分子氧氧化法深度脱除燃油中有机硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日益严格的环保法规,燃油深度脱硫已经成为亟待解决的环境问题。传统的加氢脱硫工艺不仅在高温高压条件下操作,而且消耗大量的氢气,研究和发展更加高效节能的燃油脱硫技术是全球炼油工业面临的巨大挑战。
     本文主要选择分子氧氧化法深度脱除燃油中有机硫为研究主题,拟研制出以分子氧为氧化剂,能在温和条件下高效脱除燃油有机硫的氧化脱硫技术,论文主要涉及非均相催化剂的制备,表征以及脱硫性能评价,研究催化剂催化脱硫性能构效关系,考察各工艺条件对有机硫转化率的影响。本文属化学反应与分离科学的研究领域,具有重要的科学研究价值和实际意义。
     本文提出乙腈萃取-臭氧氧化脱硫新工艺。研究结果表明:臭氧氧化苯并噻吩呈零级反应动力学,臭氧从气相传质到液相是反应控制步骤。乙腈作为萃取剂和反应溶剂,不仅可以选择性的萃取柴油中有机硫,而且可以促进柴油中二苯并噻吩类硫化物氧化反应速率;本文提出的新工艺在常温常压下,将商品柴油硫含量由1450μg/g脱除到50μg/g,脱硫率高达97%,油品回收率达99%。
     本文研究碳纳米管催化氧化脱硫。研究结果表明:碳纳米管可有效催化氧气氧化有机硫生成其相应的砜,其催化性能高于文献所报道的Co3O4/γ-Al2O3等催化剂近200倍。;Raman表征结果显示碳纳米管的石墨化程度越高,其催化氧化脱硫性能越高。反应后,碳纳米管由于石墨化程度下降导致其催化活性下降,通过在900℃热处理,碳纳米管的催化活性基本得到恢复,碳纳米管经五次循环再生,其催化活性仅下降4%。
     本文研究使用CuO-ZrO2-TiO2催化剂催化航空煤油原位生成有机过氧化物,进而氧化脱除油品中的有机硫。研究结果表明:相比于CuO,在负载型CuO催化剂存在下,油品中生成的过氧化物浓度更高,有机硫转化率越高。然而,在负载型CuO催化剂存在下,油品中过氧化物生成会存在明显的诱导期,且催化剂的孔径越小,过氧化物生成诱导时间越长;生成的过氧化物浓度越高,有机硫转化率越高。利用此工艺,油品硫含量可由初始的485μg/g降低到25μg/g,脱硫率高达95%。
     本文提出光辐射&催化氧化两步法脱硫工艺,研究了影响过氧化物生成因素和催化剂催化氧化有机硫氧化的活性。结果表明,紫外光可大大促进有机过氧化物生成速率;在氧化有机硫过程中,过氧化物的自分解与过氧化物氧化有机硫是一对平行发生的竞争反应,这两个平行发生的竞争反应的热力学和动力学共同决定了有机硫转化的最佳反应温度。催化剂的孔径越大,越有利于有机硫在催化剂表面扩散,从而提高有机硫的转化率和过氧化物的利用率。
     本文提出一种新的光催化氧化-吸附耦合脱硫工艺。结果表明,有机硫在Ti(1-x)SixO2催化剂表面被光催化氧化生成其相应的亚砜,与此同时,产生的亚砜被选择性地吸附在催化剂表面而脱除;在不同组成的的Ti(1-x)SixO2催化剂中,Ti0.3Si0.7O2催化剂具有最高的脱硫性能;利用该工艺,在常温常压下,商用柴油的硫含量由220μg/g降低到31μg/g。
Deep desulfurization of fuels has become very urgent task for petroleum refiningindustry due to strict environmental regulations to limit sulfur contents. Traditionaldesulfurization technology in refinery is hydrotreating, which operates at high temperatureand pressure, and consumes large amount of hydrogen. The petroleum refinery industy isfacing a major operational and economical challenge to develop highly efficientdesulfurization technologies.
     This work is mainly concerned with oxidative desulfurization (ODS) of liquid fuelsusing molecular oxygen, and it aims to develop selective oxidative desulfurization approachesto efficiently remove organosulfur compounds from fuels using molecular oxygen as theoxidant under mild conditions. Heterogeneous catalysts were synthesized, characterized, andevaluated for ODS. The influencing factors on ODS were investigated, and the catalyticactivities of catalysts for ODS were studied. This work belongs to the fields of chemicalreaction and separation science and is of important scientific interest and practicalapplications.
     A new acetonitrile extraction-ozone oxidation approach for ODS was proposed. Resultsshowed that the ODS reaction by ozone was zero-order reaction, and the O3diffusion stepfrom gas-phase to liquid-phase was the rate-determining step. Acetonitrile acted as theextractant and the reaction solvent which could not only selectivily extract organosulfur fromdiesel but also enhanced the reactivity of dibenzothiohenes. The proposed approach was ableto desulfurize commercial diesel from1450μg/g to50μg/g, and the sulfur removal reached97%with fuel loss less than1%.
