of nitrification potential (RNP) were measured; soil denitrification and its gas products (N2O, NO, N2) were studied by acetylene inhibition method applied to laboratory incubation under flooded condition; real-time quantitative polymerase chain reaction (qPCR) was conducted to investigate amoA gene copies of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), narG, nirK, norB, nosZ gene copies of denitrifying bacteria and soil16S rRNA bacterial gene copies; denaturing gradient gel electrophoresis (DGGE) was conducted to investigate soil16S rRNA bacterial diversity; phospholipid fatty acid analysis (PLFA) was conducted to investigate soil microbial diversity.
     Soil microbial biomass and soil enzyme activities were significantly differed in different land-use soils. The agricultural land-use had lower soil microbial biomass carbon and nitrogen and soil urease and dehydrogenase activities than other land-use soils. These significantle difference might be driven by changes of soil nutrition factors (soil organic carbon, total N. available N, available K et al.) according to correlation analysis. Land use types had great effects on soil microbial community structure in the mid-subtropic region of China. Soil microbial diversity were highest under four natural forests (CIC, CAF, ALG, TSO), followed by CUL platation, whilst least in orchard soil. The conversion from native forests to agricultural purpose could decrease soil microbial biomass, activity and diversity in mid-subtropical region of China. Litterfall, soil oganic C and soil total N distinguished the microbial community of forests from that of economic plantation in the mid-subtropical China.
     Our result showed that soil nitrification potential (NP) of natural forest was significantly lower in Jiangxi than Fujian and Hainan; NP of framland use soils was higher than natural forest soils in all soil series. It indicated that deliberate management might increase soil denitrification activity. Contribution rate to nitrification of AOB and AOA was differed from different land-use types. Relative analysis between NP and amoA gene copies of AOB and AOA from qPCR analysis indicated that soil nitrification potential could be mediated by AOB in Fujian and Hainan soil samples:nitrification potential might be mediated by AOA in Jiangxi. Further study of sensitivity of RNPs to protein synthesis inhibitors suggested that soil NP of BAN, EUC, RUB in Hainan and CIC, CUL,ORG in Fujian could be attributed exclusively to AOB; in contrast, those nitrification potential NSF in Hainan, ALG in Fujian, RB, RC, RS, RU in Jiangxi were mediated by AOA.
     Soil denitrification potential and composition of denitrification products varied greatly among the investigated soils with a following order of denitrification potential:GF (0.120 mg·kg-1·h-1)> GS (0.056mg·kg-1·h-1)> GC (0.052mg·kg-1·h-1)> QF (0.018mg·kg-1·h-1)> QC (0.010mg·kg-1·h-1)> QS (0.009mg·kg-1·h-1). NO/(N2O+NO+N2) was higher in quaternary red earth than granite soil. The dominant denitrification gas product was N2O in conifer forest (C) and shrub land (S) soils and N2in farmland (F) soil. Soil denitrification potential was higher in farmland soil than in conifer forest and shrub land soils.Soil pH was the important influence factor of the denitrification. Among the four genes:narG, nirK, norB and nosZ, the norB gene was the key factor of the difference of denitrification in different land-use soils.
引文
[1]Alcantara-Hernandez R J, Valenzuela-Encinas C, Marsch R, et al. Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico). Extremophiles.2009,134:169-178.
    [2]Alexander M. Introduction to Soil Microbiology. New York:John Wiley and Sons, 1977.68-72
    [3]Aulakh, M.S. Transofrmations of ammonium nitrogen in upland and flooded soils amended with crop residues. Journal of the Indian Society.1989,37:2,248-25
    [4]Aulakh, M.S., Doran J.W., Walters D.T., Power, J.F. Legume residues and soil water effects on denitrification in soils of different textures. Soil. Biol.Bioehem.1991,23: 1161-1167.
