纳米铁—反硝化细菌复合体系修复地下水中NO_3~--N污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量氮肥的施用,生活污水和含氮工业废水的排放,使得饮用水源和地下水的硝酸盐氮污染日益严重,已成为全世界关注的重要的环境问题之一。地下水中的硝酸盐本身对人体并没有危害,但硝酸盐在人体内可经硝酸盐还原酶作用生成亚硝酸盐,从而对人体健康构成威胁。
     有关地下水中硝酸盐污染物的去除技术国内外已有较多研究,主要可分为物理化学法、化学还原法和生物反硝化法。然而,物理化学方法只是简单地将硝酸盐进行浓缩或转移,并没有将其从地下水环境中去除;化学还原法对于产物中氨氮比例过高的问题始终找不到彻底解决的办法;生物反硝化法中异养微生物对于有机物的依赖限制了异养反硝化方法在地下水修复中的应用,而地下水中的自养微生物在反硝化过程中又缺乏足够的电子供体以还原硝酸盐。因此,单独使用任何一种方法都无法得到令人满意的处理效果。
     针对以上问题,本文采用液相还原法制备出纳米铁颗粒,并将其与真养产碱杆菌(一种自养反硝化细菌)联合构建脱氮复合体系,以纳米铁在水中厌氧腐蚀过程中释放的氢气供给微生物反硝化,将硝酸盐氮转变为无害的氮气,可以同时解决脱氮产物中氨氮比例过高和生物反硝化缺少电子供体这两方面的缺陷。
     本文通过一系列的实验来研究纳米铁-反硝化细菌复合体系的脱氮性能、影响因素、改进方法、动力学以及反应机理,并在此基础上尝试进行纳米铁和反硝化细菌的耦合共栖技术的开发,为实际地下水环境修复中的应用奠定基础。研究结果表明:
     1.反硝化细菌的加入对于纳米铁去除硝酸盐的反应产生很明显的影响。单独使用纳米铁仅仅需要2天的时间即可将硝酸盐完全降解,但是其中大约95%的硝酸盐氮转变为氨氮;而加入反硝化细菌之后,虽然去除硝酸盐的反应时间从2天增加到8天,但是只有约为33%的硝酸盐氮转变为氨氮。在此过程中氨氮的含量并不是一直增加的,而是在前四天里,体系中的氨氮含量从0增加到35%,此后,氨氮含量一直稳定在33-36%之间。
     2.反应体系的初始pH值对纳米铁-反硝化细菌复合体系还原硝酸盐的反应速率产生明显的影响,随初始pH值的升高反应速率呈现出减慢的趋势,但对脱氮产物中氨氮的生成量并无太大影响。此外,随复合体系温度的升高,硝酸盐降解速率加快,但脱氮产物中氨氮的产量也有所上升。而溶解氧的含量高低对复合体系中硝酸盐还原速率的影响很小,但溶解氧含量过高或过低均会增加脱氮产物中氨氮的比例,适宜的DO水平在0.4 mg·L-1左右。
     3.SO42-和ClO4离子的存在都会对纳米铁-反硝化细菌复合体系的脱氮效果产生干扰作用。随着体系中存在的SO42-和ClO4离子浓度的增加,复合体系脱氮速率出现降低,而且脱氮产物中氨氮的比例也会随之降低。
     4.Ni和Cu这两种催化剂的引入均可以提高纳米铁-反硝化细菌复合体系的脱氮反应速率,且催化效率相差不大。但是,对于由纳米Fe/Ni双金属所构建的复合体系,反应结束后氨氮比例高达69%。另一方面,纳米Fe/Cu双金属复合体系中仅有39%的硝酸盐氮转变为氨氮。
     5.在纳米铁-反硝化细菌复合体系中,当反应进行到第四天时,体系中硝酸盐降解反应的准一级速率常数(kobs)从0.0969d-1突然增大到0.4213 d-1,复合体系的脱氮反应过程很难用一个准一级反应方程式来表示,整个硝酸盐降解过程应该分段使用两个不同的准一级反应式来表示,其中第一个准一级反应式主要描述反应初期纳米铁对硝酸盐的化学还原作用,第二个准一级反应式主要描述反应后期微生物的反硝化脱氮作用。
     6.反硝化细菌的引入对于脱氮体系中纳米铁的形貌和成分均产生较大的影响。未加菌时,纳米铁在脱氮反应之后,其表面为一层致密的簇状氧化层所覆盖,此时纳米铁材料的主要成分为Fe、Fe2O3、Fe3O4的混合体。然而,加入细菌之后再进行脱氮反应时,纳米铁的表面变为一层云状的疏松结构,其主要成分为非晶态的FeOOH。
     7.脱氮反应中,复合体系总RNA含量测定及平板菌落计数的结果均显示,在复合体系中的细菌数量出现了先降低后升高的趋势。这说明在反应初期纳米铁对反硝化细菌产生明显的毒害作用,导致细菌的大量死亡;而后,随着纳米铁的消耗和氧化,毒性降低,细菌得以逐渐适应新环境开始进行生长。TEM的结果显示,纳米铁可以破坏细菌的细胞膜从而进入到细胞内部,造成细菌死亡。
     8.从纳米铁-反硝化细菌复合体系中分离出来的耦合体可以在5天的时间里将硝酸盐完全去除,同时,随着体系中硝酸盐的降低,反硝化细菌的数量逐渐增多。此外,脱氮反应结束之后,溶液中NO3--N、NO2--N、NH4+-N含量均低于检出限,而反应器顶部的气体中N20-N的含量达到21.60 mg·L-1,占到初始NO3-N含量的95.65%,这就是说,利用纳米铁-反硝化细菌耦合体去除硝酸盐时,脱氮产物几乎全部为气态氮,水体中不含NO2-、NH4+等有毒脱氮副产物。
     9.油酸钠包覆型纳米铁-反硝化细菌耦合体可以在6天的时间里将约50 mg-N·L-1的硝酸盐完全去除,其中仅有7%左右转化为氨氮,剩余93%的氮素很可能通过生物反硝化作用以气态氮的形式从水相中分离出去。而且,当硝酸盐完全去除时,反应体系中的总RNA含量由初始的0ng·μL-1增加到551ng·μL-1这就是说随着脱氮反应的进行,反硝化细菌的数量在不断地增加,反硝化活性得以不断地增强。
With great use of nitrogen-enriched fertilizers and abundant discharge of domestic sewage and waste water, nitrate pollution of groundwater and surface water has become a serious environment problem in many parts of the world. At elevated concentrations, nitrate intake causes methemoglobinemia in infants, and may also react with secondary or tertiary amines to form carcinogenic nitrosamines.
