金属表面预吸附氧原子对脱氢反应及环氧化反应影响的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在第一原理量子力学计算基础上,运用DFT GGA方法,对过渡金属表面上X-H(X=C,N,O,S)键解离反应、苯乙烯环氧化反应以及表面预吸附氧原子对反应机理的影响进行了研究。对于不同X-H键解离反应,本论文中主要计算了不同物种的吸附性质、反应的活化能以及预吸附氧原子的影响;苯乙烯环氧化反应中主要研究了不同银表面(Ag(110)和Ag(111))的反应活性和选择性,同时也对低氧覆盖度下氧原子及助剂原子的作用进行了研究。
     通过本文的研究得到以下结论:
     1.本论文中选取了几种典型的包含X-H键结构的分子进行研究,即氨,水,甲醇,甲烷,硫化氢,乙烯。通过计算发现清洁过渡金属表面上,X-H键解离的活化能顺序为N-H> C-H≈O-H> S-H,与X-H键的键能大致吻合(H-OH(498kJ/mol)> H-NH_2(460kJ/mol)> H-CHCH_2(452kJ/mol)> H-CH_3(440kJ/mol)>H-OCH_3(437kJ/mol)> H-SH(378kJ/mol)),其中由于O-H键解离过程中氢键的作用使得反应的过渡态更加稳定,因此水的解离活化能要低于氨的解离活化能。不同的过渡金属也表现出不同的反应活性,第一副族金属(Cu, Ag, Au)相比其他过渡金属,活性较低。在预吸附氧原子的过渡金属表面,X-H的解离活化能相比清洁表面有着明显的变化。对于难以在清洁表面直接解离的氨,水,甲醇来说,氧原子的存在促进了解离反应的进行,而对于较易分解的甲烷,乙烯,硫化氢则根据金属活性的不同表现出了不同的影响,金属越活泼,氧原子的促进作用越弱。计算结果表明,X-H解离反应符合BEP关系,即反应吸热越多,活化能越大,反应越难以进行。同时我们还发现氧原子吸附前后的活化能变化与氧原子的吸附能也存在着很好的线性关系,说明氧原子与金属表面原子和吸附物种之间存在竞争作用,与表面的结合越强,对X-H解离反应的影响越弱。
     2.本论文还研究了苯乙烯在金属银表面的环氧化反应,考察了不同催化剂表面结构和不同氧原子覆盖度对反应活性以及选择性的影响。由于苯乙烯分子的不对称性,环氧化反应过程中存在两种不同的中间体,相应就有两种反应路径,计算结果表明,通过直链中间体(氧原子与端基CH_2基团结合(C_6H_5-C~1H=C_2H_2···O))的反应路径容易进行。苯乙烯环氧化反应是结构敏感性反应,从计算得到的活化能结果来看,在Ag(110)表面,苯乙醛和燃烧中间体是主要产物,而在Ag(111)表面,环氧苯乙烷是主要产物,与实验结论相符合。通过动力学模拟方法,我们计算出了Ag(110)和Ag(111)表面上环氧苯乙烷生成反应的选择性,Ag(111)表面为0.38,明显高于Ag(110)表面的0.003。本论文中选取了低覆盖度氧原子覆盖的Ag(111)表面进行了比较计算,计算结果表明低氧原子覆盖度下,不同反应步骤的活化能均高于高氧原子覆盖度的情况。本论文也对Ag(111)表面预吸附助剂原子(Cl,Cs,Ru)以及Ag(111)表面的负载金属氧化物结构(Ag_(11)O_6)对苯乙烯环氧化反应的影响做了比较研究,计算结果表明在不同的助剂原子对不同物种的吸附性质没有明显的影响,但是对反应的活化能有较大的影响。
Based on the first principle quantum mechinism calculations and DFT GGAmethod, the dissociation of X-H (X=C, N, O, S) bond on transition metal surfaces, theepoxidation of styrene and the effect of pre-adsorbed atomic oxygen on the reactionmechanism have been systemically investigated. For the dissociation X-H bond, thisthesis mainly calculated the most stable adsorption structure and the activation barrierchange affected by pre-adsorbed atomic oxygen. For the epoxidation of styrene, twodifferent Ag surfaces (Ag(110) and Ag(111))are chosen to study the reaction activityand selectivity, and the Ag(111) surface with high and low oxygen coverage also beenstudied to analyse the effect of atomic oxygen and different additive atoms.