    [5]Aulakh, M.S., Doran, J.W and Mosier, A.R. Soildenitrification-significance, measurement, and effects of management. In:Stewart, B.A. Editor,1992. Advances in Soil Science. Springer-Verlag, New York.1992,18:1-57.
    [6]Aulakh, M.S., Rennie, D.A. Effect of wheat straw incorporation on denitrification of N under anaerobic and aerobic conditions. Can. J. Soil. Sci.1987,67:825-834.
    [7]Aulakh, M.S., Rennie, D.A., Paul, E.A. Acetylene and N-serve effects upon N2O emissions from NH4+ and NO3- treated under aerobic and anaerobic conditions. Soil Biol. Biochem.1984,16,351-356
    [8]Azam F., Gill S., Farooq S., Lodhi A. Effect of CO2 on nitrification and immobilization of NH4+-N. Biology and Fertility of Soils.2004,40,427-431.
    [9]Bardgett R.D., Lovell R.D., Hobbs P.J. et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology and Biochemistry,1999,31,1021-1030
    [10]Bauhus J., Meyer A.C., Brumme R. Effect of the inhibitors nitrapyrin and sodium chlorate on nitrification and N2O formation in an acid forest soil. Biology and Fertility of Soils.1996,22,318-325.
    [11]Bhatia C. Role of Microbial Diversity for Soil, Health and Plant Nutrition. Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology,2008,15:53-74.
    [12]Bjerrum L, Kj(?)r T, Ramsing N B. Enumerating ammonia-oxidizing bacteria in environmental samples using competitive PCR. Journal of Microbiological Methods, 2002,51(2),227-239
    [13]Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology,1959,37,911-917
    [14]Bonan GB. Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science,2008,320,1444-1449.
    [15]Bouwman, A. F. Analysis of global nitrous oxide emissions from terrestrial natural and agro-ecosystems. Trans.14th Congress of Soil Science.1990,2,261-266.
    [16]Boyer EW, Alexander RB, Parton WJ et al. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecological Applications,2006,16,2123-2142.
    [17]Bremer C, Braker G, Matthies D, et al. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Applied and Environmental Microbiology.2007,73,6876-6884.
    [18]Bremner J.M., Shaw K. Denitrification in soil & factors affecting denitrifieation. J Agric Sci:1958,40-52
    [19]Breuer L, Kiese R., Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain forest soils. Soil Sci. Soc. Am. J.,2002,66,:834-844
    [20]Bruggemann J, Stephen J R, ChangY J, et al. Competitive PCR-DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. Journal of Microbiological Methods,2000,40,111-123
    [21]Burney AJ, Davis JS, Lobell BD. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences.2010,107, 12052-12057
    [22]Cela S., Sumner M. E. Soil zinc fractions determine inhibition of nitrification. Water, Air, and Soil Pollution.2002,141,91-104.
    [23]Christensen, S., Simkins, S and Tiedie, J. M. Soatial variation in denitrification: dependency of activity centres on the soil environment, Soil Science Society of America Journal.1990,54,1608-1613
    [24]Dail D B, Davidson E A, Chorover J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry,2001,54(2),131-146
    [25]Davidson E A, Chorover J, Dail D B. A mechanism of abiotic immobilization of nitrate in forest ecosystems:The ferrous wheel hypothesis. Global Change Biology,2003, 9(2),228-236
    [26]Davidson E A, Chorover J, Dail D B. Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry,2008,90(1),65-73
    [27]De Boer W, Kowalchuk GA. Nitrification in acid soils:Micro-organisms and mechanisms. Soil Biology and Biochemistry,2001,33,853-866.
    [28]Deboer A.P.N., Reijinders W.N.M., Kuenen J.G., et al. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans[J]. Antonie. van. Leeuwenhoek.,1994,66,111-127
    [29]Delwiehe, C.C., Bryan. B.A. Denitrifieation. Annu. Rev.Mierobiol.1976.30,241-262.
    [30]Di, H. J., K. C. Cameron, J. P. Shen, C. S. Winefield, M. O'Callaghan, S.Bowatte, and J. Z. He. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci.2009.2,621-624.
