自组装法制备碳纳米管-DNA生物传感器及其电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于碳纳米管(CNTs)的DNA生物传感器兼具碳纳米管良好的导电性和DNA分子自识别性等优异的性能,在生物检测、诊断、电化学检测等方面均表现出较高的效率。本论文通过自组装技术制备多壁碳纳米管(MWNTs)-DNA生物传感器,并对其电化学性能进行检测,初步探讨了该生物传感器对对苯二酚的检测。
     本文首先对多壁碳纳米管进行混酸处理,用傅立叶红外光谱检测处理前后多壁碳纳米管结构的变化,证明经过混酸处理后的多壁碳纳米管的表面接上了羧基基团,成为羧基修饰的碳纳米管。之后在偶联活化剂1-乙基-(3二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和N-羟基硫化琥珀酰亚胺(NHS)作用下,将COOH-MWNTs和NH2-DNA依次通过酰胺键组装在氨基修饰的Pt电极表面,傅立叶红外光谱表明多壁碳纳米管和DNA通过酰胺键连接起来,证明DNA共价修饰在碳纳米管上;利用原子力显微镜和场发射扫描电镜分别对多壁碳纳米管电极和DNA修饰的多壁碳纳米管电极进行表面形貌的检测,结果表明多壁碳纳米管和DNA都成功的组装在Pt电极表面,并且形成的膜排列有序,结构均匀。
     以铁氰化钾为指示剂,用循环伏安法研究制备的MWNTs-DNA生物传感器的电化学行为。多次循环扫描结果显示电极具有良好的重复性,表明MWNTs-DNA生物传感器具有良好的稳定性;并且随着扫描速度的加快,氧化峰电位正移,还原峰负移,峰电流与扫速的平方根(V~(1/2))成正比,说明传感器表面发生扩散控制的准可逆反应。
     最后,在pH为7.30的生理盐水磷酸盐缓冲溶液中,利用MWNTs-DNA生物传感器,通过循环伏安法和紫外光谱法检测对苯二酚。结果显示:在DNA杂交过程中,对苯二酚与其相互作用后,紫外光谱的吸收峰峰形以及强度改变较大,循环伏安法氧化峰正向移动,峰电流降低,从而推断出,在DNA杂交过程中对苯二酚与DNA以Π-Π化学键和静电结合为主。
The DNA biosensor based on carbon nanotubes(CNTs) possess both the excellent electricity of CNTs and the self- identification of DNA, and it exhibits preferable efficiency in the fields of biological detecting, diagnosis, electrochemistry detecting and many others. In the paper, The multi-walled carbon nanotube(MWNTs)-DNA biosensor was built by self-assembly. The electrochemistry of MWNTs-DNA biosensor was detected and the detect to hydroquinone was discussed primarily.
     First, the MWNTs were functionalized by the mixture of H_2SO_4 and HNO_3, FTIR spectra suggests that carboxylic acid groups were introduced on the surfaces of the nanotubes. Then in the presence of 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy- succinimide (NHS), the carboxylic MWNTs were assembled on amine-modified platinum electrode surface and followed by the assembly of NH_2-DNA with the carboxyl–amine coupling , respectively. Fourier transform infrared(FTIR) demonstrated that NH_2-DNA formed covalent amino bonds with the COOH- MWNTs. Atomic force microscopy (AFM) and Field emission electron microscopy (FEG-SEM) indicating that the MWNTS had been organized on amine-modified Pt electrode surface and DNA are assembled on the MWNTs, forming self-assembled momolayers with orderly orientation and uniform structure.
     Cyclic voltammetry was used to detect the electrochemistry of MWNTs-DNA biosensor and Fe(CN)_6~(4-)/ Fe(CN)_6~(3-) was selected as indicator for their cyclic voltammetric responses. The result indicateing the MWNTs-DNA biosensor has good stability. When the scan rate was increased, the oxidation peak shifted to positive electrode and reduction peak currents shifted to negative electrode, the peak currents are proportional to the square root of the scan rate, indicating a surface-controlled redox process and a diffusion controlled mechanism.