     The main conclusions of this work are summarized as follow.
     1. Several typical X-H bond contained moleculars have been chosen to studiedin this thesis, that is NH3, H_2O, CH_3OH, CH4, H_2S and C2H4. On clean transitionmetal surfaces, the calculated results indicated that the order of activation barrier forX-H bond dissociation is N-H> C-H≈O-H> S-H, which is roughly correlated withthe respective X-H bond strength (i.e. H-OH (498kJ/mol)> H-NH_2(460kJ/mol)>H-CHCH_2(452kJ/mol)> H-CH_3(440kJ/mol)> H-OCH_3(437kJ/mol)> H-SH (378kJ/mol)). The low barrier for the O-H bond cleavage may due to the formation ofhydrogen-bond formed in transition state, which would stabilize the transition stateand thus give rise to the low barrier compared to the NH3dissociation. And dfferentmetal surfaces present different reaction activity, for example, the first IB groupmetals have lower activity compared with other transition metals. On transition metalsurfaces with pre-adsorbed atomic oxygen, the activation barrier for X-H dissociationhas obviously change. For NH3, H_2O and CH_3OH that is hard to directly dissociatedon clean metal surfaces, the existence of atomic oxygen promoted the reactionprocess, but for CH4, C2H4and H_2S that is relatively easier to be dissociated, theeffect of atomic oxygen is different depends on the activity of metals, that is, thepromotion effect is stronger on less active metal surfaces. The calculated results alsoindicate that the X-H dissociation is consistent with the BEP relationship, that is, the more endothermic the reaction is, the higher the activation energy will be, whichmeans the reaction is hard to process. Moreover, it is found that the change ofactivation energy with and without pre-adsorbed atomic oxygen is related to theadsorption energy of atomic oxygen. This result means that there is competitionbetween atomic oxygen and reactant with the surface metal atoms, if the atomicoxygen bond to the surface strongly, the effect on the dissociation process is weak.
     2. The selective oxidation of styrene on oxygen-covered Ag(110) and Ag(111)surface have been studied by the density functional theory calculation with theperiodic slab model. Due to the asymmetry of the styrene molecule, there are twopossible reaction intermediates in the styrene epoxidation processes. The calculatedresults is able to show that the formation of styrene epoxide via the linearoxametallacycle (i.e. the pre-adsorbed atomic oxygen bound to the methylene groupin styrene, C_6H_5-C~1H=C_2H_2···O) is the favorable reaction mechanism on both Ag(110)and Ag(111) surface. Styrene epoxidation is structure sensitive and from calculatedacitviation energies, the main product is phenyl acetaldehyde and combustionintermediate on Ag(110) surface, while on Ag(111) surface, the main product isstyrene epoxide, which is in good agreement with experimental conclusion. Theselectivity toward styrene epoxide can be calculated by kinetic simulations, and onAg(111) surface, the selectivity is0.38, which is much higher than that on Ag(110)surface (0.003). The Ag(111) surface with lower oxygen coverage has been chosen tocompare. The calculated results indicate that the activation energies of differentreaction steps are both higher than that owith higher oxygen coverage. Differentadditive atoms and surface oxide structure based on Ag(111) surface has little effecton the adsorption properties of different species, but they have obviously effect on thereaction activities, that is, the Cl atom shows promotion effect while other additiveatoms and surface oxide structure inhibit the styrene epoxidation. But the selectivitytowards styrene epoxide has no evident change except that on the surface oxidestructure which lower the seclectivity, and this is futher confirm that styreneepoxidation is structure sensitive.
