氧化还原近红外荧光探针的合成与生物应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有氧生命体需要有机体保持严格可控的内部氧化还原状态。动态的氧化还原平衡与生理和病理过程有着密切的关系。若解决实时监测生物体内的氧化还原平衡的生物检测技术问题,将会对生态平衡、生理和病理研究都有着重要的科学意义。在多种生物检测技术手段之中,合成有机小分子探针已为高时空分辨率检测活体系内的生理活性物种提供了一种最强大的生物化学工具。针对.上述问题,本文首次报道了了一系列新型可逆有机小分子荧光探针,特异性地研究口标生理活性物种。本文可视化研究了水溶液和细胞内的氧化还原循环对:过氧化亚硝酰/谷胱甘肽、次溴酸/抗坏血酸、双氧水/谷胱甘肽和气体信号分子硫化氧的抗氧化应激功能。本文探索了分子探针选择性地结合在特定细胞器内的问题,实现了在分子、细胞和活体三个层次上对具有生理氧化还原活性的物种的原位、实时、动态荧光成像分析。
     过氧化亚硝酰(ONOO-)和谷胱甘肽(GSH)之间的氧化还原平衡与一些生理和病理过程有着密切的关系。我们报道了两种近红外荧光探针用于监测的ONOO-/GSH水平在细胞和体内的变化情况。该探针集成了硒/碲酶模拟物作为受体能可逆地响应ONOO-/GSH水平的变化。该探针被成功地应用到细胞和动物体内的ONOO爆发和抗氧化剂GSH修复间期的氧化还原循环变化的可视化检测。
     次溴酸(HBrO)被认为是中性粒细胞主机防御系统的重要组成部分。但是过度产生或者在错误的地方生成可导致宿主的组织损伤,进而引发许多的疾病,包括关节炎癌症、哮喘等疾病。本工作两种新型可逆次溴酸荧光探针的合成,光谱性质及其生物应用。我们将这两种探针用于模拟生理条件下水溶液中次溴酸的检测和活细胞内次溴酸的荧光成像。这种可逆荧光探针能在生理条件下监测次溴酸氧化和抗坏血酸还原事件。
     双氧水(H2O2)可作为细胞正常生长和增殖的第二信使。如果超过生理致毒水平的阈值,就会导致因H2O2和抗氧化防御系统之间的不平衡而引起的氧化应激。本工作描述了一个具有“开-关-开”特征的荧光探针的设计、合成、光谱性质及其生物应用。这个探针可以简单直接地监测活细胞和组织内H2O2的氧化应激和硫醇还原修复的过程。
     硫化氢(H2S),这个具有令人厌恶气味的气体,被确定为第三个具有生物活性的气体,参与调节血管张力,心肌收缩,神经传导,胰岛素分泌等生理过程。本工作报道了一种能选择性响应细胞内硫化氢的比色和比率荧光探针Cy-N3。此探针可以很容易地用于评估细胞内硫化氢水平,实现了对细胞内硫化氢的激光共聚焦比率成像。
Aerobic organisms require their components to maintain the intracellular redox status strictly and controllably. The intracellular dynamical redox balances are closely related with many physiological and pathological processes. In order to monitor the in vivo redox cycles, the developments of reversible fluorescent probes are ideal inspection tools which are the right biological detection technology for the troublesome biomedical problems. We designed and synthesized a series of new organic small molecular fluorescent probes for researching physiologically active species specifically and exploring the probe molecules selectively positioned in specific organelles. We investigated the redox cycles within solution and cells visually:ONOO-/GSH, HBrO/Ascorbic Acid, H2O2/GSH, and gasotransmitters hydrogen sulfide against oxidative stress. Based on monitoring the physiological active species changes under the normal and disease states, we could achieve the in situ, real-time and dynamic fluorescence imaging analysis within the three levels of molecules, cells and tissues. The experimental results would reveal these functional reactive species'generation, metastasis and mechanisms, which had an important significance to provide a strong theoretical ideas and experimental basis for exploring the signal transduction of intracellular reactive species.
     The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine which integrates with telluroenzyme mimics for monitoring the changes of ONOO-/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO-and GSH, and exhibits high selectivity, sensitivity and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO-and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.
     We also develop another near-infrared reversible fluorescent probe, containing organoselenium functional group, for the highly sensitive and selective monitoring of peroxynitrite oxidation and reduction events under physiological conditions. The probe effectively avoids the influence of autofluorescence in biological systems and gives positive results when tested in both aqueous solution and living cells. The real-time images of cellular peroxynitrite were successfully acquired.
     Hypobromous acid (HOBr) has been regarded as a reactive bromine species (RBS) among endogenous reactive species. It is always thought to be a key component of the neutrophil host defence system. Although HOBr formation is critical for immune response, excessive or misplaced generation can cause host tissue damage, leading to a wide range of diseases, including arthritis, cardiovascular disease, cancers, asthma, neurodegenerative conditions, kidney disease, cystic fibrosis, and inflammatory bowel disease. We describe the synthesis, properties, and application of two reversible fluorescent probes,mCy-TemOH and Cy-TemOH, for HOBr sensing and imaging in live cells. The two probes contain hydroxylamine functional group for the monitoring of HOBr oxidation/ascorbic acid reduction events. Confocal fluorescence microscopy has established the HOBr detection in live-cells.
     H2O2serves as a second messenger for normal cellular growth and proliferation. Once the threshold of toxic level is exceeded, the oxidative stress is caused by imbalance between H2O2and antioxidant defense systems. Oxidativ stress always refers to aging, cancer, neurodegenerative and cardiovascular diseases. We present the design, synthesis, spectroscopy, and biological applications of DA-Cy, an on-off-on fluorescent probe to monitor H2O2oxidative stress and thiols repair in living cells and tissues simply and directly. The probe employs the near-infrared heptamethine cyanine dye as a fluorophore, equipped with a chemical redox-responsive dopamine unit. This fluorescent probe can selectively detect H2O2with fluorescence off. In addition, the oxidized state of the probe could deplete thiols via Michael addition to switch its fluorescence emission on. The Confocal microscopy experiments show that in the HL-7702and HepG2cell lines, DA-Cy is able to sense the different intracellular redox environments. The probe also offers the unique capability for H2O2oxidative stress and thiols repair in the fresh rat hippocampus tissues.