    [31]Duggin J.A., Voigt G.K., Bormann F.H. Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forests. Soil Biology and Biochemistry. 1991,23,779-787.
    [32]Ellis, S., Dendooven, L and Ggulding, K. W. T. Quantitative assessment of Soil nitrate disappearance and N2O evolution during denitrification:Nitrate disappearance during denitrification. Soil Biol. Biochem.1996,28,589-595
    [33]Erguder T. H., Boon N., Wittebolle L., Marzorati M., Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews.2009,33,855-869.
    [34]Focht,D.D. Microbial kinetics of nitrogen losses in flooded soils. In:Nitrogen and Rice Los Banos. Philippines:IRRI.1979,119-134.
    [35]Francis C. A., Beman J. M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation. Multidisciplinary Journal of Microbial Ecology.2007,1(1),19-27.
    [36]Frankenberger W T, Dick W A. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal.1983,47, 945-951
    [37]Frijlink MJ, Abee T, Laanbroek HJ, De Boer W, Konings WN. The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Archives of Microbiology,1992,157,194-199.
    [38]Fujiwara T., Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J. Bacteriol.,1996, 178(7),1866-1871
    [39]Galloway JN, Dentener DG, Capone EW et al. Nitrogen cycles:past, present and future. Biogeochemistry.2004,70,153-226
    [40]Garland J L, Milla A L. Classification and characterization of heterotrophic microbial communities on basis of patters of community level sole-carbon source utilization. Appli. Environ. Microbial.1991,57,2351-2359
    [41]Gilliam, J.W., Gambrell, R.P. Temperature and pH as limlting factors in loss of nitrate from saturated Atlantic coastal plain soils. J. Environ. Qual.1978,7:526-532.
    [42]Glendining M J, Powlson D S, Poulton P R, et al. The effects of longterm application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment. J. A gri. Sci. (Camb.),1996,127,347-363
    [43]Henze M. Capabilities of biologiacal nitrogen removal process from wastewater Wat Sci Tech,1991,23(4),669-679
    [44]Hermansson A, Ba'ckmana JSK, Svenssonb B H, et al. Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR. Soil Biology & Biochemistry,2004,36,1935-1941
    [45]Hofstra N, Bouwman AF Denitrification in agricultural soils:summarizing published data and estimating global annual rates. Nutrient Cycling in Agroecosystems,2005,72, 267-278.
    [46]Hu, HY., Goto, N., Fujie, K. Effect of ph on the reduction of nitrite in water by metallic iron. Water Research.2001,35,2789-2793
    [47]Hungate B. A., Dukes J. S., Shaw M. R., Luo Y. Q., Field C. B. Nitrogen and climate change. Science.2003,302,1512-1513.
    [48]Hyman, M. R., and D. J. Arp.14C2H2-and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J. Biol. Chem.1992,267, 1524-1545.
    [49]Hyman, M. R., and P. M. Wood. Suicidal inactivation and labeling of ammonia monooxygenase by acetylene. Biochem. J.1985,227,719-725.
    [50]Ingwersen J, K Butterbach-Bahl, R Gasche, et al. Barometric process separation:New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci. Soc. Am. J.,1999,63,117-128
    [51]Ishii T, Sootome H, Shan L H. Validation of universal conditions for duplex quantitative reverse transcription polymerase chain reaction assays. Analytical Biochemistry,2007,362,201-212
    [52]Jia Z. J., Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology.2009,11 (7),: 1658-1671.
    [53]Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 1988,6,68-72.
    [54]Keeney, D.R., Fillery, I.R. Marx. G.P. Effect of temperature on the gaseous nitrogen produets of denitrification in a silt loam soil.Soil Sci.Soc.Am.J.1979,43:1124-1128
    [55]Killham K. Nitrification in coniferous forest soils. Plant and Soil.1990,128,31-44.