引文
[1] Choudhary V. R., Rajput A. M., Prabhakar B. Nonequilibrium Oxidative Conversion ofMethane to CO and H2with High Selectivity and Productivity over Ni/Al2O3at Low Temperatures,J. Catal.,1993,139:326-328
    [2] Dissanayake D., Rosynek M. P., Kharas K. C. C., et al. Partial oxidation of methane to carbonmonoxide and hydrogen over a Ni/Al2O3catalyst, J. Catal.,1991,132:117-127
    [3] Hickman D. A., Schmidt L. D. Synthesis gas formation by direct oxidation of methane over Ptmonoliths, J. Catal.,1992,138:267-282
    [4] Hickman D. A., Schmidt L. D. Production of Syngas by Direct Catalytic Oxidation of Methane,Science,1993,259:343-346
    [5] Hickman D. A., Schmidt L. D. Steps in CH4oxidation on Pt and Rh surfaces: High-temperaturereactor simulations, AIChE J.,1993,39:1164-1177
    [6] Otsuka K., Kobayashi S., Takenaka S. Decomposition and regeneration of methane in theabsence and the presence of a hydrogen-absorbing alloy CaNi5, Appl. Catal., A,2000,190:261-268
    [7] Boskovic G., Smith K. J. Methane homologation and reactivity of carbon species on supportedCo catalysts, Catal. Today,1997,37:25-32
    [8] Song X., Guo Z. A new process for synthesis gas by co-gasifying coal and natural gas, Fuel,2005,84:525-531
    [9]金荣超,陈燕馨.甲烷催化部分氧化制合成气的反应机理,物理化学学报,1999,15:313-318
    [10]李春义,沈师孔.甲烷催化部分氧化制合成气反应机理,石油大学学报:自然科学版,2000,24:113-117
    [11] Ciob C I. M., Frechard F., Van Santen R. A., et al. A theoretical study of CHx chemisorptionon the Ru(0001) surface, Chem. Phys. Lett.,1999,311:185-192
    [12] Ciobica I. M., Frechard F., Van Santen R. A., et al. A DFT Study of Transition States for C HActivation on the Ru(0001) Surface, J. Phys. Chem. B,2000,104:3364-3369
    [13] Ciobica I. M., Van Santen R. A. A DFT Study of CHx Chemisorption and Transition States forC H Activation on the Ru(1120) Surface, J. Phys. Chem. B,2002,106:6200-6205
    [14] Paul J. F., Sautet P. Chemisorption and Transformation of CHx Fragments (x=03) on aPd(111) Surface: A Periodic Density Functional Study, J. Phys. Chem. B,1998,102:1578-1585
    [15] Bertani V., Cavallotti C., Masi M., et al. Density Functional Study of the Interaction ofPalladium Clusters with Hydrogen and CHx Species, J. Phys. Chem. A,2000,104:11390-11397
    [16] Zhang C. J., Hu P. Methane transformation to carbon and hydrogen on Pd(100): Pathways andenergetics from density functional theory calculations, J. Chem. Phys.,2002,116:322-327
    [17] Petersen M. A., Jenkins S. J., King D. A. Theory of Methane Dehydrogenation on Pt(110)(1×2). Part II: Microscopic Reaction Pathways for CHx→CHx-1(x=13), J. Phys. Chem. B,2004,108:5920-5929
    [18] Yang H., Whitten J. L. Ab initio chemisorption studies of methyl on nickel(111), J. Am. Chem.Soc.,1991,113:6442-6449
    [19] Siegbahn P. E. M., Panas I. A theoretical study of CHx chemisorption on the Ni(100) andNi(111) surfaces, Surf. Sci.,1990,240:37-49
    [20] Michaelides A., Hu P. A first principles study of CH3dehydrogenation on Ni(111), J. Chem.Phys.,2000,112:8120-8125
    [21] Yang H.-Q., Chen Y.-Q., Hu C.-W., et al. C–H bond activation: Ni(d101S)+CH4→NiCH2+H2. ADFT study, J. Mol. Struct.: THEO,2001,574:57-74
    [22] Burghgraef H., Jansen A. P. J., Van Santen R. A. Methane activation and dehydrogenation onnickel and cobalt: a computational study, Surf. Sci.,1995,324:345-356
    [23] Au C. T., Liao M.-S., Ng C. F. A theoretical investigation of methane dissociation on Rh(111),Chem. Phys. Lett.,1997,267:44-50
    [24] Blomberg M. R. A., Brandemark U., Siegbahn P. E. M. Theoretical investigation of theelimination and addition reactions of methane and ethane with nickel, J. Am. Chem. Soc.,1983,105:5557-5563
    [25] Robert C. W. Handbook of Chemistry and Physics. New York,1983.
