烟道气微生物脱硫反应器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤是我国目前取得能源的主要方式之一,可是因为燃煤造成的二氧化硫污染一直是困扰我国环境的一大难题。我国燃煤产生的二氧化硫废气的处理方式仍以石灰石碱液收法为主,这种的脱硫方式存在设备投资高,副产物难以处理造成新的环境污染等缺点,因此必须尽快探寻一种新的脱硫模式。
     生物脱硫以其设备投资简单,无副产物,运行费用低等优点成为目前研究较广泛的一种脱硫新方法,由于目前的研究不够深入大部分都停留在在理论阶段,所以离实际应用还存在较多问题。本文在研究脱硫菌(硫酸盐还原菌)的最佳培养条件、菌种的驯化及初步脱硫研究、吸附固定化及最佳条件的基础上,实验室制作了一套生物脱硫反应器,并进行了二氧化硫废气处理模拟研究,最后利用数据分析软件进行了处理参数优化。本文主要研究内容和结论如下:
     硫酸盐还原菌是革兰氏阴性菌,最佳培养条件为:接种生物量10%、培养基pH=7.0、温度35℃、培养时间60h;硫酸盐还原菌能以甲酸钠、乙酸钠、乙醇、丙酸钠、乳酸、葡萄糖等有机物作为电子供体进行硫酸盐的还原转化;硫酸盐还原菌可以利用硫酸盐,亚硫酸盐和硫代硫酸盐作为电子受体,但是不能利用单质硫作为电子受体;该菌种有明显的脱硫能力,而且经过二氧化硫通气驯化后脱硫率有了明显提高从42.6%提高到了72.5%。
     生物陶粒是脱硫菌的理想载体,吸附能力可以达到23.6mg/g,用生物陶粒吸附固定化脱硫菌种的最佳生物接种量为10%,最佳pH值在6.5到7.5之间,而且实验结果表明:陶粒和培养基相互作用可以使培养基向6.5到7.5变化,这也印证了该生物陶粒是固定化脱硫菌的理想载体。经过固定化后的脱硫菌脱硫能力较之没固定化之前提高了20.7%,达到了87.3%。
     自制了一套生物脱硫反应器,以生物陶粒为脱硫菌载体进行挂膜脱硫实验,结果表明在陶粒填装高度为400mm和循环液亚铁离子为1.0g/L时对反应器脱硫运行有最好的促进作用。在单因素对反应器脱硫率影响的实验中,最佳条件为:S02入口浓度小于1500 mg/m3,入口气体流量小于100 L/h,循环液喷淋量15L/h和循环液pH值7.0,脱硫率最高可以保持在90%以上
     最后用SAS数据分析软件设计了响应面分析实验,进行了生物反应器脱硫参数优化,并得到了以脱硫率为响应值的方程:
     经过优化后的生物反应器最佳工作参数为SO2入口浓度值923.55mg/m3,入口气体流量值90.225L/h,循环液喷淋量13.8837 L/h和循环液pH值7.1172,在最佳参数下反应器脱硫率可以达到95%以上,利用反应器方程可以模拟现实条件下环境的变化对脱硫塔以及脱硫率的影响,为生物脱硫的中试研究以至实际应用提供了一定的参考价值。
At present, coal is the main way to obtain energy in China, but the SO2 pollution caused by coal burning has been a major environmental problem. The most popular way to treatment SO2 pollution is still the limestone lye absorption method,but this treatment mode exists shortcoming such as high equipment investment, difficult disposal by-product etc.So,we must pursue a kind of new desulfurization mode as soon as possible.
     Biological desulfurization has became a new technical developing broadly because of its simple equipment investment,no by-product,low operate expense and so on.But most research are at primary stage,we have many problems to solve before practical application.
     This paper studied the optimal culture conditions of desulfurization bacterium (sulfate reducing bacteria,SRB),the bateria domesticated and the preliminary study of desulfurization, absorb immobilization and the best condition,on this basis,we have made a set of biological desulfurization reactor in the lab and carried on the simulation study of dealing with SO2 waste gas. At last we utilized data analysis software to handle parameter optimize.The main research contents and conclusion in this paper as follows:
     Sulfate reducing bacteria are Gram-negative bacteria,the optimal culture condition of SRB is inoculation amount 10%, pH=7.0, temperature 35℃and culture time 60h, SRB are able to use sodium formate, ethanol, propionate, lactate, glucose and other organic compounds as electron donors for sulfate reduction transformation; SRB can use sulfate, sulfite and thiosulfate as electron acceptor, but can not use sulfur as electron acceptor.It's ablity of SO2 removal rate was 42.6% without domesticated, but through the domesticated by ventilate SO2,the tremoval rate had markly improved to 72.5%.