    [56]Kirk J L, Beaudette L A, Hart M. Methods of studying soil microbial diversity. Journal of Microbiological Methods,2004,58,169-188
    [57]Klemedtsson, L., Svensson. B.H., Lindberg, T., Rosswall. T. The use of acetylene inhibition of nitrous oxide reduetase in qunatiyfing denitrifieation in soils.Swedish J. Agric. Res.1977,7,179-185
    [58]Klotz M. G., Norton J. M. Sequence of an ammonia monooxy-genase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene.1995,163,159-160.
    [59]Knowele, R. Denitrification, Microbiological Reviews.1982,46,43-70
    [60]Knowles, R. Denitrification, In:Paul, E.A and Ladd, J. (eds.) Soil Biochemistry, Marcel Dekker, New York.1981,5,323-369
    [61]Knowles, R. Denitrification. Microbiol. Rev.1982,46,43-70.
    [62]Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Water-bury, and D. A. Stahl. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005, 437,543-546.
    [63]Kornelia S, Miruna O S, Annett M, et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? Journal of Microbiological Methods, 2007,69,470-479
    [64}Kourteva P.S., Ehrenfelda J.G., Haggblom M. Experimental analysis of the effect of exotic and native plant specie on the structure and function of soil microbial communities. Soil Biology & Biochemistry,2003,35,895-905
    [65]Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G. W, Prosser J. I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature.2006,442,806-809
    [66]Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, and C. Schleper. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006,442,806-809.
    [67]Lou YS, Li ZP, Zhang TL, Liang YC. CO2 Emissions from subtropical arable soils of China. Soil Biology & Biochemistry 2004,36,1835-1842
    [68]Malhi S. S., McGill W. B. Nitrification in three Alberta soils:Effect of temperature, moisture and sunstrate concentration. Soil Biology and Biochemistry.1982,14, 393-399.
    [69]Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009,461,976-979.
    [70]McCarthy C M., Murray L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecology.1996,32,305-321
    [71]McGill W B, Camnon K R, Robertson J A, et al. Dynamic of soil microbial biomass and water soluble organic C in Breton L after 50 years of cropping to two rotations. J. soil sci.,1986,66,1-19
    [72]McLain J E T, Martens D A. N2O production by heterotrophic N transformations in a semiarid soil. Applied Soil Ecology,2006,32(2),253-263
    [73]McTavish H., Fuchs J. A., Hooper A. B. Sequence of the genecoding for ammonia monooxygenase in Nitrosomonas europaea. The Journal of Bacteriology.1993a, 175:2436-2444.
    [74]McTavish H., LaQuier F., Arciero D., Logan M., Mundfrom G., Fuchs J. A., Hooper A. B. Multiple copies of genes codingfor electron transport proteins in the bacterium Nitrosomonas europaea. The Journal of Bacteriology.1993b,175,2445-2447.
    [75]Mincer, T. J., M. J. Church, L. T. Taylor, C. Preston, D. M. Kar, and E. F. DeLong. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre.Environ. Microbiol.2007,9,1162-1175.
    [76]Moir J. W. B., Crossman L. C., Spiro S., Richardson D. The purification of ammonia mono-oxygenase from Paracoccus denitrification. FEBS Letters.1996,387,71-74.
    [77]Moir J.W.B., Baratta D., Richardson D.J., et al. The purification of a cdl-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur. J. Biochem.,1993,212(2),377-385
    [78]Mosier, A., Wassmann, R., Verchot, L., King, J and Palm, C. Methane and nitrogen oxide fluxes in tropical agricultural soils:sources, sinks and mechanisms. Environment, Development and Sustainability.2004,6,11-49.
    [79]Muller, M.M., Sundman. V., Skujins. J.J. Denitrification in low pH Spodosols and Peats determined with the acetylene inhibition method. Appl. Environ. Microbiol. 1980,40,235-239.