    [26]董森,催化剂的组成结构和类型对氨分解催化性能的影响,天津大学,天津,2007.
    [27] Choudhary T. V., Sivadinarayana C., Goodman D. W. Catalytic ammonia decomposition:COx-free hydrogen production for fuel cell applications, Catal. Lett.,2001,72:197-201
    [28] Yin S.-F., Zhang Q.-H., Xu B.-Q., et al. Investigation on the catalysis of COx-free hydrogengeneration from ammonia, J. Catal.,2004,224:384-396
    [29] Ganley J. C., Thomas F. S., Seebauer E. G., et al. A Priori Catalytic Activity Correlations: TheDifficult Case of Hydrogen Production from Ammonia, Catal. Lett.,2004,96:117-122
    [30] Sun Y. K., Wang Y. Q., Mullins C. B., et al. Interaction of ammonia with chemically modifiedruthenium (001) surfaces, Langmuir,1991,7:1689-1694
    [31] Qin J., Aika K.-I. Catalytic wet air oxidation of ammonia over alumina supported metals, Appl.Catal., B,1998,16:261-268
    [32] Heras J. M., Viscido L. The Behavior of Water on Metal Surfaces, Catal. Rev.,1988,30:281-338
    [33] Henrich V. E., Cox P. A. Fundamentals of gas-surface interactions on metal oxides, Appl. Surf.Sci.,1993,72:277-284
    [34] Brown G. E., Henrich V. E., Casey W. H., et al. Metal Oxide Surfaces and Their Interactionswith Aqueous Solutions and Microbial Organisms, Chem. Rev.,1998,99:77-174
    [35] Schaefer J. A. Microscopic structure of semiconductor surfaces, Appl. Phys. A: Mater. Sci.Process.,1990,51:305-316
    [36] Henderson M. A. The interaction of water with solid surfaces: fundamental aspects revisited,Surf. Sci. Rep.,2002,46:1-308
    [37] Thiel P. A., Madey T. E. The interaction of water with solid surfaces: Fundamental aspects,Surf. Sci. Rep.,1987,7:211-385
    [38] Mavrikakis M., Barteau M. A. Oxygenate reaction pathways on transition metal surfaces, J.Mol. Catal. A: Chem.,1998,131:135-147
    [39] Fisher I. A., Bell A. T. A Mechanistic Study of Methanol Decomposition over Cu/SiO2,ZrO2/SiO2, and Cu/ZrO2/SiO2, J. Catal.,1999,184:357-376
    [40] Hrbek J., Depaola R. A., Hoffmann F. M. The interaction of methanol with Ru(001), J. Chem.Phys.,1984,81:2818-2827
    [41] Imamura S., Higashihara T., Saito Y., et al. Decomposition of methanol on Pt-loaded ceria,Catal. Today,1999,50:369-380
    [42] Trimm D. L., nsan Z. I. ONBOARD FUEL CONVERSION FOR HYDROGEN FUEL CELLDRIVEN VEHICLES, Catal. Rev.,2001,43:31-84
    [43] Sun Q., Shen B., Fan K., et al. Roles of surface and subsurface oxygen in the dehydrogenationof methanol on silver surface, Chem. Phys. Lett.,2000,322:1-8
    [44] Fan K., Shen B., Wang W., et al. Ab initio study on the adsorption and dissociation process ofmethanol on a silver surface, J. Mol. Struct.: THEO,1998,422:191-195
    [45] Steinbach F., Spengler H.-J. Temperature jump method in molecular beam relaxationspectrometry applied to catalytic decomposition of CH3OH on polycrystalline Ni foil, Surf. Sci.,1981,104:318-340
    [46] Wang G.-C., Zhou Y.-H., Morikawa Y., et al. Kinetic Mechanism of Methanol Decompositionon Ni(111) Surface: A Theoretical Study, J. Phys. Chem. B,2005,109:12431-12442
    [47] Zhou Y.-H., Lv P.-H., Wang G.-C. DFT studies of methanol decomposition on Ni(100) surface:Compared with Ni(111) surface, J. Mol. Catal. A: Chem.,2006,258:203-215