     The ODS with carbon nanotube as the catalyst under atmospheric pressure and lowtemperature was studied. Results showed that carbon nanotube was an effective catalyst forODS with molecular oxygen as the oxidant, and its catalytic performance was200-fold higherthan Co3O4/γ-Al2O3and MnO2/γ-Al2O3reported in the literature. Raman spectroscopyanalysis revealed that the CNT with the higher degree of graphitization had higher catalyticactivity for DBT oxidation The deactivated CNT can be effectively regenerated by heattreatment under an argon atmosphere at900°C. After five recycling, the activity of carbonnanotube decreased only4%.
     ODS of jet fuel using in-situ generated peroxides over CuO-ZrO2-TiO2catalyst with airas the oxidant was studied. The generation rate of peroxides was higher over supported CuOcatalyst than bulk CuO. However, over supported CuO catalyst, the induction time for peroxide formation was longer, and the the induction time increased by decreasing the poresize of catalyst. The higher the peroxides concentration was, the higher the sulfur conversionwas. The proposed approach was able to desulfurize jet fuel from485μg/g to25μg/g with theODS conversion of95%.
     ODS using in-situ generated peroxides in diesel by light-irradiation was proposed. Theinfluencing factors on the peroxides generation and the catalyst activity for ODS in dieselwere studied. Results showed that the kinetics of peroxide generation in diesel could beimproved by the employment of UV irradiation. Accompanying the main ODS reaction withhydroperoxides over MoO3/SiO2catalyst in diesel, the side reaction of peroxideself-decomposition occurred, and the kinetics increased dramatically with the reactiontemperature. To achieve a high ODS conversion, the reaction temperature can be optimizedbalancing the thermodynamics and kinetics of the two coexisting competing pathways ofperoxides. The larger pore size of MoO3/SiO2facilitated the diffusion of bulky refractorysulfur compounds in diesel over the catalyst, and ultimately it led to the increase of sulfurremoval and utilization of peroxides.
     A new desulfurization approach by photocatalytic oxidation coupled with adsorptionusing bi-functional Ti(1-x)SixO2was proposed. Results showed that over Ti(1-x)SixO2under lightirradiation, organosulfur compounds could be oxidized to sulfoxides, which was furtheradsorbed on Ti(1-x)SixO2. The Ti/Si ratio of Ti(1-x)SixO2was optimized to be3:7to achieve thebest desulfurization performance. The proposed approach was able to desulfurize commercialdiesel from220μg/g to31μg/g under atmospheric pressure and room temperature.
引文
[1]孔莉;西田修身;藤田浩嗣,等.燃油中硫含量对颗粒物排放和气体排放的影响[J].柴油机,2006,(05):24-28
    [2] Saiyasitpanich, P.; Lu, M.; Keener, T. C., et al. The effect of diesel fuel sulfur content onparticulate matter emissions for a nonroad diesel generator[J]. Journal of the Air andWaste Management Association,2005,55(7):993-8
    [3] Song, C. S. An overview of new approaches to deep desulfurization for ultra-cleangasoline, diesel fuel and jet fuel[J]. Catalysis Today,2003,86(1-4):211-263
    [4] Ma, X. L.; Sun, L.; Song, C. S. A new approach to deep desulfurization of gasoline, dieselfuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cellapplications[J]. Catalysis Today,2002,77(1-2):107-116
    [5] Stanislaus, A.; Marafi, A.; Rana, M. S. Recent advances in the science and technology ofultra low sulfur diesel (ULSD) production[J]. Catalysis Today,2010,153(1-2):1-68
    [6] Ma, X. L.; Zhou, A. N.; Song, C. S. A novel method for oxidative desulfurization of liquidhydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled withselective adsorption[J]. Catalysis Today,2007,123(1-4):276-284
    [7]王征;杨永坛.柴油中含硫化合物类型分布及变化规律[J].分析仪器,2010,(01):70-73
    [8] Shafi, R.; Hutchings, G. J. Hydrodesulfurization of hindered dibenzothiophenes: anoverview[J]. Catalysis Today,2000,59(3-4):423-442
    [9] Knudsen, K. G.; Cooper, B. H.; Topsoe, H. Catalyst and process technologies for ultralow sulfur diesel[J]. Applied Catalysis a-General,1999,189(2):205-215
    [10] Andari, M. K.; Abu-Seedo, F.; Stanislaus, A., et al. Kinetics of individual sulfurcompounds in deep hydrodesulfurization of Kuwait diesel oil[J]. Fuel,1996,75(14):1664-1670
    [11] M, H.; H, B. D.; V, S. A. Hydrodesulfurization of methyl-substituted dibenzothiophenecatalyzed by sulfided CoMo/γ-Al2O3[J]. Journal of Catalysis,1980,61(02):523-527