    [80]Murray, R. E and Knowles, R. Production of NO and N2O in the presence and absence of C2H2 by soil slurries and batch cultures of denitrifying bacteria. Soil Biology and Biochemistry.2003,35,1115-1122.
    [81]Naira A., Ngouajio M. Soil microbial biomass, functional microbialdiversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology.2012,58,45-55
    [82]Nannipieri P, Ascher J, Ceccherini M T. Microbial diversity and soil functions. European Journal of Soil Science,2003,54,655-670
    [83]Norton J. M., Alzerreca J. J., Suwa Y., Klotz M. G. Diversity ofammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology.2002,177,139-49.
    [84]Noyes HA, Conner SD. Nitrates, nitrification, and bacterial contents of five typical acid soils as affected by lime, fertilizer, crops and moisture. Australian Journal of Agricultural Research,1919,16,27-60.
    [85]Nusslein K., Tiedje J.M.. Soil Bacterial Community Shift Correlated with Change from Forest to Pasture Vegetation in a Tropical Soil. Applied and Environmental Microbiology,1999,76(8),3622-3626
    [86]Offre, P., Prosser J. I., Nicol. G. W. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol. Ecol.2009,70,99-108.
    [87]Parkin, T.B., Sexstone, A.L., Tiedje, J.M. Adaptation of denitriyfing populations to low soil pH. Appl. Environ. Microbiol.1985,49,1053-1056
    [88]Parlade J, Hortal S, Pera J, et al. Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. Journal of Biotechnology,2007,128,14-23
    [89]Paul K. I., Polglase P. J., O'Connell A. M. Defining the relation between soil water content and net nitrogen mineralization. European Journal of Soil Science.2003,54(1), 39-48.
    [90]Phillips C J, Paul E A, Prosser J I. Quantitative analysis of ammonia oxidising bacteria using competitive PCR. FEMS Microbiology Ecology,2000,32,167-175
    [91]Pierzynski G. M., Thomas Sims. J., Vance G. F (eds). Soil and environmental quality. London. Lewis publishers.1994, pp 56-99.
    [92]Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total organic matter due to straw incorporation. Soil Biology & Biochemistry,1987,19,159-164
    [93]Pratscher J., Dumont M. G., Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences.2011,108,4170-4175.
    [94]Prieme A, Braker G, Tiedje J M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soil. Applied and Environmental Microbiology.2002,68,1893-1900.
    [95]Qafoku, N. P., Van Ranst, E., Noble, A. and Baert, G. Variable charge soils:their mineralogy, chemistry and management. Advances in Agronomy.2004,84,159-215.
    [96]Rasmussen T., Berks B.C., Butt J.N., et al. Multiple forms of the catalytic centre, CuZ Paracoccus pantotrophus[J]. Biochem. J.,2002,364(3),807-815
    [97]Rich JJ, Heichen RS, Bottomley PJ, Cromack JK, Myrold DD. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Applied and Environmental Microbiology.2003,69,5974-5982.
    [98]Rich JJ, Myrold DD. Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in oregon, USA. Soil Biology and Biochemistry.2004,36,1431-1441.
    [99]Robertson, G. P. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA, CSA, CSSA.1993,95-108.
    [100]Robertson, G. P., Paul, E. A and Harwood, R. R. Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere. Science.2000,289,1922-1925.
    [101]Royer-Tardif S., Bradley R.L., Parsons W.F.J.. Evidence that plant diversity and site productivity confer stability to forest floor microbial biomass. Soil Biology & Biochemistry,2010,42(5),813-821
    [102]Sayavedra-Soto L. A., Hommes N. G., Alzerreca J. J., Arp D. J., Norton J. M., Klotz M. G. Transcription of the amoC, amoA, and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiology Letters.1998,167,81-88.
    [103]Schmidt, E. L., and L. W. Belser.1994. Autotrophic nitrifying bacteria, p.159-177.