     Following nitric oxide (NO) and carbon monoxide (CO), H2S, with the repulsive odor, is identified as the third biologically active gas that is termed a gasotransmitter or a gasomediator. H2S is involved in a diverse array of physiological processes, including regulation of vascular tone, myocardial contractility, neurotransmission, insulin secretion and so on. We present a colorimetric and ratiometric fluorescent probe Cy-N3that exhibits a selective response to H2S. The probe employs a near-infrared cyanine as fluorophore, and is equipped with an operating azide unit. It is readily employed for assessing intracellular H2S levels, and confocal ratiometric imaging is achieved successfully.
引文
[1]Wang R., Yu C., Yu F., et al. Molecular fluorescent probes for monitoring pH changes in living cells [J]. Trends Anal. Chem.2010,29:1004-1013.
    [2]Stephens D. J., Allan V. J., Light microscopy techniques for live cell imaging [J]. Science 2003, 300:82-86.
    [3]Zipfel W. R., Williams R. M., Webb W. W., Nonlinear magic:multiphoton microscopy in the biosciences [J]. Nat. Biotechnol.2003,21:1369-1377.
    [4]Kobayashi H., Ogawa M., Alford R., et al. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging [J]. Chem. Rev.2010,110:2620-2640
    [5]Giepmans B. N. G., Adams S. R., Ellisman M. H., et al. The fluorescent toolbox for assessing protein location and function. [J]. Science 2006,312:217-224.
    [6]Chen X., Zhou Y., Peng X., et al. Fluorescent and colorimetric probes for detection of thiols [J]. Chem. Soc. Rev.,2010,39:2120-2135.
    [7]Han J., Burgess K., Fluorescent Indicators for Intracellular pH [J]. Chem. Rev.2010, 110:2709-2728.
    [8]Chen X., Tian X., Shin I., et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species [J]. Chem. Soc Rev.2011,40:4783-4804.
    [9]Lippert A. R., Van de Bittner G. C., Chang C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems [J]. Acc. Chem. Res. 2011,44:793-804.
    [10]Boens N., Leen V., Dehaen W. Fluorescent indicators based on BODIPY [J]. Chem. Soc. Rev. 2012,41:1130-1172.
    [11]Dsouza R. N., Pischel U., Nau W. M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution [J]. Chem. Rev.2011,111:7941-7980.
    [12]Zhou Y., Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids [J]. Chem. Soc. Rev.2012,41:52-67.
    [13]Duke R. M., Veale E. B. Pfeffer F. M., et al.Colorimetric and fluorescent anion sensors:an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors [J]. Chem. Soc. Rev.2010,39:3936-3953.
    [14]Chen X., Pradhan T., Wang F., et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives [J]. Chem. Rev.2012,112:1910-1956.
    [15]Que E. L., Domaille D. W., Chang J. C. Metals in neurobiology:probing their chemistry and biology with molecular imaging [J]. Chem. Rev.2008,108:4328-4359.
    [16]Domaille D. W., Que E. L., Chang C. J. Synthetic fluorescent sensors for studying the cell biology of metals [J].Nat. Chembiol.2008,4:168-175.
    [17]Loudet A., Burgess K. BODIPY dyes and their derivatives:syntheses and spectroscopic properties [J]. Chem. Rev.2007,107:4891-4932.
    [18]Beija M., Afonso C. A., Martinho J. M., Synthesis and applications of Rhodamine derivatives as fluorescent probes, Chem. Soc. Rev.,2009,38:2410-2433
    [19]Jun M. E., Roy B., Ahn K. H., "Turn-on" fluorescent sensing with "reactive" probes [J]. Chem. Commun.2011,47:7583-601.
    [20]Yang Y., Zhao Q., Feng W., et al. Luminescent chemodosimeters for bioimaging [J]. Chem. Rev. 2013,113:192-270.
    [21]Chan J., Dodani S. C., Chang, C. J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging [J]. Nat. Chem.2012,4:973-984.
    [22]Berezin M. Y., Achilefu S., Fluorescence Lifetime Measurements and Biological Imaging [J]. Chem. Rev.2010,110:2641-2684
    [23]Ueno T., Nagano T., Fluorescent probes for sensing and imaging [J]. Nat. Methods,2011, 8:642-645.
    [24]Kobayashi H., Longmire M. R., Ogawa M., Rational chemical design of the next generation of molecular imaging probes based on physics and biology:mixing modalities, colors and signals [J]. Chem. Soc. Rev.,2011,40:4626-4648.
    [25]Sameiro M., Goncalves T., Fluorescent Labeling of Biomolecules with Organic Probes [J]. Chem. Rev.2009,109:190-212
    [26]Itoh T. Fluorescence and Phosphorescence from Higher Excited States of Organic Molecules [J]. Chem. Rev.2012,112:4541-4568.
    [27]Lakowicz J. R., Principles of fluorescence spectroscopy,1st ed.; Plenum:New York,1983.
    [28]Guilbault G. G., Practical Fluorescence,2nd ed.; Marcel Dekker:New York,1990.
    [29]Shi W., Ma H., Spectroscopic probes with changeable π-conjugated systems [J]. Chem. Commun. 2012,48:8732-8744.
    [30]Lavis L, D., Raines R. T., Bright ideas for chemical biology [J]. ACS Chem. Biol.2008, 3:142-155..
    [31]de Silva A. P., Moody T. S., Wright G. D., Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools [J]. Analyst,2009,134:2385-2393
    [32]Kim J. S., Quang D. T., Calixarene-derived fluorescent probes [J]. Chem. Rev.2007,107, 3780-3799.
    [33]Grabowski Z. R., Rotkiewicz K., Rettig W. Structural Changes Accompanying Intramolecular Electron Transfer Focus on Twisted Intramolecular Charge-Transfer States and Structures [J]. Chem. Rev.2003,103:3899-4032.
    [34]Wong K. M. C., Yam V. W. W., Self-assembly of luminescent alkynylplatinum(Ⅱ) terpyridyl complexes:modulation of photophysical properties through aggregation behavior [J]. Acc. Chem. Res.2011,44:424-434.
    [35]Chi Y., Chou P. T., Contemporary progresses on neutral, highly emissive Os(Ⅱ) and Ru(Ⅱ) complexes [J]. Chem. Soc. Rev.2007,36:1421-1431.
    [36]Wong W. Y., Ho, C. L., Heavy metal organometallic electrophosphors derived from multi-component chromophores [J]. Coord. Chem. Rev.2009,253:1709-1758.
    [37]Yam V. W. W., Lo K. K. W., Luminescent polynuclear d10 metal complexes [J]. Chem. Soc. Rev. 1999,28:323-334
    [38]Fo□rster T. Z., Zwischenmolekulare Energiewanderung und Fluoreszenz [J]. Ann. Phys.1948, 437:55-75.