    [12] M., M.; A., M.; E., S., et al. Hydrodesulfurization of Alkyldibenzothiophenes:Evidenceof Highly Unreactive Aromatic Sulfur Compounds[J]. Journal of Catalysis,2000,193(2):255-263
    [13] Topsoe, H.; Hinnemann, B.; Norskov, J. K., et al. The role of reaction pathways andsupport interactions in the development of high activity hydrotreating catalysts[J].Catalysis Today,2005,107-08:12-22
    [14] Costa, V.; Marchand, K.; Digne, M., et al. New insights into the role of glycol-basedadditives in the improvement of hydrotreatment catalyst performances[J]. CatalysisToday,2008,130(1):69-74
    [15] Shimada, K.; Yoshimura, Y. Ultra-deep hydrodesulfurization and aromaticshydrogenation of diesel fuel over a Pd-Pt catalyst supported on yttrium-modified USY[J].Journal of the Japan Petroleum Institute,2003,46(6):368-374
    [16] Fujikawa, T.; Kimura, H.; Kiriyama, K., et al. Development of ultra-deep HDS catalystfor production of clean diesel fuels[J]. Catalysis Today,2006,111(3-4):188-193
    [17] Eijsbouts, S.; van den Oetelaar, L. C. A.; Louwen, J. N., et al. Changes of MoS2morphology and the degree of Co segregation during the sulfidation and deactivation ofcommercial Co-Mo/Al2O3hydroprocessing catalysts[J]. Industrial&EngineeringChemistry Research,2007,46(12):3945-3954
    [18] Gochi, Y.; Ornelas, C.; Paraguay, E., et al. Effect of sulfidation on Mo-W-Ni trimetalliccatalysts in the HDS of DBT[J]. Catalysis Today,2005,107-08:531-536
    [19] Song, C.; Ma, X. L. New design approaches to ultra-clean diesel fuels by deepdesulfurization and deep dearomatization[J]. Applied Catalysis B-Environmental,2003,41(1-2):207-238
    [20] Kilbane, J. J. Microbial biocatalyst developments to upgrade fossil fuels[J]. CurrentOpinion in Biotechnology,2006,17(3):305-314
    [21] Ishii, Y.; Kozaki, S.; Furuya, T., et al. Thermophilic biodesulfurization of variousheterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newlyisolated strain Mycobacterium phlei WU-0103[J]. Current Microbiology,2005,50(2):63-70
    [22] Funakoshi, I. A., T. Process for recovering organic sulfur compounds from fuel oil[P].US:5,753,102,1998-5-19.
    [23] Shan, G. B.; Xing, J. M.; Zhang, H. Y., et al. Deep desulfurization of hydrodesulfurizeddiesel oil by Pseudomonas delafieldii R-8[J]. Journal of Chemical Technology andBiotechnology,2005,80(4):420-424
    [24] Folsom, B. R.; Schieche, D. R.; DiGrazia, P. M., et al. Microbial desulfurization ofalkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcuserythropolis I-19[J]. Applied and Environmental Microbiology,1999,65(11):4967-4972
    [25] Horii, Y., Onuki, H., Doi, S., Mori, T. Desulfurization and denitration of light oil byextraction[P]. US:5.494,572,1996-02-27.
    [26] Bailes, P. J. Solvent extraction in an electrostatic field[J]. Industrial&EngineeringChemistry Process Design And Development,1981,20(3):564-570
    [27] Extraction approach for desulfurization and dearomatization of middle distillates [J].Petroleum and Coal,2004,46(2):
    [28] Brennecke, J. F.; Maginn, E. J. Ionic liquids: Innovative fluids for chemicalprocessing[J]. AIChE Journal,2001,47(11):2384-2389
    [29] Sharma, N. K.; Tickell, M. D.; Anderson, J. L., et al. Do ion tethered functional groupsaffect IL solvent properties? The case of sulfoxides and sulfones[J]. ChemicalCommunications,2006,(6):646-648
    [30] Wang, J.; Pei, Y.; Zhao, Y., et al. Recovery of amino acids by imidazolium based ionicliquids from aqueous media[J]. Green Chemistry,2005,7(4):196-202
    [31] Bosmann, A.; Datsevich, L.; Jess, A., et al. Deep desulfurization of diesel fuel byextraction with ionic liquids[J]. Chemical Communications,2001,(23):2494-2495
    [32] Holbrey, J. D.; Lopez-Martin, I.; Rothenberg, G., et al. Desulfurisation of oils using ionicliquids: selection of cationic and anionic components to enhance extraction efficiency[J].Green Chemistry,2008,10(1):87-92
    [33] Gao, H. S.; Li, Y. G.; Wu, Y., et al. Extractive Desulfurization of Fuel Using3-Methylpyridinium-Based Ionic Liquids[J]. Energy&Fuels,2009,23:2690-2694
    [34] Ma, X. L.; Velu, S.; Kim, J. H., et al. Deep desulfurization of gasoline by selectiveadsorption over solid adsorbents and impact of analytical methods on μg/g-level sulfurquantification for fuel cell applications[J]. Applied Catalysis B-Environmental,2005,56(1-2):137-147