     Bio-ceramic is an ideal carrier for desulfurization bacterium, adsorption capacity can up to 23.6mg/g.Use the bio-ceramic to absorb the immobilized desulfurization bacteica,the best bacteria inoculum was 10%,the best pH value was from 6.5 to 7.5.And the result show that:bio-ceramic and medium interaction can make medium pH change toward 6.5 to 7.5,and this confirmed that the bio-ceramic is the ideal carrier for desulfurization bacterium.After immobilized,the bacteria's SO2 removal rate has increased to 87.3%,20.7% higher than pre-immobilized.
     Made a set of biological desulfurization reactor,used the bio-ceramic as the absorb carrier for the bacteria to membrane desulfurization experiment.The result shows that:when the bio-ceramic filled height of 400mm and the Fe2+ concentration in recycling liquid was 1.0g/L,can promoted the SO2 removal rate of the reactor. In the single factor effect on the desulfurization rate experiment,the best condition were:the inlet concentration of SO2 less than 1500mg/m3,the inlet gas flow less than 100L/h,the volume of circulating liquid spray 15 L/h,and the circulating liquid pH was 7.0,the highest rate of desulfurization can be maintained more than 90%.
     Finally,we used the SAS data analysis software to design the response surface experiment,optimized the desulfurization parameters of bioreactor,obtained the desulfurization rate of response's equation:
     After the optimization,the optimum operating parameters were:the inlet concentration of SO2 was 923.55mg/m3,the inlet gas flow was 90.225L/h,the volume of circulating liquid was 13.8837L/h,and the circulating liquid pH was 7.1172.Under this conditions, the desulfurization rate of the bioreactor can reach more than 95%.With the reactor equation we can simulated the effect of the desulfurization tower and the desulfurization rate which change in the environment condition.It provided the reference value to the biological desulfurization as well as the practical application.
引文
[1]谭钦文,蒋文举,刘成军.生物脱硫中细菌的载体培养与动力学研究[J].环境污染与防治,2004,41(1):15-18.
    [2]李焕,曾日新.烟气脱硫技术的发展及其应用前景[J].环境保护科学,2006,7:26-29.
    [3]曹桂萍,黄兵孙,佩石等.我国二氧化硫烟气治理技术现状及发展趋势[J].云南环境科学,2002,21(4):86-87.
    [4]钟秦等.燃煤烟气脱硫脱硝技术及工程试例[J].化学工业出版社,2002,12(3):116-118.
    [5]孙先锋,郭爱莲,朱宏莉等.氧化亚铁硫杆菌的分离及其生长条件的研究[J].西北大学学报(自然科学版),2000,18(2):251-253.
    [6]淳于菱.几种先进烟气脱硫技术综合性能评价及在我国应用前景分析[J].电力环境保护,2000,24(3):101-103.
    [7]李家瑞等.工业企业环境保护[M].北京:冶金上业出版社,1992,59-61.
    [8]Schoubye,P.cops. SNOX Process Removes NOX and SOX as Sulfuric[J]. Acid,Proc.Util.High Sulfur Coal Proc.Int,1989,33 (5):2534-2538.
    [9]Halsbeck.J.L.Life cycle test of NOX-SOX Process[J]. Proc.Annu.Int.Coal conf,1989,2(14): 2176-2180.
    [10]石惠芳.微生物烟气脱硫技术及其研究方向[J].郑州轻工业学院学报,2002,17(2):100-103.
    [11]杨春平等.中国燃煤锅炉烟气脱硫技术的发展前景[J].环境科学环境进展,1997,5(5):46-49.
    [12]钟秦等.燃煤烟气脱硫脱硝技术及工程试例[M].北京:化学工业出版社,2002,25-27.
    [13]陶其鸿等.锅炉烟气SO2防治对策探讨[J].治金环境保护,1998,25(1):25-30.
    [14]曹桂萍,黄兵.我国二氧化硫烟气治理技术现状及发展趋势[J].云南环境科学,2002,2(1:)143-46.