     Popular methods used for nitrate removal include physical chemical method, chemical reductive method and biological denitrifying method. However, physical chemical methods can only help to remove the nitrate from the groundwater with no help to reduce it. As to the chemical reductive methods, they may also lead to the generation of large amounts of ammonium, which may result in greater degree of toxicity than the nitrate itself. Biological denitrification, however, is also likely to lead to excessive biomass and soluble microbial products that make it necessary to do secondary treatment before using it, especially, when heterotrophic bacteria are involved. That is to say, no methods can be properly used for nitrate removal without other treatment.
     Based on these problems, an integrated nitrate treatment using nanoscale zero-valent iron (NZVI) and Alcaligenes eutrophus, which is a kind of hydrogenotrophic denitrifying bacteria, was conducted to reduce nitrate and decrease ammonium generation. When NZVI particles are immersed in water, their oxidation is coupled with the reduction of water derived protons to form cathodic hydrogen, which can be utilized by denitrifying populations to remove nitrate from groundwater.
     The objectives of this work were to study the denitrifying performance in NZVI-bacteria system, and also to evaluate the influence factors, improving methods, kinetics and mechanism of this integrated system. Then, development of NZVI-bacteria compound was also carried out. The conclusions from these experiments were as follows:
     1. Within 8 d, nitrate was removed completely in the reactors containing NZVI particles and bacteria while the proportion of ammonium generated was only 33%. That is a lower reduction rate but a smaller proportion of ammonium relative to that in abiotic reactors. It was also found that ammonium generation experienced a two-step process, involving an increasing period and a stable period.
     2. Increasing pH decreased the reduction rate slightly, but did not have a distinguishable effect on the generation of ammonium in the range of pH 7-10. In addition, with the temperature increasing, both the rate of the nitrate removal and the generation of ammonium increased. Moreover, the rate of the nitrate reduction had no change with increasing DO level in the solution. However, too high or too low DO level enhanced the generation of ammonium, so the proper DO may maintain around 0.4mg·L-1.
     3. The presence of sulfate or perchlorate could both inhibit the nitrate reduction in the combined system. As the initial concentration of sulfate or perchlorate elevated, both rate of nitrate removal and ammonium proportion in final products declined.
     4. Adding Ni or Cu into the NZVI-bacteria composed system could improve the denitrification efficiency, and the rates of nitrate removal in these two systems were very nearly the same. However, about 69% of nitrate was converted into ammonium in the Ni-catalyzed composed system, while there was only 39% of ammonium generated in the Cu-catalyzed composed system.
     5. During the first 4 d, nitrate reduction can be in very good agreement with a pseudo first-order reaction (kobs=0.0969 d-1). Afterwards, kobs of the denitrification increased into 0.4213 d-1 abruptly. Based on the results obtained, two sequential pseudo first-order expressions should be used to describe the nitrate removal rates in this integrated system.
     6. Unlike the Fe3O4 and Fe2O3 coating of NZVI particles generated in the abiotic reactors, an incompact wave structure was found on the surface of nanoparticles in the biological reactors, and the major component was testified to be non-crystal FeOOH, which was the corrosion product in the reaction between iron and water.
     7. The results of total RNA content and enumeration by plate count method showed that the amount of the bacteria in the NZVI-bacteria system had experienced a first decreased and then increased process, which indicated NZVI might have toxicity on bacteria growth. Also, TEM image showed the plasmamembrane of bacteria could be destroyed by NZVI when the bacteria contacted with NZVI particles.
     8. Complete removal of nitrate was observed within 5 d when the compound was utilized, which was separated from NZVI-bacteria composed system, and 95.65% of the nitrate was converted into N2O without ammonium and nitrite remained. That is to say, all the nitrate could be reduced via a biological process without chemical reduction when the compound was used.