     Finally, we used the MWNTs-DNA biosensor to detect hydroquinones in PH 7.30 normal saline phosphate buffer solution, cylic voltammetry and ultraviolet-visble spectrophotometry were chosed. The result shows that the peaks and the intension of absorption of ultraviolet-visible spectra in hybridization changed obviously, the oxidated peak of cyclic voltammetry shifted to positive and the peak currents decreased. This fact signified that the electrostatic attraction andΠ-Πbanding between hydroquinones and DNA are the major modes for the interaction in hybridization.
引文
[1] S. Iijima. Helical microtubules of graphic carbon [J]. Nature, 1991, 354: 56-58.
    [2]宋小杰,徐静,魏先文.碳纳米管的化学修饰研究进展[J].合成化学, 2006, 2(14):107-112.
    [3] P Calvert.Nanotube composites: A recipe for strength.Nature,1999,399(6733):210~211.
    [4] M M J Treacy,T W Ebbesen, J M Gibson et al. Exceptionally high young's modulus observed for individual carbon nanotubes[J].Nature,1996,381(6584):678~680.
    [5] J P Salvetat,A D Briggs,J M Bonard et al.Elastic and shear module of single wall cathon nanotube ropes[J].phys Rev Lett,1999,82(5):944~947.
    [6] E W Wong,P E Sheehan,C M Liebe et al.Nanobeam Mechanics:Elasticity,Strength and Toughness of Nanorods and Nanotubes[J].Science,1997,277(5334):1971~1975.
    [7] Huang W J,Lin Y,Taylor S et al.Sonication-assisted functionalization and solubilization of carbon nanotubes[J].Nano Lett,2002,2(3):231~234.
    [8] Wagner H D,Lourie O,FeldmanY.Stress-induced fragmentation of Multiwall carbon nanotubes in a polymer matrix[J]. Applied Physics Letters,1998,72(2):188~190.
    [9] Kuzumaki T,Kitakata S,Enomoto K et al.Dynamic observation of The bending behavior of carbon nanotubes by nanoprobe manipulation in TEM[J].Carbon,2004,42 (11):2343~2345.
    [10] Philippe Poncharal, Z L Wang, Daniel Ugarte et al. Electrostatic Deflections and Electronmecha-nical resonances of Carbon Nanotubes[J].Science,1999,283(5407): 1513~1515.
    [11] P Kim,C M.Lieber.Nanotube Nanotweezers[J].Science,1999,286(5447):2148~2150.
    [12] P M Ajayan,S Iijima.Capillarity-induced filling of Carbon Nanotubes[J].Nature, 1993,361 (6410): 333~334.
    [13] V Brotons, B Coq,J M Planeix.Catalytic Influence of Bimetallic Phase for the Synthesis of Single-walled Carbon Nanotubes[J].J Mol Catal A: Chemical, l997,116: 397~403.
    [14] J M Planeix,N Coustel,B Coq et al.Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis[J].TAM Chem Soc,1994,116(17):7935~7936.
    [15] Y Zhang,H B Zhang,C D Lin et al.Preparation Characterization and Catalytic Hydroformylation Properties of Carbon Nanotubes-supported Rh-phosphine Catalysts[J].Appl Catal A:general, 1999,187(2): 213~224.
    [16]李春波,潘伟雄,邱显清.碳纳米管的制备及其在钉络合物催化氧化环己烯中的应用[J].天然气化工,2002,27(5):8~11.
    [17] Ashish Modi,Nikhil Koratker,Pulickel M. Ajayan et al.Miniaturized Gas Ionization SensorsUsing Carbon Nanotubes[J].Nature,2003,424 (6945) :171~174.
    [18] K G Ong,K F Zeng,C A Grimes et al.A Wireless,Passive Carbon Nanotube-Bassed Gas Sensor[J].IEEE, 2002,2(2):82~88.
    [19] K G Ong,C A Grimes.A Resonant Printed-Circuit Sensor For Remote Query Monitoring Of Environmental Parameters[J].Smart Mater Struct,2000,(9):421~428.
    [20] K G Ong,J S Bitler,C A Grimes,at el.Remote Query Rresonant-circuit Sensors For Monitoring Of Bacteria Growth: Application To Food Quality Control[J].Sensors,2002,(2):219~232.