    [39]Eliseeva S. V., Bunzli J. C. G., Lanthanide luminescence for functional materials and bio-sciences [J]. Chem. Soc. Rev.2010,39:189-227.
    [40]Sytnik A., Kasha M., Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity.Proc [J]. Natl. Acad. Sci. U.S.A.1994,91:8627-8630.
    [41]Iijima T., Momotake A., Shinohara Y., et al. Excited-State Intramolecular Proton Transfer of Naphthalene-Fused 2-(2'-Hydroxyaryl)benzazole Family [J]. J. Phys. Chem. A 2010, 114:1603-1609.
    [42]Zhao J., Ji S., Chen Y., et al. Excited state intramolecular proton transfer (ESIPT):from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials [J]. Phys. Chem. Chem. Phys.2012,14:8803-8817.
    [43]Martinez-Mafiez R., Sancenon F., Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chem. Rev.2003,103:4419-4476.
    [44]Valeur B., Leray I., Design Principles of. Fluorescent Molecular Sensors for Cation. Recognition [J]. Coord. Chem. Rev.2000,205:3-40.
    [45]Xu Z., Yoon J., Spring D. R., Fluorescent chemosensors for Zn2+[J]. Chem. Soc. Rev.,2010, 39:1996-2006.
    [46]Lodeiro C., Pina F., Luminescent and chromogenic molecular probes based on poly amines and related compounds [J]. Coord. Chem. Rev.2009,253:1353-1383
    [47]Thomas S. W.3rd, Joly G. D., Swager T. M., Chemical sensors based on amplifying fluorescent conjugated polymers [J]. Chem. Rev.,2007,107:1339-1386.
    [48]Wu J., Liu W., Ge J., et al. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years [J]. Chem. Soc. Rev.2011,40:3483-495.
    [49]Yang G. Q., Morlet-Savary F., Peng Z. K., Triplet-triplet Absorption of 2-(2'-hydroxyphenyl) benzoxazole (HBO) in polar solvents [J]. Chem. Phys. Lett.,1996,256:536.
    [50]Li Z. M., Wu S. K., The effect of molecular structure on the photophysical behavior of substituted styryl pyrazine derivatives [J]. J. Fluoresc.,1997,7:237-242.
    [51]Wang P. F., Wu S. K., Spectroscopy and photophysics of bridged enone derivatives:effect of molecular structure and solvent [J]. J. Photochem. Photobiol., A,1995,86:109.
    [52]Lecoq J., Schnitzer M. J., An infrared fluorescent protein for deeper imaging [J]. Nat Biotechnol. 2011,29:715-716.
    [53]Schfer H., Haase M., Upconverting Nanoparticles [J]. Angew. Chem. Int. Ed.2011, 50:5808-5829.
    [54]Dong X., Yang Y., Sun J., et al. Two-photon excited fluorescent probes for calcium based on internal charge transfer [J]. Chem. Commun.2009,3883-3385.
    [55]Sun Q., Liu J., Lv X., et al. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. [J]. Angew Chem Int Ed Engl.2012,51:7634-7636.
    [56]Kim H. M, Cho B. R. Two-photon fluorescent probes for metal ions [J]. Chem. Asian J.2011, 6:58-69.
    [57]Yuan L., Lin W., Zheng K., Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev.2013,42:622-661.
    [58]Kwon T. H., Kim H. J., Hong J. I., Phosphorescent thymidine triphosphate sensor based on a donor-acceptor ensemble system using intermolecular energy transfer [J]. Chem.-Eur. J.,2008, 14:9613-9619
    [59]Valeur B., Molecular Fluorescence Principles and Applications, Wiley-VCH/Verlag/GmbH, New York,2001.
    [60]Lai T. I., Lim E. C., Proximity effect and excited-state dynamics of 9-carbonyl-substituted anthracenes [J]. J. Am. Chem. Soc.,1985,107,1134-1137.
    [61]Jameson D. M., Ross J. A., Fluorescence polarization/anisotropy in diagnostics and imaging [J]. Chem. Rev.,2010,110:2685-2708.
    [63]Yu F., Li P., Li G., et al. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells [J]. J. Am. Chem. Soc.2011, 133:11030-11033.
    [64]Wang B., Li P., Yu F., et al. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells [J]. Chem. Commun.2013, 49:1014-1016.
    [65]Lou Z., Li P., Pan Q., et al. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals:utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide [J]. Chem. Commun.2013,49:2445-2447.
    [66]Liu S., Wu P., Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide [J]. Org. Lett.2013,15:878-881.
    [67]Wang B., Yu F., Li P., et al. A BODIPY fluorescence probe modulated by selenoxide spirocyclization reaction for peroxynitrite detection and imaging in living cells [J]. Dyes Pigm. 2013,96:383-390.
    [68]Koide Y., Kawaguchi M., Urano Y., et al.A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine [J]. Chem. Commun.2012,48:3091-3093.
    [69]Ahn H. Y., Fairfull-Smith K. E., Morrow B. J., et al. Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides [J]. J. Am. Chem. Soc.2012, 134:4721-4730.
    [70]Hirosawa S., Arai S., Takeoka S., A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions. [J]. Chem. Commun.2012,48:4845-48947.
    [71]Meyer A. J., Dick T. P.. Fluorescent protein-based redox probes [J]. Antioxid. Redox Signal 2010, 13:621-650.
    [72]Cannon M. B., Remington S. J., Redox-sensitive green fluorescent protein:probes for dynamic intracellular redox responses [J]. Methods Mol. Biol.2008,476:51-65.
    [73]Lee K., Dzubeck V., Latshaw L., et al. De novo designed peptidic redox potential probe:linking sensitized emission to disulfide bond formation [J]. J. Am. Chem. Soc.2004,126:13616-13617.
    [74]Humphries W. H., Bain C. P., Payne C. K., et al. Fluorescent coumarin thiols measure biological redox couples [J]. Org. Lett.2012,14680-683.
    [75]Lou Z., Li P., Sun X., et al. A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells [J]. Chem. Commun.2013, 49:391-393.
    [76]LeBel C. P., Ischiropoulos H., Bondy S. C., Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress [J]. Chem. Res. Toxicol.1992, 5:227-231.
    [77]Kundu K., Knight S. F., Willett N., et al. Hydrocyanines:a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo [J]. Angew. Chem. Int. Ed. Engl. 2009,48:299-303.