    [104]Serra-Wittling C, Houot S, Barriuso E. Soil enzymatic response to addition of municipal solid-waste compost. Biology and Fertility of Soils 1995,20,226-236.
    [105]Sharma S, Aneja M K, Mayer J, et al. Diversity of transcripts of nitrite reductase genes (nirK and nirS) in rhizopheres of Grain Legumes. Applied and Environmental Microbiology.2005,71,2001-2007.
    [106]Shen S M, Hart P B S, Pruden G, et al. The nitrogen cycle in the Broadbalk Wheat Ezperiment:15N labelled residues in the soil and in the soil microbial biomass. Soil Boil. Boichem.,1989,21,529-533
    [107]Sierra J. A hot-spot approach applied to nitrification in tropical acid soils. Soil Biology and Biochemistry.2006,38,644-652.
    [108]Slivestrini M.C., Tordi M.G., Musci G., et al.The reaction of pseudomonas nitrite reductase and nitrite reductase and nitrite. A stopped -flow and EPR study. J. Biol. Chem.,1990,265(20),11783-11787
    [109]Smith J M, Ogram A. Genetic and Functional variation in denitrifer populations along a short-term restoration chronosequence. Applied and Environmental Microbiology.2008,74,5615-5620
    [110]Soderlund, R., and Rosswall, T. The nitrogen cycles [M]. In:The Handbook of Environmental Chemistry Vol.1 Part B. Hutzinger, O. (Ed.). Springer-Verlag, Berlin, Heidelberg, New York,1982, pp 61-81
    [111]Spear, J. R., H. A. Barton, C. E. Robertson, C. A. Francis, and N. R. Pace. Microbial community biofabrics in a geothermal mine adit. Appl. Environ. Microbiol. 2007,73,6172-6180.
    [112]Steenwerth K.L., Jackson L.E., Calderon F.J. et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology & Biochemistry,2003,35,489-500
    [113]Stevens, R. J., Laughlin, R. J and Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry.1998, 30,1119-1126
    [114]Struwe, S., Kjoller, A. Potential for N2O production from beech (Fagus silvaticus) forest soils with varying pH. Soil Biol. Biochem.1994,26,1003-1009
    [115]Taylor A.E., Zeglin L.H., Dooley S., Myrold D.D., Bottomley P.J. Evidence for Different Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon Soils. Applied and Environmental Microbiology,2010,12, 7691-7698
    [116]Tourna, M., T. E. Freitag, G. W. Nicol, and J. I. Prosser. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol.2008.10,1357-1364.
    [117]Vestal J R., White D C. Lipid analysis in microbial ecology:quantitative approaches to the study of microbial communities. Bioscience.1989,39,535-541
    [118]Wang JH, Liu JS, Yu JB, et al.Effect of Fertilizing N and P on Soil Microbial Biomass Carbon and Nitrogen of Black Soil Corn Agroecosystem. Journal of Soil and Water Conservation,2004,18 (1),35-38
    [119]Waring, S.A. and Gilliam, J.W. The effect of acidity on nitrate reduction and denitrification in lower coastal plain soils. Soil Science Society of America Journal 1983,47,246-251
    [120]Watson, R.T., Meira Filho, L.Gand Sanhueza, E. Sources and sinks. In:Houghton, J.T., Callander, B.A.and Varney, S.K.(eds). Clinate change. Cambridge Univ.Press, Cambridge.1992,25-46.
    [121]Weber DF, Gainey PL. Relative sensitivity of nitrifying organisms to hydrogen ions in soils and solutions. Soil Science,1962,94,138-145.
    [122]Weidler, G. W., M. Dornmayr-Pfaffenhuemer, F. W. Gerbl, W. Heinen, and H. Stan-Lotter. Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl. Environ. Microbiol.2007.73,259-270.