     9. Using the compound including sodium oleate coated NZVI particles and the autotrophic bacteria could remove all the nitrate within 6 d, while only 7% of nitrate was converted into ammonium. Also, the total RNA content increased from 0 ng·μL-1 to 551 ng·μL-1 when the nitrate was removed completely.
引文
[1]Umezawa Y., Hosono T., Onodera S., et al. Sources of nitrate and ammonium contamination in ground water under developing Asian megacities. Science of the Total Environment,2008, 404(2-3):361-376.
    [2]Nas B., Berktay A.. Groundwater contamination by nitrates in the city of Konya, (Turkey):A GIS perspective. Journal of Environmental Management,2006,79(1):30-37.
    [3]Suthar S., Bishnoi P., Singh S., et al. Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials,2009,171(1-3):189-199.
    [4]Hildebrandt A., Guillamon M., Lacorte S., et al. Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research,2008,42(13): 3315-3326.
    [5]Baran N., Mouvet C., Negrel P.. Hydrodynamic and geochemical constraints on pesticide concentrations in the groundwater of an agricultural catchment (Brevilles, France). Environmental Pollution,2007,148(3):729-738.
    [6]Arias-Estevez M., Lopez-Periago E., Martinez-Carballo E., et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment,2008,123(4):247-260.
    [7]Kolb A., Puttmann W.. Comparison of MTBE concentrations in groundwater of urban and nonurban areas in Germany. Water Research,2006,40(19):3551-3558.
    [8]Iturbe R., Flores C., Flores R. M., et al. Subsoil TPH and other petroleum fractions-contamination levels in an oil storage and distribution station in north-central Mexico. Chemosphere,2005,61(11):1618-1631.
    [9]Saponaro S., Negri M., Sezenna E., et al. Groundwater remediation by an in situ biobarrier:A bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds. Journal of Hazardous Materials,2009,167(1-3):545-552.
    [10]Lee B. S., Kim J. H., Lee K. C., et al. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater:A large flow-tank study. Chemosphere, 2009,74(6):745-750.
    [11]Lee M. H., Clingenpeel S. C., Leiser O. P., et al. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution, 2008,153(1):238-246.
    [12]Tsai T.T., Kao C.M., Hong A., et al. Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,322(1-3):130-137.
    [13]Fan C., Wang G. S., Chen Y. C, et al. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan. Science of the Total Environment,2009,407(7): 2165-2174.
    [14]Ahamed S., Sengupta M. K., Mukherjee A., et al. Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: A severe danger. Science of the Total Environment,2006,370(2-3):310-322.
    [15]Nguyen V. A., Bang S., Viet P. H., et al. Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 2009,35(3):466-472.
    [16]Hellerich L. A., Nikolaidis N. P.. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Water Research,2005,39(13):2851-2868.
    [17]Stoor R. W., Hurley J. P., Babiarz C. L., et al. Subsurface sources of methyl mercury to Lake Superior from a wetland-forested watershed. Science of the Total Environment,2006, 368(1):99-110.
    [18]Leung C. M., Jiao J. J.. Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. Water Research, 2006,40(4):753-767.
    [19]Riccardi C., Filippo P. D., Pomata D., et al. Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farms. Science of the Total Environment,2008,393(1):50-63.
    [20]Majumder R. K., Hasnat M. A., Hossain S., et al. An exploration of nitrate concentrations in groundwater aquifers of central-west region of Bangladesh. Journal of Hazardous Materials, 2008,159(2-3):536-543.
    [21]Anayah F. M., Almasri M. N.. Trends and occurrences of nitrate in the groundwater of the West Bank, Palestine. Applied Geography,2009,29(4):588-601.
    [22]Otero N., TorrentoC.,. Soler A, et al. Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods:The case of Plana de Vic (Osona, Spain). Agriculture, Ecosystems & Environment,2009,133(1-2):103-113.
    [23]Nolan B., Ruddy B., Hitt K., et al. Risk of Nitrate in Groundwaters of the United States-A National Perspective. Environmental Science & Technology,1997,31(8):2229-2236.
    [24]Liu G. D.,Wu W.L., Zhang J.. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agriculture, Ecosystems & Environment,2005,107(2-3):211-220.
    [25]Gates J. B., Bohlke J. K., Edmunds W. M.. Ecohydrological Factors Affecting Nitrate Concentrations in a Phreatic Desert Aquifer in Northwestern China. Environmental Science & Technology,2008,42(10):3531-3537.
    [26]Liu C. Q., Li S. L., Lang Y. C., et al. Using δ15N-and δ18O-values to identify nitrate sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 2006,40(22):6869-6870.
    [27]Webster E. A., Hopkins D. W.. Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biology and Fertility of Soils, 1996,22(4):326-330.
    [28]Oelmanna Y., Kreutzigerc Y., Bold R., et al. Nitrate leaching in soil:Tracing the NO3-sources with the help of stable N and O. Soil Biology and Biochemistry,2007,39(12): 3024-3033.
    [29]Wakida F. T., Lerner D. N.. Non-agricultural sources of groundwater nitrate:a review and case study. Water Research,2005,39(1):3-16.