    [15]陶其鸿,刘跃军.锅炉烟气SO2防治对策探讨[J].冶金环境保护,1998,12(1):25-30.
    [16]武秀文.烟气脱硫技术的研究[J].环境保护,2002,15(10):7-9.
    [17]何运昭,刘林,罗卫玲.二氧化硫废气的治理方法[J].化工环保,2001,21(1):16-19.
    [18]王安,张永奎,陈华.普云霞.微生物法烟气脱硫技术研究[[J].重庆环境科学,2001,101(5):26-30.
    [19]程秀菊,肖佩林.喷雾干燥吸收去除烟道气中的SO2[J].环境学,1993,12(2):105-110.
    [20]周荣迁.高效干法脱硫的研究与开发[J].环境与开发,2000,15(3):1-2.
    [21]庚晋,白木,周结.烟气脱硫的发展技术与产业化探讨[J].煤化工,2003,14(6)61-64.
    [22]陈峰.我国烟气脱硫技术获新突破[J].科学时报,2001,13(3):31-33.
    [23]胡建民.电力工业废气治理技术[M].北京:中国环境出版社,1993,101-105.
    [24]李晓东.生物膜法脱除烟气中SO2的试验研究[D].沈阳:东北大学,2005,97-99.
    [25]LeeKH, SubletteKL.Simutaneous combined microbial removal of sulfur dioxide and nitric oxide from a gas stream[J]. Applied Biochemistry and Biotechnology,1991,623-634.
    [26]Punjai T. Selvaraj, Mark, HIittle&EeicN.little. Analysis of immobilized cell bioreactors for desulfurization of flue[J].gases and sulfate/sulfate-laden wastewater Biodegradation.,1997,65 (14):1705-1714.
    [27]LeathanW.W., etal. The Autotrophie Oxidation of Tron by a New Baeterium[J]. Baeteriology,1956,72(5):700-703.
    [28]雷仲存等.工业脱硫技术[M].北京:化学工业出版社,2001,201-205.
    [29]吴根,夏涛等.微生物脱硫技术的现状及发展前景[J].环境保护,2001,17(1):21-22.
    [30]刘振盈,领望明等.多能硫杆菌Rubisco基因的克隆及限制性内切酶图谱分析[J].山东大学学报,1996,31(1):101-107.
    [31]曾庭华.湿式烟气脱硫吸收塔系统的设计和运行分析[J].电力环境保护,2002,32(2):225-230.
    [31]杨景亮.废水中硫酸盐生物还原技术研究[J].环境科学研究,1999,12(3):6-9.
    [33]李亚新.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水,2000,16(2):13-17.
    [34]左剑恶.高浓度硫酸盐有机废水生物处理新工艺的研究[D].清华大学工学博士学位论文,1995,68-72.
    [35]曹从荣,柯建明等.荷兰的烟气生物脱除工艺[J].中国环保产业,2000,20(5):38-39.
    [36]刘宏斌,刘转年等.固定化微生物在废水处理中的应用[J].环境污染治理技术与设备,2002,3(5):61-65.
    [37]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002,2-6.
    [38]陈勇生,孙启俊,陈钧等.重金属的生物吸附技术研究[J].环境科学进展,1997,5(6):34-43.
    [39]Kemredy J.Fetal. ImmobilizedlivingcellsnadhteirpaPlications[J]. APPI.Bioeheng.Bioengy, 1983,26(4):189-281.
    [40]曹国民,赵庆祥,张彤.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程,2000,18(5):17-19.
    [41]田建民.固定化光合细菌处理焦化废水的研究[J].太原理工大学科技成果鉴定资料,2001,19(10):3-7.
    [42]曹亚莉,田沈等.固定化微生物细胞技术在废水处理中的应用[J].微生物学通报,2003,30(3):77-81.
    [43]李亚新,陈丽华.利用硫酸盐还原菌烟道气生物脱硫技术[J].环境科学与技术,2002,31(4):127-129.
    [44]朱乐辉.朱衷榜.水处理滤料-球形轻质陶粒的研制[J].环境保护,2000,15(1):35-39.
    [45]江萍.国产轻质球型陶粒用于曝气生物陶粒滤池的研究[J].环境科学学报,2002,22(4):459-464.