    [78]Yamada Y., Tomiyama Y., Morita A., et al.BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin [J]. Chembiochem.2008,9:853-856.
    [79]Miller E. W., Bian S. X., Chang C. J., A fluorescent sensor for imaging reversible redox cycles in living cells [J]. J. Am. Chem. Soc.2007,129:3458-3459.
    [80]Takahashi S., Piao W., Matsumura Y., et al. Reversible off-on fluorescence probe for hypoxia and imaging of hypoxia-normoxia cycles in live cells [J]. J. Am. Chem. Soc.2012, 134:19588-19591.
    [81]Benniston A. C., Copley G., Elliott K. J., et al. Redox-Controlled Fluorescence Modulation in a BODIPY-Quinone Dyad [J]. Eur. J. Org. Chem.2008 2008:2705-2713
    [82]Kierat R. M., Thaler B. M., Kramer R., A fluorescent redox sensor with tuneable oxidation potential. Bioorg. Med. Chem. Lett.2010,20:1457-1459.
    [83]Muranaka A., Ohira S., Hashizume D., et al. [18]/[20]n hemiporphyrazine:a redox-switchable near-infrared dye [J]. J. Am. Chem. Soc.2012,134:190-193.
    [84]Ferrer-Sueta G., Radi R., Chemical biology of peroxynitrite:kinetics, diffusion, and radicals [J]. ACS Chem. Biol.2009,4:161-177.
    [85]Pacher P., Beckman J. S., Liaudet L., Nitric oxide and peroxynitrite in health and disease [J]. Physiol. Rev.2007,87:315-424.
    [86]Surmeli N. B., Litterman N. K., Miller A. F., et al. Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion [J]. J. Am. Chem. Soc.2010,132:17174-17185.
    [87]Shiddipui M. R., Komarava Y. A., Vogel S. M, et al. Caveolin-1-eNOS signaling promotes pl90RhoGAP-A nitration and endothelial permeability [J]. J. Cell Biol.2011,193:841-850.
    [88]Kawasaki H., Ikeda K., Shigenaga A., et al. Mass spectrometric identification of tryptophan nitration sites on proteins in peroxynitrite-treated lysates from PC 12 cells [J]. Free Radic. Biol. Med.2011,50:419-427.
    [89]Sawa T., Zaki M. H., Okamoto T.,et al. Protein S-guanylation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate [J]. Nat. Chem. Biol.2007,3:727-735.
    [90]Khoo N. K. H., Freeman B. A., Protein S-guanylation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate [J]. Curr. Opin. Pharmacol.2010,10:179-184.
    [91]Fraszczak J., Trad M., Janikashvili N., et al. Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells [J]. J. Immunol.,2010,184, 1876-1884.
    [92]Ieda N., Nakagawa H., Peng T., et al. Photocontrollable peroxynitrite generator based on N-methyl-N-nitrosoaminophenol for cellular application [J]. J. Am. Chem. Soc.2012, 134:2563-2568.
    [93]Beckman J. S., Beckman T. W., Chen J., et al. Apparent hydroxyl radical production by peroxynitrite:implication for endothelial injury from NO and superoxide [J]. Proc. Natl Acad. Sci. USA 1990,87:1620-1624.
    [94]Gryglewski R. J., Palmer R. M., Moncada S., Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor [J]. Nature 1986,320:454-456.
    [95]Radi R.,Peluffo G., Alvarez M. N., et al. Unraveling peroxynitrite formation in biological systems [J]. Free Radic. Biol.Med.,2001,30:463-488.
    [96]Alvarez M. N., Piacenza, L., Irigoin, F., et al. Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi [J]. Arch. Biochem. Biophys.2004,432:222-232.
    [97]Nalwaya N., Deen W. M., NO, oxygen, and superoxide formation and consumption in macrophage cultures [J]. Chem. Res. Toxicol.2005,18:486-493.
    [98]Quijano C., Romero,N., Radi R., Tyrosine nitration by superoxide and NO fluxes in biological systems:modeling the impact of superoxide dismutase and NO diffusion [J]. Free Radic. Biol. Med.2005,39:728-741.
    [99]Wang R., Chen L., Liu P., et al. Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage:imaging in living cells and tissues [J]. Chemistry 2012,18:11343-11349.
    [100]Niu L. Y., Guan Y. S., Chen Y. Z., et al. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine [J]. J. Am. Chem. Soc.2012,134:18928-18931.
    [101]Lee M. H., Han J. H., Lee J. H., et al. Mitochondrial thioredoxin-responding off-on fluorescent probe [J].J. Am. Chem. Soc.2012,134:17314-17319.
    [102]Morgan B., Ezerina D., Amoako T. N., et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis [J]. Nat. Chem. Biol.2012,9:119-125
    [103]Radi R., Cassina A., Hodara R., et al. Peroxynitrite reactions and formation in mitochondria [J]. Free Radic. Biol. Med.2002,33:1451-1464.
    [104]Novo E., Parola M., Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair [J] 2008,1:5.
    [105]Lim C. S., Masanta G., Kim H. J., et al. Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe [J]. J. Am. Chem. Soc.2011,133:11132-11135.
    [106]Ueno T., Urano Y., Setsukinai K., et al. Rational principles for modulating fluorescence properties of fluorescein [J]. J. Am. Chem. Soc.2004,126:14079-14085.
    [107]Ueno T., Urano Y., Kojima H., et al. Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress [J]. J. Am. Chem. Soc.2006,128:10640-11064.
    [108]Yang D., Wang H. L., Sun Z. N., et al. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells [J]. J. Am. Chem. Soc.2006,128:6004-6005.
    [109]Sun N., Wang L., Liu Q., et al. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells [J]. Org. Lett.2009,11(9):1887-1890.
    [110]Hempel S. L., Buettner G. R., O'Malley Y. Q., et al. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants:comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123 [J]. Free. Radic. Biol. Med.1999,27:146-159.
    [111]Miyasaka N., Hirata Y., Nitric oxide and inflammatory arthritides [J]. Life Sci.1997, 61:2073-2081.
    [112]Oushiki D., Kojima H., Terai T., et al. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes [J]. J. Am. Chem. Soc.2010,132:2795-2801.
    [113]Peng T., Yang D., HKGreen-3:a rhodol-based fluorescent probe for peroxynitrite [J]. Org. Lett. 2010,12:4932-4935.
    [114]Zielonka J., Sikora A., Joseph J., et al. Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide:direct reaction with boronate-based fluorescent probe [J]. J. Biol. Chem.2010,285:14210-14216.