    [30]Moorea K. B., Ekwurzel B., Esser B. K., et al. Sources of groundwater nitrate revealed using residence time and isotope methods. Applied Geochemistry,2006,21(6):1016-1029.
    [31]Widory D., Petelet-Giraud E., Negrel P., et al. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes:A synthesis. Environmental Science & Technology,2005,39(2):539-548.
    [32]Nanus L., Williams M. W., Campbell D. H.,et al. Evaluating Regional Patterns in Nitrate Sources to Watersheds in National Parks of the Rocky Mountains using Nitrate Isotopes. Environmental Science & Technology,2008,42(17):6487-6493.
    [33]Showers W. J., Genna B.,McDade T., et al. Nitrate Contamination in Groundwater on an Urbanized Dairy Farm. Environmental Science & Technology,2008,42(13):4683-4688.
    [34]Xue D., Botte J., De Baets B., et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater. Water Research,2009,43(5):1159-1170.
    [35]Lee K. S., Bong Y. S., Lee D., et al. Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3- and δ18O-NO3- values. Science of the Total Environment,2008,395(2-3):117-124.
    [36]Shomar B., Osenbruck K., Yahya A. Elevated nitrate levels in the groundwater of the Gaza Strip:Distribution and sources. Science of the Total Environment,2008,398(1-3):164-174.
    [37]Van der Schans M. L., Harter T., Leijnse A., et al. Characterizing sources of nitrate leaching from an irrigated dairy farm in Merced County, California. Journal of Contaminant Hydrology,2009,110(1-2):9-21.
    [38]Strebel O., Duynisveld W.H.M., Bottcher J.. Nitrate pollution of groundwater in western Europe. Agriculture, Ecosystems & Environment,1989,26(3-4):189-214.
    [39]Gheysari M., Mirlatifi S. M., Homaee M., et al. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural Water Management, 2009,96(6):946-954.
    [40]Haruvy N., Hadas A., Ravina I., et al. Cost assessment of averting groundwater pollution. Water Science & Technology,2000,42(1-2):135-140.
    [41]Kostraba J. N., Gay E. C., Rewers M., et al. Nitrate levels in community drinking waters and risk of IDDM. An ecological analysis. Diabetes Care,1992,15(31):1505-1508.
    [42]Camargo J. A., Alonso A., Salamanca A.. Nitrate toxicity to aquatic animals:a review with new data for freshwater invertebrates. Chemosphere,2005,58(9):1255-1267.
    [43]Yang C. Y., Wu D. C., Chang C. C.. Nitrate in drinking water and risk of death from colon cancer in Taiwan. Environment International,2007,33(5):649-653.
    [44]Colakogullari M., Ulukaya E., Yilmaztepe A., et al. Higher serum nitrate levels are associated with poor survival in lung cancer patients. Clinical Biochemistry,2006,39(9): 898-903.
    [45]Dunlap T., Abdul-Hay S. O., Chandrasena R. E. P., et al. Nitrates and NO-NSAIDs in cancer chemoprevention and therapy:In vitro evidence querying the NO donor functionality. Nitric Oxide,2008,19(2):115-124.
    [46]Eken A., Aydin A., Sayal A.. Evaluation of plasma nitrite/nitrate levels in prostate cancer, benign prostatic hyperplasia patients and healthy individuals. Toxicology Letters,2008, 108(S1):80-81.
    [47]Tutmez B.. Assessing uncertainty of nitrate variability in groundwater.Ecological Informatics,2009,4(1):42-47.
    [48]lrigaray P., Newby J. A., Clapp R., et al. Lifestyle-related factors and environmental agents causing cancer:An overview. Biomedicine & Pharmacotherapy,2007,61(10):640-658.
    [49]Grahan L., Roger P., Patricia M., et al. Non-Hodgkin's Lymphoma and nitrate in drinking water:a study in Yorkshire, United Kingdom. Journal of Epidemiology & Community Health,1999,53(6):383-384.
    [50]Samatya S., Kabay N., Yuksel O., et al. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers,2006,66(11):1206-1214.
    [51]Bae B. U., Jung Y. H., Han W. W., et al. Improved brine recycling during nitrate removal using ion exchange. Water Research,2002,36(13):3330-3340.
    [52]Boumediene M., Achour D.. Denitrification of the underground waters by specific resin exchange of ion. Desalination,2004,168:187-194.
    [53]Chabani M., Amrane A., Bensmaili A.. Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chemical Engineering Journal,2006,125(2):111-117.
    [54]Beltran de Heredia J., Dominguez J. R., Cano Y, et al. Nitrate removal from groundwater using Amberlite IRN-78:Modelling the system. Applied Surface Science, 2006,252(17):6031-6035.
    [55]Ahn J. H., Choo K. H., Park H. S.. Reverse osmosis membrane treatment of acidic etchant wastewater:Effect of neutralization and polyelectrolyte coating on nitrate removal. Journal of Membrane Science,2008,310(1-2):296-302.
    [56]Tepus B., Simonic M., Petrinic 1..Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. Journal of Hazardous Materials, 2009,170(2-3):1210-1217.