    [21] J P Novak,E S Snow,E J Houser et al.Nerve agent detection using networks of single-walled carbon nanotubes[J].Applied Physics Letters,2003,83 (19):4026~4028.
    [22] J W Mintmire,B L Dunlap,C T White.Are fullerene tubules metallic[J].Phys Rev Lett,1992, 68 (5):631~634.
    [23] P Delaney,H J Choi,J Ihm,et al.Broken symmetry and pseudogaps in ropes of carbon nano-tubes[J].Phys ReV B,1999,60(11):7899~7904.
    [24] Collins P G, Zettl A,Bando H et al.Nanotube nanodevice[J].Science,1997,278(5335):100~102.
    [25] Saito R, Dresselhaus G, Dresselhaus M S.Tunneling conductance of connected carbon nano-tubes[J].Phys Rev,1996,53(4):2044~2050.
    [26] Bezryadin A,Verschueren A R M,Tans S J. Multiprobe transport experiments on individual single-wall carbon nanotubes[J].Phys Rev Lett,1998,80(18):4036~4039.
    [27] Langer L,Stookman L,Herernans J P et al.Electrical resistance of a carbon nanotube bundle[J]. J Mater Res,1994, 9(4):927~932.
    [28] De Heer W A,ChatelainA,Vgarte D A.Carbon Nanotube Field-Emission Electron Source[J]. Science, 1995,270(5239):1179~1180.
    [29] S J Tans,A R M Verschueren,C Dekker.Room-temperature transistor based on a single carbon nanotube[J].Nature,1998,393(6680):49~52.
    [30] J T Hu, M O Yang,P D Yang et al.Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires[J].Nature 1999(6731),399:48~51.
    [31] C Niu,E K Sichel,R Hoch et al.High power electrochemical capacitors based on carbon nanotubed electrodes[J].Appl Phys Lett,1997,70(11):1480~1482.
    [32] SCTsang, Y K Chen, P J F Harris,et al.A Simple Chemical Method of Opening and Filling Carbon Nanotubes[J].Nature, 1994, 372(6502):159-162.
    [33] H Hiura, T W Ebbesen, K Tanigaki.Opening and Purification of Carbon Nanotubes in High Yields[J]. Advance Materials, 1995, 7(3): 275-276.
    [34] Liu J, Rinzler A G, Smalley R E, et al.Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
    [35]李博,廉永福,施祖进.单壁碳纳米管的化学修饰.高等学校化学学报[J], 2000,21(11):1633-1635.
    [36] Curran S A, Ajayan P M, Blau W J, et al.A Composite From Poly (M-Phenylenevinylene-Co-2,5-Dioctoxy-P-Phenylenevinylene) And Carbon Nanotubes: A Novel Material For Molecular Optoelectronics[J]. Adv Mater, 1998, 10 (14): 1091-1093.
    [37] Star A, Stoddart J F, Steuerman D, et al.Preparation And Properties Of Polymer-Wrapped Single- Walled Carbon Nanotubes[J]. Angew Chem Int Ed, 2001, 40(9): 1721-1725.
    [38] Star A,Steuerman D W, Heath J R, et al.Starched carbon nanotubes[J].Angew Chem Int Ed, 2002, 41(14): 2508-2512.
    [39] Dieckmann G R, Dalton A B, Johnson P A, et al.Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices[J]. J Am Chem Soc, 2003, 125 (7): 1770-1777.
    [40] Azamian BR, Davis J J,Coleman K S et al. Bioelectrochemical single-walled carbon nanotubes[J]. Chem. Soc. 2002, 124(43):12664-12665.
    [41] Balavoine F, Schultz P, Mioskowski C, et. al. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors[J]. Angew Chem Int Ed, 1999, 38(13-14): 1912~1915.
    [42] Chen R J, Zhang Y G, Dai H J, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. J Am Chem Soc, 2001, 123(16): 3838~3839.
    [43] Jason J. Davis, Richard J. Coles, H. Allen O. Hill. Protein electrochemistry at carbon nanotube electrodes [ J ]. Journal of Electroanalytical Chemistry, 1997, 440(1): 279 -282.
    [44] Xin Yu, Debjit Chattopadhyay, Izabela Galeska, et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes [J].Electrochemistry Communications 2003, 5(5): 408 - 411.