    [123]Weier, K. L., Gilliam, J. W. Effect of acidity on denitrification and nitrous oxide evolution from Atlantic coastal-plain soils. Soil Science Society of America Journal. 1986,50,1202-1205
    [124]Weier, K.L., Doran, J.W., Power, J.F., Walters, D.T. Denitrification and the dinitrogen/nitrous oxide ration as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal 1993,57,66-72
    [125]Weier, K.L., Gllliam. J.W. Effect of acidity on denitrification and nitrous oxide evolution from Atlantic coastal plain soils. Soil Sci. Soc. Am. J.1986,50,1202-1205
    [126]White D C, Bobbie R J, Herron J S, et al. Biochemical measurements of microbial mass and activity from environmental samples. In:Costerton, J.W, Colwell, R.R.(eds). Native Aquatic Bacteria:Enumeration, Activity and Ecology. American Society for Testing and Materials, Philadelphia,1979
    [127]Winogradsky S. On the nitrifying organisms. Sciences,1890.
    [128]Wood P. M. Mono-oxygenase and free radical mechanisms for biological ammonia oxidation. In:Cole, J.A., Ferguson, S.J. (Eds.). The Nitrogen and Sulphur Cycles. Proceeding Symposium 42 of the Society for General MicrobiologyCambridge University Press, Cambridge.1987, pp.219-243.
    [129]Wuchter, C., B. Abbas, M. J. Coolen, L. Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, and J. S. S. Damste. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. U. S. A.2006,103, 12317-12322.
    [130]Xia W. W., Zhang C. X., Zeng X. W., Feng Y. Z., Weng J. H., Lin X. G., Zhu J. G., Xiong Z. Q., Xu J., Cai Z. C., Jia Z. J. Autotrophic growth of nitrifying community in an agricultural soil. International Society for Microbial Ecology. doi:10.1038/ismej. 2011.5
    [131]Xu L.H., Li Q.R., Jiang C.L.. Diversity of Soil Actinomycetes in Yunnan, China. Applied and Environmental Microbiology,1996,62,244-248
    [132]Xu YB, Cai ZC Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science,2007, 58,1293-1303.
    [133]Yang YS, Guo, JF, Chen GS, Xie JS, Gao R, Li Z, Jin Z. Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry 2005,78,403-415.
    [134]Yao H, He Z, Wilson M J, et al. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbiology Ecology,2000,40,223-237
    [135]Ying JY, Zhang LM, He JZ. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns.Environmental Microbiology Reports.2010,2(2),304-312
    [136]Zelles L, Bai QY, Rackwitz R, Chadwick D, Beese F. Determination of phospholipid- and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community compositions in soils. Biology and Fertility of Soils 1995,19, 115-123
    [137]Zhang, J, Muller, C, Zhu, T., Cheng, Y., Cai, Z. Heterotrophic nitrification is the predominant NO3- production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China. Biol Fertil Soils,2011a,47,533-542
    [138]Zhang J, Zhu, T., Cai, Z., Muller, C. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant and Soil,2011b,342,419-432
    [139]Zhang, J, Cai, Z., Cheng, Y., Zhu, T. Denitrification and total nitrogen gas production from forest soils of Eastern China Soil Biology & Biochemistry.2009,41, 2551-2557
    [140]Zhang, J, Cai. Z., Cheng, Y., Zhu, T. Nitrate Immobilization in Anaerobic Forest Soils along a North-South Transect in East China. Soil Science Society of America Journal.2010,74,1193-1200
    [141]Zhang YG, Zhang XQ, Liu XD, et al. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiol Lett,2007,266,144-151
    [142]Zhao SQ, Peng CH, Jiang H, Tian DL, Lei XD, Zhou XL. (2006) Land use change in Asia and the ecological consequences. Ecological Research,21,890-896.
    [143]Zhao W, Cai ZC, Xu ZH Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? Plant and Soil,2007, 297,213-221.
    [144]Zhong WH, Cai ZC, Zhang H. Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere,2007,17, 419-428.
    [145]Zumft W G. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews,1997,61,533-616.