    [57]Santafe-Moros A., Gozalvez-Zafrilla J. M., Lora-Garcia J.. Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane. Desalination,2007,204(1-3): 63-71.
    [58]Garcia F., Ciceron D., Saboni A., et al.Nitrate ions elimination from drinking water by nanofiltration:Membrane choice. Separation and Purification Technology,2006,52(1): 196-200.
    [59]Santafe-Moros A., Gozalvez-Zafrilla J. M., Lora-Garcia J.. Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination,2005,185(1-3): 281-287.
    [60]Banasiak L. J., Schafer A.I.. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science,2009,334(1-2):101-109.
    [61]Menkouchi Sahli M. A., Annouar S., Mountadar M., et al. Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis. Desalination,2008, 227(1-3):327-333.
    [62]Menkouchi Sahli M. A., Tahaikt M., Achary 1., et al. Technical optimisation of nitrate removal from ground water by electrodialysis using a pilot plant. Desalination,2004, 167:359.
    [63]Meyer N., Parker W. J., Van Geel P. J., et al. Development of an electrodeionization process for removal of nitrate from drinking water Part 1:Single-species testing. Desalination,2005,175(2):153-165.
    [64]Pintar A., Batista J.. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors. Journal of Hazardous Materials,2007,149(2):387-398.
    [65]Sa J., Vinek H.. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Applied Catalysis B:Environmental,2005,57(4):247-256.
    [66]Prusse U., Vorlop K. D.. Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A:Chemical,2001,173(1-2):313-328.
    [67]Barrabes N., Just J., Dafinov A., et al. Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor:The effect of copper nanoparticles. Applied Catalysis B:Environmental,2006,62(1-2):77-85.
    [68]Ying-Xue C. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater. Water Research,2003,37(10):2489-2495.
    [69]Ilinitch O. M., Nosova L. V., Gorodetskii V. V., et al. Catalytic reduction of nitrate and nitrite ions by hydrogen:investigation of the reaction mechanism over Pd and Pd-Cu catalysts. Journal of Molecular Catalysis A:Chemical,2000,158(1):237-249.
    [70]Pintar A., Batista J., Musevic I.. Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Applied Catalysis B:Environmental, 2004,52(1):49-60.
    [71]Gauthard F., Epron F., Barbier J.. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water:effect of copper, silver, or gold addition. Journal of Catalysis,2003,220(1):182-191.
    [72]Berndt H., Monnich I., Lucke B., et al. Tin promoted palladium catalysts for nitrate removal from drinking water. Applied Catalysis B:Environmental,2001,30(1-2):111-122.
    [73]Prusse U.. Improving the catalytic nitrate reduction. Catalysis Today,2000,55(1-2):79-90.
    [74]Marchesini F. A., Irusta S., Querini C, et al. Nitrate hydrogenation over Pt,In/Al2O3 and Pt,In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity. Catalysis Communications,2008,9(6):1021-1026.
    [75]Marchesini F. A., Irusta S., Querini C., et al. Spectroscopic and catalytic characterization of Pd-In and Pt-In supported on Al2O3 and SiO2, active catalysts for nitrate hydrogenation. Applied Catalysis A:General,2008,348(1):60-70.
    [76]Yuasa Y., et al. JP08192169[96,192,169]JPN. Kokai Tokyo Koho[P],1996-06-30.
    [77]Fanning J. C. The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews,2000,199:159-179.
    [78]Luk G. K. Experiment Investigation on the Chemical Reduction of Nitrate from Groundwater. Advances in Environment Research,2002(6):441-453
    [79]Murphy A. P. Chemical removal of nitrate from water. Nature,1991(350):223-229
    [80]Ahn S. C., Oh S. Y., Cha D. K.. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. Journal of Hazardous Materials,2008,156(1-3):17-22.
    [81]Rodriguez-Maroto J. M., Garcia-Herruzo F., Garcia-Rubio A., et al. Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere,2009,74(6):804-809.
    [82]Liao C. H., Kang S. F., Hsu Y. W.. Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research,2003,37(17): 4109-4118.
    [83]Su C., Puls R. W.. Nitrate Reduction by Zerovalent Iron:Effects of Formate, Oxalate, Citrate, Chloride, Sulfate, Borate, and Phosphate. Environmental Science & Technology, 2004,38(9):2715-2720.
    [84]Huang C. P., Wang H. W., Chiu P. C.. Nitrate Reduction by Metallic Iron. Water Research, 1998,32(8):2257-2264.
    [85]Zawaideh L. L., Zhang T. C.. The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems. Water Science & Technology, 1998,38(7):107-115.
    [86]Li C. W., Chen Y. M., Yen W. S.. Pressurized CO2/zero valent iron system for nitrate removal. Chemosphere,2007,68(2):310-316.
    [87]Ruangchainikom C., Liao C. H.,Anotai J., et al. Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system. Water Research,2006, 40(2):195-204.
    [88]Huang Y. H.,Zhang T. C.. Effects of low pH on nitrate reduction by iron powder. Water Research,2004,38(11):2631-2642.
    [89]Mishra D., Farrell J.. Understanding Nitrate Reactions with Zerovalent Iron Using Tafel Analysis and Electrochemical Impedance Spectroscopy. Environmental Science & Technology,2005,39(2):645-650.