    [115]Yang X., Guo X., Zhao Y., Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite [J]. Talanta 2002,57:883-890.
    [116]Setsukinai K., Urano Y., Kakinuma K., et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species [J]. J. Biol. Chem.2003, 278:3170-3175.
    [117]Song C., Ye.Z, Wang G., et al. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite [J]. Chemistry 2010,16:6464-6472.
    [118]Zhang Q., Zhu Z., Zheng Y., et al. A three-channel fluorescent probe that distinguishes peroxynitrite from hypochlorite [J]. J. Am. Chem. Soc.2012,134:18479-18482.
    [119]Wang B., Yu F., Li P., et al. A BODIPY fluorescence probe modulated by selenoxide spirocyclization reaction for peroxynitrite detection and imaging in living cells [J]. Dyes Pigm. 2013,96:383-390.
    [120]Bhabak K. P., Mugesh G., Functional mimics of glutathione peroxidase:bioinspired synthetic antioxidants [J]. Acc. Chem. Res.2010,43:1408-1419.
    [121]Ba L. A., Doring M., Jamier V., Tellurium:an element with great biological potency and potential [J]. Org. Biomol. Chem.,2010,8:4203-4216
    [122]Nogueira C. W., Zeni G., Rocha J. B., Organoselenium and organotellurium compounds: toxicology and pharmacology [J]. Chem Rev.2004,104:6255-6285.
    [123]Sarma B. K., Manna D., Minoura M., et al. Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane [J]. J. Am. Chem. Soc.2010,132:5364-5374.
    [124]Hirayama T., Van de Bittner G. C., Gray L. W., et al. Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model [J]. Proc. Natl. Acad. Sci. U S A.2012, 109:2228-2233.
    [125]Yuan L., Lin W., Zheng K., et al. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging [J]. Chem. Soc. Rev.2012, 42:622-661.
    [126]Sasaki E., Kojima H., Nishimatsu H., et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs [J]. J. Am. Chem. Soc.2005,127:3684-685.
    [127]Aso Y., Yamashita H., Otsubo T., et al. Simple titration method using diphenyl ditelluride as a colored indicator for the determination of organolithium and organomagnesium reagents [J]. J. Org. Chem.1989,54:5627-5629
    [128]Kundu D., Ahammed S., Ranu B. C., Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate:a general procedure for the synthesis of unsymmetrical diaryl chalcogenides [J]. Green Chem.,2012,14:2024-2030
    [129]Shortreed M., Kopelman R., Kuhn M., et al. Fluorescent fiber-optic calcium sensor for physiological measurements [J]. Anal. Chem.1996,68:1414-1418.
    [130]Green D. R., Galluzzi L., Kroemer G., Mitochondria and the autophagy-inflammation-cell death axis in organismal aging [J]. Science 2011,333:1109-1112.
    [131]Johnson L. V., Walsh M. L., Bockus B. J., et al. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy [J]. J. Cell Biol.1981,88:526-535.
    [132]Johnson L. V., Walsh M. L., Chen B., Localization of mitochondria in living cells with rhodamine 123 [J]. Proc. Natl. Acad. Sci. USA.1980,77:990-994.
    [133]Wu Y., Zinchuk V., Grossenbacher-Zinchuk O., et al. Critical evaluation of quantitative colocalization analysis in confocal fluorescence microscopy [J]. Interdiscip. Sci.2012,4:27-37.
    [134]Karp D. R., Shimooku K., Lipsky P. E., Expression of gamma-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death [J]. J. Biol. Chem.2001,276:3798-3804.
    [135]Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what do the results mean? [J]. Br. J. Pharmacol.,2004, 142:231-255.
    [136]Halliwell, B. Oxidative stress and neurodegeneration:where are we now? [J]. J. Neurochem., 2006,97:1634-1658.
    [137]Nathan C. Neutrophils and immunity:challenges and opportunities [J]. Nat. Rev. Immunol. 2006,6:173-182.
    [138]Gaut J P, Yeh G C, Tran H D, et al. Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis [J]. Proc. Natl. Acad. Sci. USA, 2001,98:11961-11966.
    [139]Mayeno A N, Curran A J, Roberts R L, et al. Eosinophil peroxidase is also partly responsible for tissue remodeling [J]. J. Biol. Chem.,1989,264:5660-5668.
    [140]Thomas E L, Bozeman P M, Jefferson M M, et al. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines [J]. J. Biol. Chem.,1995,270:2906-2913.
    [141]Davies M J, Hawkins C L, Pattison D I. et al. Mammalian heme peroxidases:From molecular mechanisms to health implications [J]. Antioxid. Redox. Signal.2008,10:1199-1234.
    [142]Kettle A J, Winterbourn C C. Myeloperoxidase:a key regulator of neutrophil oxidant production [J]. Redox Rep.,1997,3:3-15.
    [143]Pullar J M, Vissers M C, Winterbourn C C. Living with a killer:the effects of hypochlorous acid on mammalian cells [J]. IUBMB Life,2000,50:259-266.
    [144]Skaff O, Pattison D I, Davies M J. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols absolute rate constants and assessment of biological relevance [J]. Biochem. J., 2009,422:111-117.
    [145]Huber W, Koella J C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites [J]. Acta Trop.,1993,55:257-261
    [146]Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J]. Phys. Chem. Chem. Phys.2008,10:6615-6620.
    [147]Treutler O, Ahlrichs R. Efficient Molecular Numerical Integration Schemes [J]. J. Chem. Phys. 1995,102,346-354.
    [148]Schneider S. K, Julius G. R, Loschen C, et al. A first structural and theoretical comparison of pyridinylidene-type rNHC (remote N-heterocyclic carbene) and NHC complexes of Ni(Ⅱ) obtained by oxidative substitution [J]. Dalton Trans.2006,1226-1233.
    [149]Klamt A., Schuurmann G., COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. J. Chem. Soc. Perkin Trans.,2, 1993,5:799-805.
    [150]Likhtenshtein G. I, Yamauchi J., Nakatsuji S., et al. Nitroxides:Applications in Chemistry, Biomedicine, and Materials Science [M]//Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim. 2008.
    [151]Bognar B, Jeko J, Kalai T, et al. Synthesis of redox sensitive dyes based on a combination of long wavelength emitting fluorophores and nitroxides [J]. Dyes Pigm.,2010,87:218-224.