    [48] Kruse N., Rebholz M., Matolin V., et al. Methanol decomposition on Pd(111) single crystalsurfaces, Surf. Sci.,1990,238: L457-L462
    [49] Houtman C., Barteau M. A. Reactions of methanol on rhodium(111) andrhodium(111)-(2x2)oxygen surfaces: Spectroscopic identification of adsorbed methoxideand.eta.1-formaldehyde, Langmuir,1990,6:1558-1566
    [50] Leavitt A. J., Beebe Jr T. P. Chemical reactivity studies of hydrogen sulfide on Au(111), Surf.Sci.,1994,314:23-33
    [51] Campbell C. T., Koel B. E. H2S/Cu(111): A model study of sulfur poisoning of water-gas shiftcatalysts, Surf. Sci.,1987,183:100-112
    [52] Hammer B., Norskov J. K. Why gold is the noblest of all the metals, Nature,1995,376:238-240
    [53] Alfonso D. R., Cugini A. V., Sorescu D. Density Functional Theory Study of Adsorption andDecomposition of H2S on Pd(111), Cu(111) and PdCu(110) Prepr. Pap.-Am. Chem. Soc., Div. FuelChem.,2003,48:512-513
    [54] Shustorovich E., Bell A. T. Oxygen-assisted cleavage of O-H, N-H, and C-H bonds ontransition metal surfaces: bond-order-conservation-Morse-potential analysis, Surf. Sci.,1992,268:397-405
    [55] Au C. T., Roberts M. W. Photoelectron spectroscopic evidence for the activation of adsorbatebonds by chemisorbed oxygen, Chem. Phys. Lett.,1980,74:472-474
    [56] Sexton B. A., Hughes A. E., Avery N. R. A spectroscopic study of the adsorption and reactionsof methanol, formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces, Surf.Sci.,1985,155:366-386
    [57] Afsin B., Davies P. R., Pashuski A., et al. The role of a dioxygen precursor in the selectiveformation of imide NH(a) species at a Cu(110) surface, Surf. Sci. Lett.,1991,259: L724-L728
    [58] Afsin B., Davies P. R., Pashusky A., et al. Reaction pathways in the oxydehydrogenation ofammonia at Cu(110) surfaces, Surf. Sci.,1993,284:109-120
    [59] Boronin A., Pashusky A., Roberts M. W. A new approach to the mechanism ofheterogeneously catalysed reactions: the oxydehydrogenation of ammonia at a Cu(111) surface,Catal. Lett.,1992,16:345-350
    [60] Greeley J., Mavrikakis M. On the Role of Subsurface Oxygen and Ethylenedioxy in EthyleneEpoxidation on Silver, J. Phys. Chem. C,2007,111:7992-7999
    [61] Kokalj A., Gava P., De Gironcoli S., et al. What determines the catalyst's selectivity in theethylene epoxidation reaction, J. Catal.,2008,254:304-309
    [62] Serafin J. G., Liu A. C., Seyedmonir S. R. Surface science and the silver-catalyzed epoxidationof ethylene: an industrial perspective, J. Mol. Catal. A: Chem.,1998,131:157-168
    [63] Lambert R. M., Williams F. J., Cropley R. L., et al. Heterogeneous alkene epoxidation: past,present and future, J. Mol. Catal. A: Chem.,2005,228:27-33
    [64] Barteau M. A. Surface science and the advancement of direct olefin epoxidation: A perspectiveon the article,“Partial oxidation of higher olefins on Ag(111) and Ag(110): Conversion of styrene tostyrene oxide, benzene, and benzoic acid”, by Andreas Klust and Robert J. Madix, Surf. Sci.,2006,600:5021-5023
    [65] Satterfield C. N. Heterogeneous catalysis in industrial practice Malabar: Krieger PulishingCompany,1996.