    [90]Huang Y. H., Zhang T. C.. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research,2005,39(9):1751-1760.
    [91]Westerhoff P., James J..Nitrate removal in zero-valent iron packed columns. Water Research, 2003,37(8):1818-1830.
    [92]Chen Y. M., Li C. W., Chen S. S..Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere,2005,59(6):753-759.
    [93]Liou Y. H., Lo S. L., Lin C. J., et al. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, 2005,127(1-3):102-110.
    [94]Yang G. C. C., Lee H. L.. Chemical reduction of nitrate by nanosized iron:kinetics and pathways. Water Research,2005,39(5):884-894.
    [95]Liou Y. H., Lo S. L., Kuan W. H., et al. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Research, 2006,40(13):2485-2492.
    [96]Sohn K, Kang S. W., Ahn S., et al. Fe(0) Nanoparticles for Nitrate Reduction:Stability, Reactivity, and Transformation. Environmental Science & Technology,2006,40(17): 5514-5519.
    [97]Liu Z., Zhang F. S.. Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresource Technology, 2010,101(7):2562-2564.
    [98]Choe S, Chang Y. Y., Hwang K. Y., et al. Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere,2000,41 (8):1307-1311.
    [99]Wang W., Jin Z., Li T., et al. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere,2006,65(8):1396-1404.
    [100]Ponder S., Darab J., Mallouk T.. Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 2000,34(12):2564-2569
    [101]Wang C. B., Zhang W. X.. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science & Technology,1997,31(7): 2154-2156.
    [102]Varanasi P., FullanaA., Sidlm S.. Remediation of PCB contaminated soils using iron nano-particles. Chemosphere,2007,66(6):1031-1038.
    [103]Tiehm A., KraBnitzer S., Koltypin Y., et al. Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrasonics Sonochemistry,2009,16(5): 617-621.
    [104]Lin Y.T., Weng C. H., Chen F. Y. Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separation and Purification Technology,2008,64(1):26-30.
    [105]Zhu H., Jia Y., Wu X., et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials,2009,172(2-3): 1591-1596.
    [106]Liao C. J., Chung T. L., Chen W. L., et al. Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. Journal of Molecular Catalysis A:Chemical,2007,265(1-2):189-194.
    [107]Feng J., Lim T. T.. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:comparison with commercial micro-scale Fe and Zn. Chemosphere,2005,59(9):1267-1277.
    [108]Wang Q., Feng C., Zhao Y., et al. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology,2009,100(7):2223-2227.
    [109]Fernandez-Nava Y., Maranon E., Soons J.,et al. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresource Technology,2008,99(17): 7976-7981.
    [110]Modin O., Fukushi K., Nakajima F., et al. Performance of a membrane biofilm reactor for denitrification with methane. Bioresource Technology,2008,99(17):8054-8060.
    [111]Gibert O., Pomierny S., Rowe I., et al. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology,2008,99(16):7587-7596.
    [112]Hagman M., Nielsen J. L., Nielsen P. H., et al.Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 2008,42(6-7):1539-1546.
    [113]Campos J. L., Carvalho S., Portela R., et al. Kinetics of denitrification using sulphur compounds:Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology,2008,99(5):1293-1299.
    [114]Sher Y., Schneider K., Schwermer C. U., et al. Sulfide-induced nitrate reduction in the sludge of an anaerobic digester of a zero-discharge recirculating mariculture system. Water Research,2008,42(16):4386-4392.
    [115]Smith R. L., Buckwalter S. P., Repert D. A., et al. Small-scale, hydrogen-oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Research,2005,39(10):2014-2023.
    [116]Foglar L., Briski F., Sipos L., et al. High nitrate removal from synthetic wastewater with the mixed bacterial culture.Bioresource Technology,2005,96(8):879-888.
    [117]Schnobrich M. R., Chaplin B. P., Semmens M. J., et al. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Research,2007,41(9):1869-1876.
    [118]Ziv-El M. C., Rittmann B. E.. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Research,2009,43(1):173-181.
    [119]Vasiliadou I. A., Pavlou S., Vayenas D. V.. A kinetic study of hydrogenotrophic denitrification. Process Biochemistry,2006,41(6):1401-1408.
    [120]Tanaka Y., Yatagai A., Masujima H., et al. Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium. Bioresource Technology,2007,98(4):787-791.
    [121]Jing C., Ping Z., Mahmood Q.. Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource Technology,2008,99(13):5520-5527.
    [122]Fierro S., Sa'nchez-Saavedra M., Copalcu'a C.. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresource Technology,2008,99(5):1274-1279.
    [123]Rivett M. O., Buss S. R., Morgan P., et al.Nitrate attenuation in groundwater:A review of biogeochemical controlling processes. Water Research,2008,42(16):4215-4232.
    [124]Ghafari S., Hasan M., Aroua M. K.. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresource Technology,2008,99(10):3965-3974.
    [125]Zhang L. H., Jia J. P., Ying D. W., et al. Electrochemical effect on denitrification in different microenvironments around anodes and cathodes. Research in Microbiology, 2005,156(1):88-92.