    [146]白震,张明,闫颖等.长期施用氮、磷及有机肥对农田黑土PLFA的影响.浙江大学学报(农业与生命科学版),2008,34(1),73-80
    [147]蔡祖聪赵维.土地利用方式对湿润亚热带土壤硝化作用的影响.土壤学报.2009,5,795-801
    [148]蔡祖聪.氮形态转化途径研究的新进展——厌气铵氧化及其应用前景.应用生态学报.2001,12,795-798
    [149]杜睿,王庚辰,吕达仁.内蒙古典型草原土壤N20产生的机理探讨.中国环境科学.2000,20(5),387-391.
    [150]范君华,刘明.塔里木极端干旱区5种土地利用方式对土壤微生物多样性与酶活性的影响.首届全国农业环境科学学术研讨会论文集,2005
    [151]郭剑芬,杨玉盛,陈光水,林鹏,谢锦升.森林凋落物分解研究进展.林业科学.2006,4,93~100
    [152]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展.生态学报,2009,29(1),406-415.
    [153]李慧,陈冠雄,张颖,张成刚.分子生物学方法在污染土壤微生物多样性研究中的应用.土壤学报,2004,41(4),612~616
    [154]李永红,高玉葆.单嘧磺隆对土壤呼吸脱氢酶和转化酶活性的影响.农业环境科学学报.2005,24(6),1176~1181.
    [155]林先贵.土壤微生物研究原理与方法.高等教育出版社.北京.2010
    [156]刘明,李忠佩,张桃林.不同利用方式下红壤微生物生物量及代谢功能多样 性的变化.土壤,2009,41(5),744-748
    [157]刘世贵,葛绍荣,龙章富.川西北退化草地土壤微生物数量与区系研究.草业科学,1994,4(4),70-76
    [158]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    [159]孙瑞莲,赵秉强,朱鲁生等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报.2003,9(4),406-410.
    [160]孙秀山,封海胜,万书波等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报.2001,27(5),617-621
    [161]王建武,冯远娇.种植Bt玉米对土壤微生物活性和肥力的影响.生态学报.2005,25(5),1213-1220.
    [162]王献溥.生物多样性保护与利用的主要研究方向.中国科学院生物多样性研讨会会议录,1990,18-26
    [163]徐亚同pH和温度对反硝化的影响中国环境科学1994,14(4),309-313
    [164]闫淑君,洪伟,吴承祯,毕晓丽,范海兰,陈睿.万木林中亚热带常绿阔叶林林隙主要树种的高度生态位.应用与环境生物学报.2002,06,578-582
    [165]姚槐应,何振立,黄昌勇.提高氮肥利用率的微生物量机制探讨.农业环境保护,1999,18(2),54-56
    [166]俞慎,李勇,王俊华,车玉萍,潘映华,李振高.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3),413-421.
    [167]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002,11(2),140-143
    [168]张慧,袁红朝,朱亦君,陈春兰,谭周进,秦红灵.不同利用方式对红壤坡地微生物多样性和硝化势的影响.生态学杂志.2011,30(6),1169-1176
    [169]赵其国,谢为民,贺湘逸,王明珠等.江西红壤.江西科学技术出版社,南昌.1988.
    [170]赵其国,徐梦杰,吴志东.东南红壤丘陵地区农业可持续发展研究.土壤学报.2000,37,433-442.
    [171]赵其国等.土壤资源概论.科学出版社.北京.2007年09月.
    [172]钟文辉,蔡祖聪,尹力初,张鹤.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响.土壤学报,2008,45(1),105-111.
    [173]周志峰,王明霞.土壤反硝化微生物研究进展.安徽农业科学.2012,40(11),6474-6477
    [174]朱兆良,文启孝.中国土壤氮素.江苏科技出版社,南京.1992.
    [175]朱兆良,邢光熹.氮循环-维系地球生命生生不息的一个自然过程.清华大学 出版社,北京;暨南大学出版社.广州.2002,P2.
    [176]朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985.17(1),2-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700