    [152]Morrow B J, Keddie D J, Gueven N, et al. A novel profluorescent nitroxide as a sensitive probe for the cellular redox environment [J]. Free Radic. Biol. Med.,2010,49:67-76.
    [153]Ishii K, Kubo K, Sakurada T, et al. Phthalocyanine-based fluorescence probes for detecting ascorbic acid:phthalocyaninatosilicon covalently linked to TEMPO radicals [J]. Chem Commun., 2011,47,4932-4934.
    [154]Samuni A, Goldstein S, Russo A, et al. Kinetics and Mechanism of Hydroxyl Radical and OH-Adduct Radical Reactions with Nitroxides and with Their Hydroxylamines [J]. J. Am. Chem. Soc.,2002,124:8719-8724.
    [155]Pouliot M, Renaud P, Schenk K, et al. Oxidation of Alkyl Trifluoroborates:An Opportunity for Tin-Free Radical Chemistry [J]. Angew. Chem. Int. Ed.,2009,48:6037-6040.
    [156]Amorati R, Pedulli G F, Pratt D A, et al. TEMPO reacts with oxygen-centered radicals under acidic conditions [J]. Chem. Commun.,2010,46:5139-5141.
    [157]Tebben L, Studer A, et al. Nitroxides:Applications in Synthesis and in Polymer Chemistry [J]. Angew. Chem. Int. Ed.,2011,50:5034-5068.
    [158]Rychnovsky S D, Vaidyanathan R, Beauchamp T, et al. AM1-SM2 Calculations Model the Redox Potential of Nitroxyl Radicals Such as TEMPO [J]. J. Org. Chem.,1999,64:6745-6749.
    [159]Rychnovsky S D, Vaidyanathan R J. et al. TEMPO-Catalyzed Oxidations of Alcohols Using m-CPBA:The Role of Halide Ions [J]. J. Org. Chem.,1999,64:310-312.
    [160]Liu R, Liang X, Dong C, et al. Transition-metal-free:a highly efficient catalytic aerobic alcohol oxidation process [J]. J. Am. Chem. Soc.,2004,126:4112-4113.
    [161]Strekowski L, Lipowska M, Patonay G, Substitution reactions of a nucleofugal group in heptamethine cyanine dyes. Synthesis of an isothiocyanato derivative for labeling of proteins with a near-infrared chromophore [J]. J. Org. Chem.,1992,57:4578-4580.
    [162]Lipowska M, Patterson S E, Patonay G, et al. A highly selective hydrogen-deuterium exchange in indolium heptamethine cyanines [J]. J. Heterocycl. Chem.,1993,30:1177-1180.
    [163]Lee H, Berezin M Y, Guo K, et al. Near-infrared fluorescent pH-sensitive probes via unexpected barbituric acid mediated synthesis [J]. Org. Lett.,2009,11:29-32.
    [164]Ozmen B, Akkaya E U. Infrared fluorescence sensing of submicromolar calcium:pushing the limits of photoinduced electron transfer [J]. Tetrahedron Lett.,2000,41:9185-9188.
    [165]Sasaki E, Kojima H, Nishimatsu H, et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs [J]. J. Am. Chem. Soc.,2005,127:3684-3685.
    [166]Tang B, Yu F, Li P, et al. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes:imaging in living HepG2 and HL-7702 cells [J]. J. Am. Chem. Soc.,2009, 131:3016-3023.
    [167]Kiyose K, Aizawa S, Sasaki E, et al. Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines [J]. Chem.-Eur. J., 2009,15:9191-9200.
    [168]Mayerhoffer, U.; Fimmel, B.; Wurthner, F. et al. Bright Near-Infrared Fluorophores Based on Squaraines by Unexpected Halogen Effects [J]. Angew Chem Int Ed.2012,51:164-167.
    [169]Encinas C, Miltsov S, Otazo E, et al. Synthesis and spectroscopic characterisation of heptamethincyanine NIR dyes for their use in optochemical sensors [J]. Dyes Pigm.,2006, 71:28-36.
    [170]Spalteholz H, Panasenko O M, Arnhold J. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase [J]. Arch Biochem Biophys.,2006,445:225-234.
    [171]Autreaux B D',Toledano M B. ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis [J]. Nat. Rev. Mol. Cell. Biol.,2007,8:813-824.
    [172]Lambeth J D. Nox Enzymes and The Biology of Reactive Oxygen [J]. Nat. Rev. Immunol., 2004,4:181-189.
    [173]Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine,3rd ed. [A]//Clarendon Press:Oxford, UK,1999.
    [174]Miller E W, Tulyathan O, Isacoff E. Y, ea al. Molecular imaging of hydrogen peroxide produced for cell signaling [J]. Nat. Chem. Biol.,2007,3:263-267.
    [175]Grimsrud P A, Xie H, Griffin T J, ea al. Oxidative stress and covalent modification of protein with bioactive aldehydes [J]. J. Biol. Chem.,2008,283:21837-21841.
    [176]Finkel T, Serrano M, Blasco M A. The common biology of cancer and ageing [J]. Nature,2007, 448:767-774.
    [177]Andersen J K. Oxidative stress in neurodegeneration:cause or consequence? [J]. Nat. ReV. Neurosci.2004, S18-25.
    [178]Wang Y Y, Chen S M, Li H. Hydrogen peroxide stress stimulates phosphorylation of FoxOl in rat aortic endothelial cells [J]. Acta. Pharmacol. Sin.,2010,31:160-164.
    [179]Juranek I, Bezek S. Controversy of free radical hypothesis:reactive oxygen species-cause or consequence of tissue injury? [J]. Gen. Physiol. Biophys.,2005,24:263-278.
    [180]Sen C K, Packer L. Thiol homeostasis and supplements in physical exercise [J]. Am. J. Clin. Nutr.,2000,72,653S-669S.
    [181]Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects [J]. Clin. Chem.2001,47:1467-1469.
    [182]Jocelyn P C, Kamminga A. The non-protein thiol of rat liver mitochondria [J]. Biochim. Biophys. Acta.,1974,343:356-362.
    [183]Meredith M J, Reed D J. Status of the mitochondrial pool of glutathione in the isolated hepatocyte [J]. J. Biol. Chem.1982,257:3747-3753.
    [184]Shen, X. M., Xia, B., Wrona, M. Z, et al. Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine:possible metabolites of relevance to Parkinson's disease [J]. Chem. Res. Toxicol.,1996,9:1117-1126.