    [126]Park H. I., Kim D. K., Choi Y., et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochemistry,2005,40(10): 3383-3388.
    [127]Islam S., Suidan M. T.. Electrolytic denitrification:long term performance and effect of current intensity. Water Research,1998,32(2):528-536.
    [128]Prosnansky M., Sakakibarab Y., Kuroda M.. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration. Water Research,2002, 36(19):4801-4810.
    [129]Sakakibara Y. M., Nakayama T.. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification. Water Research,2001,35(3):768-778.
    [130]Till B. A., Weathers L. J., Alvarez P. J. J.. Fe(0)-Supported Autotrophic Denitrification. Environmental Science & Technology,1998,32(5):634-639.
    [131]Kielemoes J., De Boever P., Verstraete W.. Influence of Denitrification on the Corrosion of Iron and Stainless Steel Powder. Environmental Science & Technology,2000,34(4): 663-671.
    [132]Shin K. H., Cha D. K.. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere,2008,72(2):257-262.
    [133]Biswas S., Bose P.. Zero-Valent Iron-Assisted Autotrophic Denitrification. Journal of Environmental Engineering,2005,131(8):1212-1220.
    [134]Jha D., Bose P.. Use of pyrite for pH control during hydrogenotrophic denitrification using metallic iron as the ultimate electron donor. Chemosphere,2005,61(7):1020-1031.
    [135]Buchanan R. E., Gibbens N. E伯杰细菌鉴定手册(第八版).北京:科学出版社,1984.
    [136]钱存柔. 微生物学实验.北京:北京大学出版社,1985.
    [137]王薇.包覆型纳米铁的制备及用于地下水污染修复的实验研究:[博士学位论文].天津:南开大学,2008.
    [138]孙丽莉. 铁系复合材料的制备及去除地下水中硝酸盐氮的研究:[硕士学位论文].天津:南开大学,2008.
    [139]王丹.空气稳定性纳米铁的合成及其修复地下水中TCE污染研究:[硕士学位论文].天津:南开大学,2008.
    [140]李铁龙, 王丹, 金朝晖等.油酸钠/Fe纳米粒子的制备及其脱氯性能研究.功能材料,2008,39(8):1385-1388.
    [141]耿兵.壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究:[博士学位论文].天津:南开大学,2009.
    [142]Geng B., Jin Z., Li T., et al. Kinetics of hexavalent chromium removal from water by chitosan-FeO nanoparticles. Chemosphere,2009,75(6):825-830.
    [143]Geng B., Jin Z., Li T., et al. Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water.Science of the Total Environment,2009, 407(18):4994-5000.
    [144]国家环境保护总局.水和废水监测分析方法.(第四版).北京:中国环境科学出版社,2002.
    [145]Yoshinari T., Knowles R.. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochemical and Biophysical Research,1976,69(3):705-710.
    [146]Chang C. C., Tseng S. K., Huang H. K.. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresource Technology,1999,69(1):53-58.
    [147]Lee K. C., Rittmann B. E.. Effect of pH and precipitation on autohydrogenotrophic dentrification using the hollow-fiber membrane-biofilm reaction. Water Research,2003, 37(7):1551-1556.
    [148]Li X., Shang C.. The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere,2007,66(9):1652-1659.
    [149]Lehman S. G., Badruzzaman M., Adham S., et al. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment. Water Research,2008,42(4-5): 969-976.
    [150]Patel A., Zuo G., Lehman S.G., et al. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate. Water Research,2008,42(16): 4291-4298.
    [151]Van Ginkel S. W., Ahn C. H.. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). Water Research,2008, 42(15):4197-4205.
    [152]Okeke B. C., Giblin T., Frankenberger Jr W. T.. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environmental Pollution,2002,118(3):357-363.
    [153]Matos C. T., Velizarov S., Crespo J. G., et al. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research,2006,40(2):231-240.
    [154]Logan B. E., LaPoint D.. Treatment of perchlorate-and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. Water Research,2002,36(14): 3647-3653.
    [155]Dugan N. R., Williams D J., Meyer M., et al. The impact of temperature on the performance of anaerobic biological treatment of perchlorate in drinking water. Water Research,2009,43(7):1867-1878.
    [156]Xu J., Dozier A., Bhattacharyya D.. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. Journal of Nanoparticle Research,2005,7(4-5):449-467.
    [157]Jovanovic G. N., Plazl P. Z., Sakrittichai P., et al. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Industrial & Engineering Chemistry Research, 2005,44(14):5099-5106.
    [158]Feng J., Lim T. T.. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe:Analysis of linear free energy relationship. Chemosphere,2007, 66(9):1765-1774.
    [159]Xu J., Bhattacharyya D.. Membrane-based bimetallic nanoparticles for environmental remediation:Synthesis and reactive properties. Environmental Progress,2005,24(4): 358-366.
    [160]Zhang W. H., Quan X., Wang J. X., et al. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere, 2006,65(1):58-64.
    [161]Wu L., Ritchie S. M. C.. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere,2006,63(2):285-292.
    [162]李铁龙,孙丽莉,金朝晖等.纳米铁系双金属复合材料还原水中硝酸盐氮.吉林大学学报(工学版),2009,39(2):362-367.