    [45] Hazani M, NaamanR, Hennrich F. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes [J]. NanoLett, 2003(3): 153-155.
    [46] S. Rauf. J. J, Gooding, K. Akhatar et al. Electrochemical approach of anticancer drugs-DNA interaction[J]. Journal of Pharmaceutical and Biomedical Analysis. 2005,37(2):205-217.
    [47] Xi-Ling Luo, Jing-Juan Xu, Qing Zhang et al. Electrochemically deposited chitosan hydrogel gold self-assembly[J]. Biosensors and Bioelectronics. 2005, 21(1):190-196.
    [48] Kagan Kerman, Masaaki Kobayashi, Eiichi Tamiya. Recent trends in electrochemical DNA biosensor technology[J]. Measurment science and technology. 2004,15(2):R1-R11.
    [49] Junhoe Cha, Jung Im Han, Young Choi et al. DNA hybridization electrochemical sensor using conducting polymer[J]. Biosensors and Bioelectronics, 2003,18(10):1241-1247.
    [50] Downs M E A, Kobayashi S, Karube I. New DNA technology and the DNA biosensor[J]. Anal. Lett, 1987, 20(12):1897-1927.
    [51] Maeda M. Biosensors comprising DNA as receptive component[J]. Nippon Rinsho, 1993, 51(10):2769-2777.
    [52] Evdokimov lu M, Skuridin S G, Salianov V I. Nucleic acids as a basis for creating biosensors[J]. Mol. Biol. (Mosk), 1989,23(6):1581-1588.
    [53] McGown L B , Joseph MJ , Pitner J B , Vonk G P , Linn C P. The nucleic acid ligand. A new tool for molecular recognition[J] . Anal . Chem.1995 , 67(21) :663~668.
    [54] Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin[J]. Mutate Res. 1992 , 275(3-6) :331~342.
    [55] Palec’ek E. From polarography of DNA to microanalysis with nucleic acid-modified electrodes[J]. Electroanalysis , 1996 , 8 (1) :7~14.
    [56] Palec’ek E , Fojta M, Tomschik M, Wang J. Electrochemical biosensors for DNA hybridization and DNA damage[J]. Biosensors and Bioelectronics , 1998 , 13 (6) :621~628.
    [57] Fojta M, K0ubic’árováT, Palec’ek E. Electrode potential-modulated cleavage of surface confined DNA by hydroxyl radicals detected by an electrochemical biosensor[J]. Biosensors and Bioelectronics, 2000, 15(3-4):107~115.
    [58] Wang J , Rivas G, Cai X, et al. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor [J].Anal.Chim.Acta , 1997 (344) :111~118.
    [59] Siontorou C G, Nikolelis D P , Miernik A , et al. Rapid methods for detection of Aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization[J]. Electrochimica Acta, 1998 , 43(23):3611~3617.
    [60] Siontorou C G, Nikolelis D P , Tarus B , et al. DNA Biosensor Based on Self-Assembled Bilayer Lipid Membranes for the Detection of Hydrazines[J]. Electroanalysis,1998,10 (10) :691~694.
    [61] Wang J , Rivas G, Parrado C , et al. Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum[J].Talanta , 1997, 44(11):2003~2010.
    [62] Wang J , Rivas G, Cai X. Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen[J]. Electroanalysis, 1997,9 (5) :395~398.
    [63] Wang J , Cai X, Rivas G, et al. Stripping potentiometric transduction of DNA hybridization processes[J]. Anal.Chem. 1996,68 (15):2629~2634.
    [64] Wang J , Rivas G, Cai X, et al. Sequence-specific electrochemical biosensing of M tuberculosis DNA[J] . Anal.Chim.Acta,1997, 337(1):41~48.
    [65] Erdem A , Kerman K, Meric B ,et al. DNA Electrochemical Biosensor for the Detection of Short DNA Sequences Related to the Hepatitis B Virus[J]. Electroanalysis , 1999,11(8):586~587.
    [66] Azek F, Grossiord C , Joannes M, et al. Hybridization Assay at a Disposable Electrochemical Biosensor for the Attomole Detection of Amplified Human Cytomegalovirus DNA [J]. Analytical Biochemistry, 2000 , 284(1) :107~110.