    [66] Chorkendorff I., Niemantsverdriet H. Concepts of Modern Catalysis and Kinetics. Weinheim:Wiley-VCH,2003.
    [67] Somorjai G. A. Introduction to Surface Chemistry and Catalysis. New York: John Wiley&Sons,1994.
    [68] Van Santen R. A., Kuipers H. P. C. E. The Mechanism of Ethylene Epoxidation. In: H.P. D.D.Eley, B.W. Paul (Eds.) Advances in Catalysis, Academic Press,1987
    [69] Sachtler W. M. H. THE MECHANISM OF THE CATALYTIC OXIDATION OF SOMEORGANIC MOLECULES, Catal. Rev.,1971,4:27-52
    [70] Wang J.-H., Dai W.-L., Deng J.-F., et al. Interaction of oxygen with silver surface at hightemperature, Appl. Surf. Sci.,1998,126:148-152
    [71] Carter E. A., Goddard Iii W. A. The surface atomic oxyradical mechanism for Ag-catalyzedolefin epoxidation, J. Catal.,1988,112:80-92
    [72] Campbell C. T. The selective epoxidation of ethylene catalyzed by Ag(111): A comparisonwith Ag(110), J. Catal.,1985,94:436-444
    [73] Linic S., Barteau M. A. Control of Ethylene Epoxidation Selectivity by SurfaceOxametallacycles, J. Am. Chem. Soc.,2003,125:4034-4035
    [74] Linic S., Barteau M. A. Formation of a Stable Surface Oxametallacycle that Produces EthyleneOxide, J. Am. Chem. Soc.,2001,124:310-317
    [75] Linic S., Piao H., Adib K., et al. Ethylene Epoxidation on Ag: Identification of the CrucialSurface Intermediate by Experimental and Theoretical Investigation of its Electronic Structure,Angew. Chem. Int. Ed.,2004,43:2918-2921
    [76] Linic S., Barteau M. A. Construction of a reaction coordinate and a microkinetic modelfor ethylene epoxidation on silver from DFT calculations and surface science experiments, J. Catal.,2003,214:200-212
    [77] Grant R. B., Lambert R. M. A single crystal study of the silver-catalysed selective oxidationand total oxidation of ethylene, J. Catal.,1985,92:364-375
    [78] Bal'zhinimaev B. S. Ethylene epoxidation over silver catalysts, Kinet. Catal.,1999,40:795-810
    [79] Carter E. A., Goddard Iii W. A. Chemisorption of oxygen, chlorine, hydrogen, hydroxide, andethylene on silver clusters: A model for the olefin epoxidation reaction, Surf. Sci.,1989,209:243-289
    [80] Bukhtiyarov V. I., Prosvirin I. P., Kvon R. I. Study of reactivity of oxygen states adsorbed at asilver surface towards C2H4by XPS, TPD and TPR, Surf. Sci.,1994,320: L47-L50
    [81] Bukhtiyarov V. I., H vecker M., Kaichev V. V., et al. Atomic oxygen species on silver:Photoelectron spectroscopy and x-ray absorption studies, Phys. Rev. B,2003,67:235422
    [82] Bukhtiyarov V. I., Nizovskii A. I., Bluhm H., et al. Combined in situ XPS and PTRMS study ofethylene epoxidation over silver, J. Catal.,2006,238:260-269
    [83] Van Santen R. A., De Groot C. P. M. The mechanism of ethylene epoxidation, J. Catal.,1986,98:530-539
    [84] Temkin M. I. The Kinetics of Some Industrial Heterogeneous Catalytic Reactions. In: H.P. D.D.Eley, B.W. Paul (Eds.) Advances in Catalysis, Academic Press,1979
    [85] Carlisle C. I., King D. A., Bocquet M. L., et al. Imaging the Surface and the Interface Atoms ofan Oxide Film on Ag{111} by Scanning Tunneling Microscopy: Experiment and Theory, Phys. Rev.Lett.,2000,84:3899-3902
    [86] Bocquet M.-L., Michaelides A., Loffreda D., et al. New Insights into Ethene Epoxidation onTwo Oxidized Ag{111} Surfaces, J. Am. Chem. Soc.,2003,125:5620-5621