    [35] Velu, S.; Ma, X. L.; Song, C. S. Selective adsorption for removing sulfur from jet fuelover zeolite-based adsorbents[J]. Industrial&Engineering Chemistry Research,2003,42(21):5293-5304
    [36] Kim, J. H.; Ma, X. L.; Zhou, A. N., et al. Ultra-deep desulfurization and denitrogenationof diesel fuel by selective adsorption over three different adsorbents: A study onadsorptive selectivity and mechanism[J]. Catalysis Today,2006,111(1-2):74-83
    [37] Yang, R. T.; Hernandez-Maldonado, A. J.; Yang, F. H. Desulfurization of transportationfuels with zeolites under ambient conditions[J]. Science,2003,301(5629):79-81
    [38] Hernandez-Maldonado, A. J.; Yang, R. T. New sorbents for desulfurization of diesel fuelsvia pi-complexation[J]. AIChE Journal,2004,50(4):791-801
    [39] Hernandez-Maldonado, A. J.; Stamatis, S. D.; Yang, R. T., et al. New sorbents fordesulfurization of diesel fuels via pi complexation: Layered beds and regeneration[J].Industrial&Engineering Chemistry Research,2004,43(3):769-776
    [40] Hernandez-Maldonado, A. J.; Yang, R. T. Desulfurization of diesel fuels by adsorptionvia pi-complexation with vapor-phase exchanged Cu(l)-Y zeolites[J]. Journal of theAmerican Chemical Society,2004,126(4):992-993
    [41] Hernandez-Maldonado, A. J.; Yang, R. T. Desulfurization of transportation fuels byadsorption[J]. Catalysis Reviews-Science and Engineering,2004,46(2):111-150
    [42] Sano, Y.; Sugahara, K.; Choi, K. H., et al. Two-step adsorption process for deepdesulfurization of diesel oil[J]. Fuel,2005,84(7-8):903-910
    [43] Sano, Y.; Choi, K. H.; Korai, Y., et al. Adsorptive removal of sulfur and nitrogen speciesfrom a straight run gas oil over activated carbons for its deep hydrodesulfurization[J].Applied Catalysis B-Environmental,2004,49(4):219-225
    [44] Park, J. G.; Ko, C. H.; Yi, K. B., et al. Reactive adsorption of sulfur compounds in dieselon nickel supported on mesoporous silica[J]. Applied Catalysis B-Environmental,2008,81(3-4):244-250
    [45] Landau, M. V.; Herskowitz, M.; Agnihotri, R., et al. Ultradeep adsorption-desulfurizationof gasoline with Ni/Al-SiO2material catalytically facilitated by ethanol[J]. Industrial&Engineering Chemistry Research,2008,47(18):6904-6916
    [46] Ko, C. H.; Park, J. G.; Park, J. C., et al. Surface status and size influences of nickelnanoparticles on sulfur compound adsorption[J]. Applied Surface Science,2007,253(13):5864-5867
    [47] Te, M.; Fairbridge, C.; Ring, Z. Oxidation reactivities of dibenzothiophenes inpolyoxometalate/H2O2and formic acid/H2O2systems[J]. Applied Catalysis a-General,2001,219(1-2):267-280
    [48] Zannikos, F.; Lois, E.; Stournas, S. Desulfurization of petroleum fractions by oxidationand solvent-extraction[J]. Fuel Processing Technology,1995,42(1):35-45
    [49] Otsuki, S.; Nonaka, T.; Takashima, N., et al. Oxidative desulfurization of light gas oiland vacuum gas oil by oxidation and solvent extraction[J]. Energy&Fuels,2000,14(6):1232-1239
    [50] Te, M.; Fairbridge, C.; Ring, Z. Oxidation reactivities of dibenzothiophenes inpolyoxometalate/H2O2and formic acid/H2O2systems[J]. Applied Catalysis A: General,2001,219(1–2):267-280
    [51] Collins, F. M.; Lucy, A. R.; Sharp, C. Oxidative desulphurisation of oils via hydrogenperoxide and heteropolyanion catalysis[J]. Journal of Molecular Catalysis A: Chemical,1997,117(1–3):397-403
    [52] Lu, H. Y.; Gao, J. B.; Jiang, Z. X., et al. Ultra-deep desulfurization of diesel by selectiveoxidation with [C18H37N(CH3)(3)](4)[H2NaPW10O36] catalyst assembled in emulsiondroplets[J]. Journal of Catalysis,2006,239(2):369-375
    [53] Garcia-Gutierrez, J. L.; Fuentes, G. A.; Hernandez-Teran, M. E., et al. Ultra-deepoxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2system: The effect ofsystem parameters on catalytic activity[J]. Applied Catalysis a-General,2008,334(1-2):366-373
    [54] Hasan, Z.; Jeon, J.; Jhung, S. H. Oxidative desulfurization of benzothiophene andthiophene with WOx/ZrO2catalysts: Effect of calcination temperature of catalysts[J].Journal of Hazardous materials,2012,205:216-221
    [55] Li, X. C.; Huang, S. X.; Xu, Q. R., et al. Preparation of WO3-SBA-15mesoporousmolecular sieve and its performance as an oxidative desulfurization catalyst[J].Transition Metal Chemistry,2009,34(8):943-947
    [56] Alvarez-Amparan, M. A.; Cedeno-Caero, L. Oxidative desulfurization ofdibenzothiophenes using Vox/ZrO2-Al2O3[J]. Revista Mexicana De Ingenieria Quimica,2012,11(3):431-438