    [67] Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria[J]. Electroanalysis , 2000, 12(15) :317~325.
    [68] Hashimoto K, Ito K, Ishimori Y. Novel DNA sensor for electrochemical gene detection[J]. Anal. Chem. 1994, 66 (21):3830~3833.
    [69] Wang J , Rivas G, Cai X, et al. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor[J]. Anal.Chim.Acta,1997,344:111~118.
    [70] Bardea A, Patolsky F, Dagan A, et al. Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor. Chem. Commun[J].1999(10):21~25.
    [71] Maeda M, Mitsuhashi Y, Nakano K, et al. DNA-immobilized gold electrode for DNA-binding drug sensor[J]. Analytical sciences.1992 , 8 (1) :83~84.
    [72] Brett A M O, Serrano S H P, Gutz I, et al. Voltammetric behavior of nitroimidazoles at a DNA-biosensor [J]. Electroanalysis, 1997, 9:1132~1137.
    [73] Brett A M O, Serrano S H P, Macedo T A, et al. Electrochemical Determination of Carboplatin in Serum Using a DNA-Modified Glassy Carbon Electrode[J]. Electroanalysis, 1996, 8(11): 992-995.
    [74] Brabec V. DNA sensor for the determination of antitumor platinum compounds[J]. Electrochimica Acta, 2000 , 45(18):2929~2932.
    [75] E. Buzaneva, A. Karlash, K. Yakovkin, et al. Nanotechnology of DNA/ nano-Si and DNA/ carbon nanotubes/nano-Si chips[J]. Sci. Eng. C,2002,19:41-45.
    [76] S.G. Wang, R. Wang, P.J. Sellin, Q. Zhang, DNA biosensors based on Self -assembled carbon nanotubes, Biochem. Biophys[J]. Res. Commun. 2004,325:1433-1437.
    [77] G.I. Dovbeshko, O.P. Repnytska, E.D. Obraztsova, Y.M. Shtogun. DNA interaction with single-walled carbon nanotubes: a SEIRA study[J]. Chem. Phys. Lett. 2003, 372 :432-437.
    [78] Y. Wang, Z. Iqbal, S.V. Malhotra. Functionalization of carbon nanotubes with amines and enzymes[J]. Chem. Phys. Lett. 2005, 402 :96-101.
    [79] K. Jiang, A. Eitan, L.S. Schadler,eta al. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes[J]. Nano Letter, 2003,3 :275-277.
    [80] S. Li, P. He, J. Dong, et al. DNA-directed self-assembling of carbon nanotubes[J]. J. Am. Chem. Soc. 2005, 127:14-15.
    [81] T.I.T. Okapalugo, P. Papakonstaninuo, H. Murphy, et al. High resolution XPS characterization of chemical functionalized MWCTs and SWCNTs[J]. Carbon, 2005,43:153-161.
    [82] K. Kerman, Y. Morita, Y. Takamura, et al. DNAdirected attachment of carbon nanotubes for enhanced label-free electrochemical detection of DNA hybridization[J]. Electroanalysis, 2004, 16 :1667-1672.
    [83]刘欢,翟锦,江雷.纳米材料的自组装研究进展[J].无机化学学报, 2006,4(22):585-597.
    [84]余海湖,余丁山,周灵德,等.水溶性多壁碳纳米管/铜酞箐染料自组装薄膜的制备与表征[J].化学物理学报, 2005, 12:1039-1042.
    [85] Manedov A A,Kotov N A,Prato M, et al. Molecular design of strong single-wall carbon nanotube / polyelectrolyte multilayer composites[J]. Nature Materials, 2002, 1(3):190-194 .
    [86] Zhongfan Liu, Ziyong Shen,Tao Zhu, et al. Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet ChemicalSelf-Assembling Technique[J]. Langmuir, 2000, 16(8):3569-3573.
    [87]刘之景,王克逸,朱俊,等。自组装法制备聚合物纳米复合膜的新进展[J].膜科学与技术, 2003, 1(23):50-52.
    [88]彭倚天,胡元中,王慧.多壁碳纳米管在不同表面基团的自组装膜上的沉积[J].中国机械工程, 2005, 14:1286-1288.