    [185]Zhang F, Dryhurst G. Effects of L-cysteine on the oxidation chemistry of dopamine:new reaction pathways of potential relevance to idiopathic Parkinson's disease [J]. J. Med. Chem., 1994,37:1084-1098.
    [186]Spencer J P E, Jenner P, Daniel S E, et al. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease:possible mechanisms of formation involving reactive oxygen species [J]. J. Neurochem.,1998,71:2112-2122.
    [187]Yu J, Wei W, Danner E, et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation [J]. Nat. Chem. Biol.,2011,7:588-590.
    [188]de Silva A P, Gunaratne H Q, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566.
    [189]Ueno T, Urano Y, Setsukinai K, et al. Rational principles for modulating fluorescence properties of fluorescein, [J]. J. Am. Chem. Soc.,2004,126:14079-14085.
    [190]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT,2009.
    [191]Dickinson B C, Peltier J, Stone D, et al. Nox2 redox signaling maintains essential cell populations in the brain [J]. Nat. Chem. Biol.,2011,7:106-112.
    [192]Maeda H, Fukuyasu Y, Yoshida S, et al. Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism [J]. Angew. Chem. Int. Ed.,2004,43:2389-2391.
    [193]Karp D R, Shimooku K, Lipsky P E. Expression of gamma-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death [J]. J. Biol. Chem.,2001,276:3798-3804.
    [194]Crawhall J C, Segal S. Incorporation of DL-[2-14C]mevalonic acid lactone into beta-carotene and the phytol side chain of chlorophyll in cotyledons of four species of pine seedlings [J]. Biochem. J.,1967,105:89-92.
    [195]Lippert A R, New E J, Chang C J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells [J]. J. Am. Chem. Soc.,2011,133:10078-10080.
    [196]Beauchamp R O Jr, Bus J S, Popp J A, et al. A critical review of the literature on hydrogen sulfide toxicity [J]. Crit. Rev. Toxicol.,1984,13:25-97;
    [197]Reiffenstein R 1, Hulbert W C, Roth S H. Toxicology of hydrogen sulfide [J]. Annu. Rev. Pharmacol. Toxicol.,1992,32:109-134.
    [198]Kimura H, Nagai Y, Umemura K, et al. Physiological roles of hydrogen sulfide:synaptic modulation, neuroprotection, and smooth muscle relaxation [J]. Antioxid Redox Signal.,2005, 7:795-803.
    [199]Moore P K, Bhatia M, Moochhala S. Hydrogen sulfide:from the smell of the past to the mediator of the future? [J]. Trends Pharmacol. Sci.,2003,24:609-611;
    [200]Wang R. The gasotransmitter role of hydrogen sulfide [J]. Antioxid Redox Signal.,2003, 5:493-501;
    [201]SzaboC. Hydrogen sulphide and its therapeutic potential [J]. Nat. Rev. Drug Discov.,2007, 6:917-935;
    [202]Li L, Rose P, Moore P K. Hydrogen sulfide and cell signaling [J]. Annu. Rev. Pharmacol. Toxicol.,2011,51:169-187;
    [203]Miller T W, Isenberg J S, Roberts D D. Molecular regulation of tumor angiogenesis and perfusion via redox signaling [J]. Chem. Rev.,2009,109:3099-3124;
    [204]d'Emmanuele di Villa Bianca R, Sorrentino R, Mirone V, et al. Hydrogen sulfide and erectile function:a novel therapeutic target [J]. Nat.Rev. Urol.,2011,8:286-289.
    [205]Kimura H. Hydrogen sulfide:its production, release and functions [J]. Amino Acids.2011, 41:113-121;
    [206]Stipanuk M H, Ueki 1. J. Dealing with methionine/homocysteine sulfur:cysteine metabolism to taurine and inorganic sulfur [J]. Inherit. Metab. Dis.2011,34:17-32;
    [207]Dominy J E, Stipanuk M H. New roles for cysteine and transsulfuration enzymes:production of H2S, a neuromodulator and smooth muscle relaxant [J]. Nutr. Rev.,2004,62,348-353.
    [208]Searcy D G, Lee S H. J. Sulfur reduction by human erythrocytes [J]. Exp. Zool.,1998, 282:310-322.
    [209]Fume J, Saeed A, Levitt M D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values [J]. Am. J. Physiol.,2008,295:R1479-R 1485;
    [210]Warenycia M W, Goodwin L R, Benishin C. G, et al. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels [J]. Biochem. Pharmacol.,1989,38:973-981;
    [211]Han Y, Qin J, Chang X, et al. Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures [J]. Cell. Mol. Neurobiol.,2006,26:101-107.
    [212]H. Yan, J. Du, and C. Tang. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats [J]. Biochem. Biophys. Res. Commun.,2004,313:22-27;
    [213]Geng B, Yang J, Qi Y, et al. H2S generated by heart in rat and its effects on cardiac function [J]. Biochem. Biophys. Res. Commun.,2004,313,362-368;
    [214]Zhang C, Du J, Bu D, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats [J]. Biochem. Biophys. Res. Commun.,2003,302:810-816;
    [215]Mitsuhashi H, Yamashita S, Ikeuchi H, et al. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils [J]. Shock.,2005,24:529-534.
    [216]Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol [J]. Biochem. Biophys. Res. Commun.,2004,318:756-763.
    [217]Whiteman M, Armstrong J S, Chu S H, et al. The novel neuromodulator hydrogen sulfide:an endogenous peroxynitrite'scavenger'? [J]. J. Neurochem.,2004,90:765-768.
    [218]Whiteman M, Cheung N S, Zhu Y Z, et al. Hydrogen sulphide:a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? [J]. Biochem. Biophys. Res. Commun.,2005,326,794-798.
    [219]Wang, R. Two's company, three's a crowd:can H2S be the third endogenous gaseous transmitter? [J]. FASEB J.,2002,16:1792-1798;
    [220]Hughes M N, Centelles M N, Moore K P. Making and working with hydrogen sulfide:The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo:a review [J]. Free Radical. Biol. Med.,2009,47:1346-1353;
    [221]Doeller J E, Isbell T S, Benavides G, et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues [J]. Anal. Biochem.,2005,341:40-51;
    [222]Radford-Knoery J, Cutter G A. Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection [J]. Anal. Chem.,1993,65:976-982;
    [223]Ishigami M, Hiraki K, Umemura K, et al. A source of hydrogen sulfide and a mechanism of its release in the brain [J]. Antioxid. Redox Signal.,2009,11:205-214.
    [224]Wang R, Yu C, Yu F, et al. Molecular fluorescent probes for monitoring pH changes in living cells [J]. Trends Anal. Chem.,2010,29:1004-1013.