    [57] Fabian-Mijangos, L.; Cedeno-Caero, L. V Loading Effect on V2O5/ZrO2catalysts foroxidative desulfurization[J]. Industrial&Engineering Chemistry Research,2011,50(5):2659-2664
    [58] Gonzalez-Garcia, O.; Cedeno-Caero, L. V-Mo based catalysts for ods of diesel fuel. PartII. Catalytic performance and stability after redox cycles[J]. Catalysis Today,2010,150(3-4):237-243
    [59] Wang, Y.; Li, G.; Wang, X. S., et al. Catalytic oxidative desulfurization of model fuelover Ti-HMS zeolite[J]. Chinese Journal Of Catalysis,2005,26(7):567-570
    [60] Xu, D.; Zhu, W. S.; Li, H. M., et al. Oxidative Desulfurization of fuels catalyzed by V2O5in ionic liquids at room temperature[J]. Energy&Fuels,2009,23:5929-5933
    [61] Zhao, D. S.; Wang, J. L.; Zhou, E. P. Oxidative desulfurization of diesel fuel using aBronsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chemistry,2007,9(11):1219-1222
    [62] Wang, D. H.; Qian, E. W. H.; Amano, H., et al. Oxidative desulfurization of fuel oil-Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide[J]. AppliedCatalysis a-General,2003,253(1):91-99
    [63] Ishihara, A.; Wang, D. H.; Dumeignil, F., et al. Oxidative desulfurization anddenitrogenation of a light gas oil using an oxidation/adsorption continuous flowprocess[J]. Applied Catalysis a-General,2005,279(1-2):279-287
    [64] Chica, A.; Corma, A.; Domine, M. E. Catalytic oxidative desulfurization (ODS) of dieselfuel on a continuous fixed-bed reactor[J]. Journal of Catalysis,2006,242(2):299-308
    [65] Hirai, T.; Ogawa, K.; Komasawa, I. Desulfurization process for dibenzothiophenes fromlight oil by photochemical reaction and lLiquid-liquid extraction[J]. Industrial& Engineering Chemistry Research,1996,35(2):586-589
    [66] Sampanthar, J. T.; Xiao, H.; Dou, H., et al. A novel oxidative desulfurization process toremove refractory sulfur compounds from diesel fuel[J]. Applied CatalysisB-Environmental,2006,63(1-2):85-93
    [67] Murata, S.; Murata, K.; Kidena, K., et al. A novel oxidative desulfurization system fordiesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J].Energy&Fuels,2004,18(1):116-121
    [68] Lu, H. Y.; Gao, J. B.; Jiang, Z. X., et al. Oxidative desulfurization of dibenzothiophenewith molecular oxygen using emulsion catalysis[J]. Chemical Communications,2007,(2):150-152
    [69] Wang, H. L.; Huang, D.; Zhang, X., et al. Understanding the aqueous phase ozonolysisof isoprene: distinct product distribution and mechanism from the gas phase reaction[J].Atmospheric Chemistry And Physics,2012,12(15):7187-7198
    [70] Zhao, Y.; Zhang, R. X.; Wang, H., et al. Mechanism of atmospheric ozonolysis ofsabinene: A DFT study[J]. Journal of Molecular Structure-Theochem,2010,942(1-3):32-37
    [71] Karagulian, F.; Lea, A. S.; Dilbeck, C. W., et al. A new mechanism for ozonolysis ofunsaturated organics on solids: phosphocholines on NaCl as a model for sea saltparticles[J]. Physical Chemistry Chemical Physics,2008,10(4):528-541
    [72] Zhang, D.; Zhang, R. Ozonolysis of alpha-pinene and beta-pinene: Kinetics andmechanism[J]. Journal of Chemical Physics,2005,122(11):
    [73] Schank, K. The mechanism of alkene ozonolysis-a critical examination[J]. HelveticaChimica Acta,2004,87(8):2074-2084
    [74] Travis, B. R.; Narayan, R. S.; Borhan, B. Osmium tetroxide-promoted catalytic oxidativecleavage of olefins: An organometallic ozonolysis[J]. Journal of the American ChemicalSociety,2002,124(15):3824-3825
    [75] Syroezhko, A. M.; Proskuryakov, V. A.; Begak, O. Y. Mechanism of cyclohexaneozonolysis considering alternative pathways[J]. Russian Journal of Applied Chemistry,2002,75(9):1448-1452
    [76] Anglada, J. M.; Crehuet, R.; Bofill, J. M. The ozonolysis of ethylene: A theoretical studyof the gas-phase reaction mechanism[J]. Chemistry-a European Journal,1999,5(6):1809-1822
    [77] Geletneky, C.; Berger, S. The mechanism of ozonolysis revisited by O-17-NMRspectroscopy[J]. European Journal of Organic Chemistry,1998,(8):1625-1627
    [78] Deninno, M. P. Anomalous Ozonolysis of cyclic allylic alcohols-mechanism andsynthetic utility[J]. Journal of the American Chemical Society,1995,117(39):9927-9928
    [79] Boer, H.; Kooyman, E. C. The use of ozone as a titrimetric agent for the quantitativedetermination of olefinic unsaturation[J]. Analytica Chimica Acta,1951,5(0):550-562
    [80]克里斯蒂安·戈特沙克.水和废水臭氧氧化—臭氧及其应用指南[M].李凤亭.北京:中国建筑工业出版社,2004:80-114.