    [89]米远祝,刘应亮,张静娴.以纳米材料为模板的材料组装研究[J].新材料产业, 2005, 2:19-25.
    [90] Huajian Gao ,Yong Kong, Daxiang Cui. Spontaneous Insertion of DNA Oligonucleotides into Carbon Nanotubes.[J].nano letters,2003,4 (1):89-93.
    [91] Takeru Okad, Tkaneko, RHatakeyama. Electrically triggered insertion of Single-Stranded DNA into Single Walled Carbon nanotubes[J]. Chemical physis Letters, 2006, 417(4-6): 288-292.
    [92] Dhriti Nepal, Jung-Inn Sohn, WK Aicher, et al. Supramolecular Conjugates of carbon Nanot- ubes and DNA by a Solid-State Reaction[J]. Biomacromolecules, 2005, 6(6): 2919-2122.
    [93] S G Chou, H B Ribeiro, E B Barros, et al. Optical Characterization of DNA-wrapped carbon nanotube hybrids[J]. Chemical Physics letters, 2004, 397(4-6):296-301.
    [94] H.Talahashi,S.Numao,SBandow,et al. AFM imaging of wrappeded multiwall carbon nanotube in DNA [J]. Chemical Physics Letters, 2006, 418(4-6):535-539.
    [95] Chris Dwyer, Martin Guthold, Michael Falvo, et al. DNA-functionalized single-walledcarbon nanotubes[J]. Nanotechnology, 2002, 13:601-604.
    [96] Krishna V Singh, Rajeev R Pandey, Xu Wang, et al. Covalent functionalization of single walled carbonnanotubes with peptide nucleic acid Nanocomponents for molecular level electronics [J]. Carbon, 2006, 44(9): 1730-1739.
    [97] Pingang He,Sinan Li, Liming Dai. DNA-modified carbon nanotubes for self-assembling and biosensing application[J]. Synthetic Metals, 2005, 154(1-3):17-20.
    [98] Yanhong Lu , Xiaoying Yang, Yanfeng Ma, et al. Self assembled branched nanostructures of single walled carbon nanotubes with DNA as linkers[ J]. Chemical Physical Letters, 2006, 419(4-6):390-393.
    [99] Siann Li,Pingang He,Jianhua Dong,etal. DNA-Directed Self Assembling of Carbon Nanotubes[J]. Journal of the American Chemical Society communication, 2005, 127: 14-15.
    [100] S.G.Wang, R.wang, P J Sellin, et al. DNA biosensors based on Self-assembled Carbon nanotubes[J]. BioChem. BiophysRes Commun, 2004, 325(4):1433-1437.
    [101] C Staii, AT Johnson Jr, M Chen, A Gelperin. DNA-Decorated Carbon nanotubes for Chimical Sensing[J]. Nano Lett, 2005,5(9): 1774 -1778.
    [102] MJ Moghaddam, S Taylor, M Gao, et al. Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry[J]. Nanoletter, 2004, 4(1):89-93.
    [103] W Yihong, W Song, Z jie, G Ning, et al. Preparation and study of complex Self-assembled film as a super-thin barrier on Silver[J]. Applied Surface Science, 2006, 252(23):8264-8269.
    [104] Dae-HwanJung, ByungHunKim, YoungKoan, et al. Covalent Attachment and Hybridization of DNA Oligo nucleotides on Patterned Single-Walled Carbon Nanotube Films[J]. Langmuir, 2004, 20(20):8886-8891.
    [105]罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J]高等学校化学学报,2000,9(20):1372-1374.
    [106] Mazzullom M ,Bartoli S.Benzene adducts with rat bucleic acid and proteins ;dose-resonse relationship after treatment in vivo[J ] . Environ Health Pers, 1989 ,82 :259 - 269.
    [107] Jowa L , Snyder R. Deoxyguanosine adducts formed from benzoquinone and hydroquinone in biological reactive intermediatesⅢ[J ] . Plenum Publishing Corporation ,1986 ,56 :125 - 129.
    [108]“Focus on Pigments”, 2006, Issue:3, March,pp.6.
    [109]廖静敏,李光,马念章.碳纳米管在生物传感器中的应用[J ].传感技术学报,2004 ,3(17):467-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700