    [225]Ueno T, Nagano T. Fluorescent probes for sensing and imaging [J]. Nat. Methods,2011, 8:642-645;
    [226]Bright G R, Fisher G W, Rogowska J, et al. Fluorescence ratio imaging microscopy [J]. Methods Cell Biol.,1989,30:157-192;
    [227]Narayanan N, Patonay G. A new method for the synthesis of heptamethine cyanine dyes: synthesis of new near-infrared fluorescent labels [J]. J. Org. Chem.,1995,60:2391-2395.
    [228]O'Boyle N M, Tenderholt A L, Langner K M. cclib:A library for package-independent computational chemistry algorithms [J]. J. Comp. Chem.2008,29:839-845.
    [229]de Silva A P, Gunaratne H Q, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566;
    [230]Grabowski Z R, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev.,2003,103:3899-4031;
    [231]Kazemi F, Kiasat A R, Sayyahi S. Chemoselective reduction of azides with sodium sulfide hydrate under solvent free conditions [J]. Phosphorus Sulfur Silicon Relat. Elem.,2004,179, 1813-1817;
    [232]Pang L, Wang D, J. L Zhou, et al. Synthesis of neamine-derived pseudodisaccharides by stereo-and regio-selective functional group transformations [J]. Org. Biomol. Chem.,2009,7, 4252-4266.
    [233]Lord S J, Conley N R, Lee H L, et al. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells [J]. J. Am. Chem. Soc.,2008,130:9204-9205.
    [234]Li L, Rossoni G, Sparatore A,et al. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative [J]. Free Radic Biol Med.2007,42:706-719;
    [235]Li X, Fan W, Li H, et al. Design, Synthesis and Biological Evaluation of Lipophilic Analogs of Anethol Trithione [J]. Lett. Drug Des. Discov.,2010,7:747-753.
    [236]IUPAC. McNaught A D, Wilkinson A. Compendium of Chemical Terminology,2nd ed, (the "Gold Book")[M]//Blackwell Scientific Publications, Oxford,1997.
    [237]Wang Z R, Sheng J P, Tian X, et al. The in vitro antioxidant properties of Bacillus simplex XJ-25 isolated from sand biological soil crusts [J]. African Journal of Microbiology Research, 2011,5:4980-4986.
    [238]Ferrer-Sueta G, Radi R.Chemical biology of peroxynitrite:kinetics, diffusion, and radicals [J]. ACS Chem. Biol.,2009,4:161-177;
    [239]Szabo C, Ischiropoulos H, Radi R. Peroxynitrite:biochemistry, pathophysiology and development of therapeutics [J]. Nat. Rev. Drug Discov.,2007 6:662-680;
    [240]Pacher P, Beckman J S, Liaudet L. Nitric oxide and peroxynitrite in health and disease [J]. Physiol. Rev.,2007,87:315-424.
    [241]Nagano T J. Bioimaging Probes for Reactive Oxygen Species and Reactive Nitrogen Species [J]. Clin. Biochem. Nutr.2009,45:111-124.
    [242]Radi R, Beckman J S, Bush K M, et al.Peroxynitriteoxidation of sulfhydryls. The cytotoxic potential ofsuperoxide and nitric oxide [J].J. Biol. Chem.,1991,266:4244-4250.
    [243]Ducrocq C, Blanchard B, Pignatelli B, et al.Peroxynitrite:an endogenous oxidizing and nitrating agent [J]. Cell. Mol. Life Sci.,1999,55,1068-1077;
    [244]Uppu R M. Synthesis of peroxynitrite using isoamyl nitrite and hydrogen peroxide in a homogeneous solvent system [J]. Anal. Biochem.,2006,354:165-168.
    [245]Ashki N, Hayes K C, Bao F. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord [J]. Neuroscience,2008,156:107-117.
    [246]Nieminen A L, Byrne A M, Herman B, et al. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH:NAD(P)H and reactive oxygen species [J]. Am. J. Physiol. Cell Physiol.1997,272, C1286-C1294.
    [247]Halliwell B, Gutteridge J M C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts [J]. Arch. Biochem. Biophys.,1986,246,501-514.
    [248]Morris J C. The acid ionization constant of HOC1 from 5 to 35℃[J]. J. Phys. Chem.,1966,70, 3798-3805.
    [249]Kumar K, Margerum D W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid [J]. Inorg. Chem.,1987,26:2706-2711.
    [250]Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals [J]. Theor. Chem. Acc,2008,120:215-241.
    [251]Brown H C, Zweifel G, a stereospecific cis hydration of the double bond in cyclic derivatives[J]. J. Am. Chem. Soc.,1959,81:247.
    [252]Dickinson B C, Chang C J. Chemistry and biology of reactive oxygen species in signaling or stress responses [J].Nat. Chem. Biol.,2011,7:504-511;
    [254]Zhao W. Lighting up H2O2:the molecule that is a "necessary evil" in the cell [JJ.Angew. Chem. Int. Ed. Engl.,2009,48:3022-3024.
    [255]Sikora A, Zielonka J, Lopez M, et al. Direct oxidation of boronates by peroxynitrite: mechanismand implications in fluorescence imaging of peroxynitrite[J]. Free Radical. Biol. Med., 2009,47:1401-1407;
    [256]Zielonka J, Sikora A, Joseph J, et al. Peroxynitrite is the major species formed from different flux ratios of cogeneratednitric oxide and superoxide:direct reaction with boronatebasedfluorescent probe [J]. J. Biol. Chem.,2010,285:14210-14216;
    [257]Sikora A, Zielonka J, Lopez M, et al.Reaction between peroxynitrite and boronates:EPR spin-trapping, HPLC Analyses, and quantum mechanical study of the free radical pathway [J]. Chem. Res. Toxicol.,2011,24:687-697.
    [258]Keith W G, Powell R E. Kinetics of decomposition of peroxynitrous acid[J]. J. Chem. Soc. A, 1969,90.
    [259]LaButti J N, Gates K S. Biologically relevant chemical properties of peroxymonophosphate(=03POOH)[J].Bioorg. Med. Chem. Lett.,2009,19:218-221.
    [260]Jirage K B, Hulteen J C, Martin C R. Nanotubule-Based Molecular-Filtration Membranes [J]. Science,1997,278:655-658;
    [261]Yang R, Li K, Wang K, et al. Porphyrin assembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio [J]. Anal. Chem.,2003, 75:612-621;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700