    [81]吴银彪;李汝琪;田岳林,等.臭氧降解有机污染物的反应机理及影响因素[J].中国环保产业,2010,(03):44-47
    [82] Shiraishi, Y.; Hirai, T.; Komasawa, I. A deep desulfurization process for light oil byphotochemical reaction in an organic two-phase liquid-liquid extraction system[J].Industrial&Engineering Chemistry Research,1998,37(1):203-211
    [83] Shiraishi, Y.; Tachibana, K.; Hirai, T., et al. Desulfurization and denitrogenation processfor light oils based on chemical oxidation followed by liquid-liquid extraction[J].Industrial&Engineering Chemistry Research,2002,41(17):4362-4375
    [84] Shiraishi, Y.; Naito, T.; Hirai, T. Vanadosilicate molecular sieve as a catalyst foroxidative desulfurization of light oil[J]. Industrial&Engineering Chemistry Research,2003,42(24):6034-6039
    [85] Shiraishi, Y.; Hirai, T.; Komasawa, I. TiO2-mediated photocatalytic desulfurizationprocess for light oils using an organic two-phase system[J]. Journal of ChemicalEngineering of Japan,2002,35(5):489-492
    [86] Zhou, X. R.; Li, J.; Wang, X. N., et al. Oxidative desulfurization of dibenzothiophenebased on molecular oxygen and iron phthalocyanine[J]. Fuel Processing Technology,2009,90(2):317-323
    [87] Liu, X.; Su, D. S.; Schlogl, R. Oxidative dehydrogenation of1-butene to butadiene overcarbon nanotube catalysts[J]. Carbon,2008,46(3):547-549
    [88] Zhang, J.; Su, D. S.; Zhang, A. H., et al. Nanocarbon as robust catalyst: Mechanisticinsight into carbon-mediated catalysis[J]. Angewandte Chemie International Edition,2007,46(38):7319-7323
    [89] Mestl, G.; Maksimova, N. I.; Keller, N., et al. Carbon nanofilaments in heterogeneouscatalysis: An industrial application for new carbon materials?[J]. Angewandte ChemieInternational Edition,2001,40(11):2066-2068
    [90] Sentorun-Shalaby, C.; Saha, S. K.; Ma, X. L., et al. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfurdiesel fuel[J]. Applied Catalysis B-Environmental,2011,101(3-4):718-726
    [91] Ma, X. L.; Sprague, M.; Song, C. S. Deep desulfurization of gasoline by selectiveadsorption over nickel-based adsorbent for fuel cell applications[J]. Industrial&Engineering Chemistry Research,2005,44(15):5768-5775
    [92] Zhang, W.; Liu, H. Y.; Xia, Q. B., et al. Enhancement of dibenzothiophene adsorption onactivated carbons by surface modification using low temperature oxygen plasma[J].Chemical Engineering Journal,2012,209:597-600
    [93] DANDEKAR, A., et al. Characterization of activated carbon, graphitized carbon fibersand synthetic diamond powder using TPD and DRIFTS[M]. Elsevier: Kidlington,ROYAUME-UNI,1998.
    [94] Yu, M. X.; Li, Z.; Ji, Q. N., et al. Effect of thermal oxidation of activated carbon surfaceon its adsorption towards dibenzothiophene[J]. Chemical Engineering Journal,2009,148(2-3):242-247
    [95] Su, D. S.; Maksimova, N. I.; Mestl, G., et al. Oxidative dehydrogenation of ethylbenzeneto styrene over ultra-dispersed diamond and onion-like carbon[J]. Carbon,2007,45(11):2145-2151
    [96] Su, D. S.; Maksimova, N.; Delgado, J. J., et al. Nanocarbons in selective oxidativedehydrogenation reaction[J]. Catalysis Today,2005,102:110-114
    [97] Ago, H.; Kugler, T.; Cacialli, F., et al. Work functions and surface functional groups ofmultiwall carbon nanotubes[J]. Journal of Physical Chemistry B,1999,103(38):8116-8121
    [98] Gilkes, K. W. R.; Prawer, S.; Nugent, K. W., et al. Direct quantitative detection of thesp(3) bonding in diamond-like carbon films using ultraviolet and visible Ramanspectroscopy[J]. Journal of Applied Physics,2000,87(10):7283-7289
    [99] Macia-Agullo, J. A.; Cazorla-Amoros, D.; Linares-Solano, A., et al. Oxygen functionalgroups involved in the styrene production reaction detected by quasi in situ XPS[J].Catalysis Today,2005,102:248-253