    [163]Huang Y. H., Zhang T. C.. Kinetics of nitrate reduction by iron at near neutral pH. Journal of Environmental Engineering,2002,128(7):604-611.
    [164]Green M., Schnitzer M., Tarre S.. Kinetics of a fluidized-bed reactor for ground-water denitrification. Applied Microbiology and Biotechnology,1995,43(1):188-193.
    [165]Kornaros M., Lyberatos G.. Kinetics of aerobic growth of a denitrifying bacterium, Pseudomonas denitrificans, in the presence of nitrates and/or nitrites. Water Research, 1997,31(3):479-488.
    [166]Dincer A. R., Kargi F.. Kinetics of sequential nitrification and denitrification process. Enzyme and Microbial Technology,2000,27(1-2):37-42.
    [167]Foglar L., Briski F.. Wastewater denitrification process—the influence of methanol and kinetic analysis. Process Biochemistry,2003,39(1):95-103.
    [168]Marazioti C., Kornaros M., Lyberatos G.. Kinetic modeling of a mixed culture of Pseudomonas denitrificans and Bacillus subtilis under aerobic and anoxic operating conditions. Water Research,2003,37(6):1239-1251.
    [169]Melitas N., Chuffe-Moscoso O., Farrell J.. Kinetics of Soluble Chromium Removal from Contaminated Water by Zerovalent Iron Media:Corrosion Inhibition and Passive Oxide Effects. Environmental Science & Technology,2001,35(19):3948-3953.
    [170]Cheng 1. F.,Muftikian R., Fernando Q., et al. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere,1997,35(11):2689-2695.
    [171]Westerhoff P.. Reduction of nitrate, bromate, and chlorate by zero valent iron. Journal of Environmental Engineering,2003,129(1):10-16.
    [172]Choe S., Liljestrand H. M., Khim J.. Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry,2004,19(3):335-342.
    [173]Li X. Q., Zhang W. X.. Iron Nanoparticles:the Core-Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir,2006,22(10):4638-4642.
    [174]Schwartz E., Gerischer U., Friedrich B.. Transcriptional Regulation of Alcaligenes eutrophus Hydrogenase Genes. Journal of Bacteriology,1998,180(12):3197-3204.
    [175]Bernhard M., Schwartz E., Rietdorf J., et al. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. Journal of Bacteriology,1996,178(15):4522-4529.
    [176]Phenrat T., Long T. C., Lowry G. V., et al. Partial Oxidation ("Aging") and Surface Modification Decrease the Toxicity of Nanosized Zerovalent Iron. Environmental Science & Technology,2009,43(1):195-200.
    [177]Wiesner M. R., Lowry G. V., Alvarez P., et al. Assessing the risks of manufactured nanomaterials. Environmental Science & Technology,2006,40(14):4336-4345.
    [178]Lee C., Kim J. Y., Lee W. I., et al. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environmental Science & Technology,2008,42(13):4927-4933.
    [179]Auffan M., Achouak W., Rose J., et al. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environmental Science & Technology,2008,42(17):6730-6735.
    [180]Xiu Z., Jin Z., Li T., et al. Effect of nano-scale zero-valent iron particles on a mixed culture dechlorinating Trichloroethylene. Bioresource Technology,2010,101(4): 1141-1146.
    [181]修宗明,李铁龙,金朝晖等.纳米铁为脱氯菌供电降解三氯乙烯实验研究.环境科学,2009,30(6):1791-1796.
    [182]修宗明.纳米铁与脱氯菌耦合修复地下水中三氯乙烯及其毒理试验研究:[博士学位论文].天津:南开大学,2009.
    [183]Sprycha R., Oyama H. T., Zelenev A., et al. Characterization of polymer-coated silica particles by microelectrophoresis. Colloid & Polymer Science,1995,273(7):693-700.
    [184]Partch R., Gangolli S. G., Matijevi E., et al. Conducting polymer composites: Surface-induced polymerization of pyrrole on iron(Ⅲ) and cerium(Ⅳ) oxide particles. Journal of Colloid and Interface Science,1991,144(1):27-35.
    [185]Marinakos S. M., Brousseau L. C., Jones A., et al. Template synthesis of one-dimensional Au, Au-poly(pyrrole), and poly(pyrrole) nanoparticle arrays. Chemistry of materials,1998, 10(5):1214-1219.
    [186]Ramos J., Millan A., Palacio F.. Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer,2000,41(24):8461-8464.
    [187]Khan A. K., Ray B. C., Dolui S. K.. Preparation of core-shell emulsion polymer and optimization of shell composition with respect to opacity of paint film. Progress in Organic Coatings,2008,62(1):65-70.
    [188]Taguchi Y., Yokoyama H., Kado H., et al. Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloids and surfaces A:Physicochemical and Engineering Aspects,2007,301(1-3):41-47.
    [189]钟淮真,陈日耀,郑曦等.改性壳聚糖质子交换膜在隔膜电解制备FeO42-中的应用.电化学,2006,12(1):35-39.
    [190]许勇,洪华,刘昌胜.壳聚糖非对称多孔膜的制备和性能研究.华东理工大学学报.2004,30(6):644-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700