    [46]代文双.轻质球形水处理滤料的研制[J].本溪冶金高等专科学校学报,2002,26(4):14-15.
    [47]耿土锁.炼油废水深度净化与回用的实验研究[J].江苏环境科技,2000,13(1):6-8.
    [48]张捍民.生物陶粒柱-PC-膜过滤装置系统处理饮用水试验研究[J].城市环境与城市生态,2001,14(6):54-56.
    [49]王士龙,郑礼胜.用陶粒处理含锌废水[J].化学推进剂与高分子材料,2002,3:34-35.
    [50]郑礼胜,王士龙,颜世柱.用陶粒处理含镍废水的试验研究[J].农业环境保护,1999,18(5):231-233.
    [51]郑礼胜.含钡陶粒处理六价铬废水[J].污染防治技术,1999,12(1):38-39.
    [52]王士龙,张虹,谢文海,郑礼胜.用陶粒处理含铅废水[J].济南大学学报(自然科学版),2003,17(3):295-297.
    [53]E.S.Nekub.Biofiltration of ozonated humic water in expanded clay aggregate filters[J]. Water Science and Technology,1999,40(9):165-172.
    [54]T.Zhu.Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands[J]. Water ScienceandTechnology, 1997,35(5):103-108.
    [55]Sublette KL, Gwozdz KJ. An economic analysis of microbial reduction of sulfu Dioxide as a means of byproduct recovery from regenerable processes for flue gas desulfurization[J].App-lied Biochemistry and Biotechnology,1998,38(6):156-163.
    [56]李刚欧阳锋杨立中.ABR反应器性能研究[J].回顾与总结中国沼气,2001,19(3):66-69.
    [57]Tilche A, Vieira S M M. Discussion report on reactor design of anaerobic filters and sludge bed reactors [J].WatSciTech,1991,24(8):193-206.
    [58]黄永恒,钱易.折流式厌氧反应器的工艺特性及其运用[J].中国给水排水1999,15(7)18-20.
    [59]Bachmann A., Beard V.L. and McCarty P.L. Performance characteristics of the anaerobic baffled reactor[J]. Wat.Res,1985,19(1):99-106.
    [60]王玉莲,蔡昌凤.应用配方均匀设计确定粉煤灰/生物质生物陶粒的最佳配比[J].安徽工程科技学院学报,2007,(3):10-15.
    [61]石惠芳.微生物烟气脱硫技术及其研究方向[J].郑州轻工业学报,2002,33(2):201-206.
    [62]熊英.氧化亚铁硫杆菌的驯化与诱变选育[J].矿产综合利用,2001,29(6):81-86.
    [63]王玉莲.粉煤灰/生物质生物陶粒的制备及固定化优势菌处理酸性矿井水[D].安徽工程科技学院硕士论文,2007.9-12.
    [64]张东晨.微生物脱除煤炭中的黄铁矿硫[M].合肥:合肥工业大学出版社,2005,60-65.
    [65]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2001,116-118.
    [66]王英刚.生物滴滤法脱除烟气中SO2的研究[D].东北大学博士论文,2005.20-25.
    [67]马保国,胡振琪.高效硫酸盐还原菌的分离鉴定及其特性研究[J].农业环境科学学报,2008,35(14):608-611.
    [68]小佩尔扎MJ,里德RD编著.微生物学[M].武汉大学生物学系微生物教研室译,北京:科学出版社,1987,271-286.
    [69]T马迪根,JM.马丁克.微生物生物学[M].北京:科学出版社,2001,361-365.
    [70]黄兵.固定化微生物处理SO2气体的实验研究[J].贵州环保技,2004,41(12):126-128.
    [71]王鹏飞.生物滴滤塔处理“三苯”废气的影响因素研究[J].哈尔滨工业大学学报,2003,35(1):73-80.
    [72]赵海.高活性吸收剂联合脱硫脱氮技术的研究[D].华北电力大学硕士论文,2000.4-6.
    [73]Chang.J.C.S.Pilot. Plant Evaluation of Enhanced E-Sox Process Acurex Corp[J]. Rep Announce Index,1990,56(21).2501-2513.
    [74]李国文.生物法净化挥发性有机废气VOC的研究[D].西安:西安建筑科技大学硕士论文,1999,21-26.
    [75]章银良,基于响应面分析法优化腌鱼工艺研究[J].安徽农业科学,2009.37(7):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700