    [100] Pereira, M. F. R.; Orfao, J. J. M.; Figueiredo, J. L. Oxidative dehydrogenation ofethylbenzene on activated carbon catalysts3. Catalyst deactivation[J]. AppliedCatalysis a-General,2001,218(1-2):307-318
    [101] Li, M. H.; Boggs, M.; Beebe, T. P., et al. Oxidation of single-walled carbon nanotubesin dilute aqueous solutions by ozone as affected by ultrasound[J]. Carbon,2008,46(3):466-475
    [102] Robertson, J. Diamond-like amorphous carbon[J]. Materials Science&Engineering: R:Reports,2002,37(4-6):129-281
    [103] Keller, N.; Maksimova, N. I.; Roddatis, V. V., et al. The catalytic use of onion-likecarbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene[J].Angewandte Chemie International Edition,2002,41(11):1885-+
    [104] Datsyuk, V.; Kalyva, M.; Papagelis, K., et al. Chemical oxidation of multiwalled carbonnanotubes[J]. Carbon,2008,46(6):833-840
    [105] Begin, D.; Ulrich, G.; Amadou, J., et al. Oxidative dehydrogenation of9,10-dihydroanthracene using multi-walled carbon nanotubes[J]. Journal of MolecularCatalysis A: Chemical,2009,302(1-2):119-123
    [106] Zhang, M. Y.; Wang, L. F.; Ji, H. B., et al. Cumene liquid oxidation to cumenehydroperoxide over CuO nanoparticle with molecular oxygen under mild condition[J].Journal of Natural Gas Chemistry,2007,16(4):393-398
    [107] Kobayashi, M.; Flytzani-Stephanopoulos, M. Reduction and sulfidation kinetics ofcerium oxide and Cu-modified cerium oxide[J]. Industrial&Engineering ChemistryResearch,2002,41(13):3115-3123
    [108] Wang, B. W.; Ding, G. Z.; Shang, Y. G., et al. Effects of MoO3loading and calcinationtemperature on the activity of the sulphur-resistant methanation catalystMoO3/gamma-Al2O3[J]. Applied Catalysis a-General,2012,431:144-150
    [109] Ryan, P.; Konstantinov, I.; Snurr, R. Q., et al. DFT investigation of hydroperoxidedecomposition over copper and cobalt sites within metal-organic frameworks[J].Journal of Catalysis,2012,286:95-102
    [110] Patikarnmonthon, N.; Nawapan, S.; Buranajitpakorn, S., et al. Copper ions potentiateorganic hydroperoxide and hydrogen peroxide toxicity through different mechanisms inXanthomonas campestris pv. campestris[J]. FEMS Microbiology Letters,2010,313(1):75-80
    [111] Richards.Wh. Metal ion decomposition of hydroperoxides. IV. kinetics and products ofcopper salt catalyzed decomposition of T-Butyl hydroperoxide[J]. Journal of theAmerican Chemical Society,1966,88(5):975-&
    [112] Sundararaman, R.; Song, C. Catalytic Oxidative Desulfurization of Diesel Fuels UsingAir in a Two-Step Approach[J]. Industrial&Engineering Chemistry Research,2014,53(5):1890-1899
    [113] Marshall, B. A. Hydroperoxide decomposition by some sulfur compounds[J]. Advancesin Chemistry Series,1968,(85):140-154
    [114] Chang, J.; Wang, A. J.; Liu, J., et al. Oxidation of dibenzothiophene with cumenehydroperoxide on MoO3/SiO2modified with alkaline earth metals[J]. Catalysis Today,2010,149(1-2):122-126
    [115] Zhou, X. R.; Gai, H. T.; Wang, J., et al. Oxidation of benzothiophenes using tert-amylhydroperoxide[J]. Chinese Journal of Chemical Engineering,2009,17(2):189-194
    [116] D'Auria, M.; Emanuele, L.; Racioppi, R., et al. Photochemical degradation of crude oil:Comparison between direct irradiation, photocatalysis, and photocatalysis on zeolite[J].Journal of Hazardous materials,2009,164(1):32-38
    [117] Payne, J. R.; Phillips, C. R. Photochemistry of petroleum in water[J]. EnvironmentalScience&Technology,1985,19(7):569-579
    [118] B ckstr m, H. L. J. The chain-reaction theory of negative catalysis[J]. Journal of theAmerican Chemical Society,1927,49(6):1460-1472
    [119] Jung, K. Y.; Park, S. B. Anatase-phase titania: preparation by embedding silica andphotocatalytic activity for the decomposition of trichloroethylene[J]. Journal ofphotochemistry and photobiology a-chemistry,1999,127(1-3):117-122
    [120] http://www.trusttech.cn/index.asp.
    [121] Sun, Q. O.; Xu, Y. M. Evaluating intrinsic photocatalytic activities of anatase and rutileTiO2for organic degradation in water[J]. Journal of physical chemistry C,2010,114(44):18911-18918
    [122] Xie, M. Z.; Jing, L. Q.; Zhou, J., et al. Synthesis of nanocrystalline anatase TiO2byone-pot two-phase separated hydrolysis-solvothermal processes and its high activity forphotocatalytic degradation of rhodamine B[J]. Journal of Hazardous materials,2010,176(1-3):139-145
    [123] Tayade, R. J.; Surolia, P. K.; Kulkarni, R. G., et al. Photocatalytic degradation of dyesand organic contaminants in water using nanocrystalline anatase and rutile TiO2[J].Science and technology of advanced materials,2007,8(6):455-462
    [124] Jiang, D. L.; Zhao, H. J.; Zhang, S. Q., et al. Comparison of photocatalytic degradationkinetic characteristics of different organic compounds at anatase TiO2nanoporous filmelectrodes[J]. Journal of photochemistry and photobiology a-chemistry,2006,177(2-3):253-260
    [125] Sivalingam, G.; Nagaveni, K.; Hegde, M. S., et al. Photocatalytic degradation of variousdyes by combustion synthesized nano anatase TiO2[J]. Applied catalysisB-environmental,2003,45(1):23-38
    [126] Páez, C. A.; Liquet, D. Y.; Calberg, C., et al. Study of photocatalytic decomposition ofhydrogen peroxide over ramsdellite-MnO2by O2-pressure monitoring[J]. Catalysiscommunications,2011,15(1):132-136
    [127] Alexander, K. A.; Roundhill, D. M. Photocatalyzed decomposition of hydrogenperoxide using dirhenium decacarbonyl as photocatalyst[J]. Journal of MolecularCatalysis,1983,19(1):85-97
    [128] Ramos-Luna, M. A.; Cedeno-Caero, L. Effect of sulfates and reduced-vanadium specieson oxidative desulfurization (ODS) with V2O5/TiO2catalysts[J]. Industrial&engineering chemistry research,2011,50(5):2641-2649
    [129] Chang, J.; Wang, A. J.; Liu, J., et al. Oxidation of dibenzothiophene with cumenehydroperoxide on MoO3/SiO2modified with alkaline earth metals[J]. Catalysis Today,2010,149(1-2):122-126
    [130] Watanabe, S.; Ma, X. L.; Song, C. S. Characterization of structural and surfaceproperties of nanocrystalline TiO2-CeO2mixed oxides by XRD, XPS, TPR, and TPD[J].Journal of physical chemistry C,2009,113(32):14249-14257
    [131] Watanabe, S. Adsorption of thiophenic compounds on TiO2-CeO2mixed oxides[D]. US:Pennsylvania State University,2007.
    [132] Santhosh, S. M.; Swetha, S.; Balakrishna, G. R. Structure and photocatalytic activity ofTi1-XMxO2(M=Zr, Co and Mo) synthesized by pulverized solid state technique[J].Central european journal of chemistry,2010,8(4):963-963
    [133] Liu, H. J.; Liu, G. G.; Shi, X. Y. N/Zr-codoped TiO2nanotube arrays: Fabrication,characterization, and enhanced photocatalytic activity[J]. Colloids and surfacesa-physicochemical and engineering aspects,2010,363(1-3):35-40
    [134] Kim, J. Y.; Kim, C. S.; Chang, H. K., et al. Effects of ZrO2addition on phase stabilityand photocatalytic activity of ZrO2/TiO2nanoparticles[J]. Advanced powder technology,2010,21(2):141-144
    [135] Liu, J.; Li, M.; Wang, J., et al. Hierarchically macro-/mesoporous Ti Si oxides photoniccrystal with highly efficient photocatalytic capability[J]. Environmental science&technology,2009,43(24):9425-9431
    [136] Liu, H. J.; Liu, G. G.; Zhou, Q. X. Preparation and characterization of Zr doped TiO2nanotube arrays on the titanium sheet and their enhanced photocatalytic activity[J].Journal of solid state chemistry,2009,182(12):3238-3242
    [137] Zhang, J. C.; Gao, L. L.; Cao, W. L. Synthesis of Ti-Ce-Si binary and ternarynanocomposite photocatalyst by supercritical fluid drying technology[J]. Journal of rareearths,2006,24(2):182-187
    [138] Wang, C. H.; Geng, A. F.; Guo, Y. H., et al. A novel preparation of three-dimensionallyordered macroporous M/Ti (M=Zr or Ta) mixed oxide nanoparticles with enhancedphotocatalytic activity[J]. Journal of colloid and interface science,2006,301(1):236-247
    [139] Hegde, M. S.; Nagaveni, K.; Roy, S. Synthesis, structure and photocatalytic activity ofnano TiO2and nano Ti1-xMxO2-δ(M=Cu, Fe, Pt, Pd, V, W, Ce, Zr)[J]. Pramana-journalof physics,2005,65(4):641-645
    [140] Nagaveni, K.; Hegde, M. S.; Madras, G. Structure and photocatalytic activity ofTi1-xMxO2±δ(M=W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustionmethod[J]. Journal of Physical Chemistry B,2004,108(52):20204-20212
    [141] Dohshi, S.; Takeuchi, M.; Anpo, M. Effect of the local structure of Ti-oxide species onthe photocatalytic reactivity and photo-induced super-hydrophilic properties of Ti/Siand Ti/B binary oxide thin films[J]. Catalysis today,2003,85(2-4):199-206
    [142] Xiao, J.; Sitamraju, S.; Chen, Y. S., et al. Air-promoted adsorptive desulfurization overTi0.9Ce0.1O2mixed oxides from diesel fuel under ambient conditions[J]. Chemcatchem,2013,5(12):3582-3586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700