    [87] Michaelides A., Bocquet M. L., Sautet P., et al. Structures and thermodynamic phasetransitions for oxygen and silver oxide phases on Ag{111}, Chem. Phys. Lett.,2003,367:344-350
    [88] Li W.-X., Stampfl C., Scheffler M. Why is a Noble Metal Catalytically Active? The Role of theO-Ag Interaction in the Function of Silver as an Oxidation Catalyst, Phys. Rev. Lett.,2003,90:256102
    [89] Schnadt J., Michaelides A., Knudsen J., et al. Revisiting the Structure of the p(4×4) SurfaceOxide on Ag(111), Phys. Rev. Lett.,2006,96:146101
    [90] Schmid M., Reicho A., Stierle A., et al. Structure of Ag(111)-p(4×4)-O: No Silver Oxide, Phys.Rev. Lett.,2006,96:146102
    [91] Min B. K., Friend C. M. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation, Chem. Rev.,2007,107:2709-2724
    [92] Deng X., Friend C. M. Selective Oxidation of Styrene on an Oxygen-Covered Au(111), J. Am.Chem. Soc.,2005,127:17178-17179
    [93] Christopher P., Linic S. Engineering Selectivity in Heterogeneous Catalysis: Ag Nanowires asSelective Ethylene Epoxidation Catalysts, J. Am. Chem. Soc.,2008,130:11264-11265
    [94] Chen H.-T., Chang J.-G., Ju S.-P., et al. Ethylene Epoxidation on a Au Nanoparticle versus aAu(111) Surface: A DFT Study, J. Phys. Chem. Lett.,2010,1:739-742
    [95] Barteau M. A., Madix R. J. Low pressure oxidation of ethylene on Ag(110): Possibleexperimental complications, Surf. Sci.,1981,103: L171-L178
    [96] Roberts J. T., Madix R. J. Epoxidation of olefins on silver: conversion of norbornene tonorbornene oxide by atomic oxygen on silver(110), J. Am. Chem. Soc.,1988,110:8540-8541
    [97] Hawker S., Mukoid C., Badyal J. P. S., et al. Molecular mechanism of heterogeneous alkeneepoxidation: A model study with styrene on Ag(111), Surf. Sci. Lett.,1989,219: L615-L622
    [98] Williams F. J., Bird D. P. C., Palermo A., et al. Mechanism, Selectivity Promotion, and NewUltraselective Pathways in Ag-Catalyzed Heterogeneous Epoxidation, J. Am. Chem. Soc.,2004,126:8509-8514
    [99] Klust A., Madix R. J. Selectivity Limitations in the Heterogeneous Epoxidation of Olefins:Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene, J. Am.Chem. Soc.,2006,128:1034-1035
    [100] Liu X., Klust A., Madix R. J., et al. Structure Sensitivity in the Partial Oxidation of Styrene,Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals, J. Phys. Chem. C,2007,111:3675-3679
    [101] Zhou L., Madix R. J. Oxidation of Styrene and Phenylacetaldehyde on Ag(111): Evidence forTransformation of Surface Oxametallacycle, J. Phys. Chem. C,2008,112:4725-4734
    [102] Mukoid C., Hawker S., Badyal J. P. S., et al. Molecular mechanism of alkene epoxidation: Amodel study with3,3-dimethyl-1-butene on Ag(111), Catal. Lett.,1990,4:57-61
    [103] Quiller R. G., Liu X., Friend C. M. Mechanistic Insights into Selectivity Control forHeterogeneous Olefin Oxidation: Styrene Oxidation on Au(111), Chemistry–An Asian Journal,2010,5:78-86
    [104] Hammer B., N rskov J. K. Theoretical surface science and catalysis—calculations andconcepts. In: H.K. Bruce C. Gates (Ed.) Advances in Catalysis, Academic Press,2000
    [105] Michaelides A., Liu Z. P., Zhang C. J., et al. Identification of General Linear Relationshipsbetween Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces, J. Am.Chem. Soc.,2003,125:3704-3705
    [106] Van Santen R. A., Neurock M., Shetty S. G. Reactivity Theory of Transition-Metal Surfaces:A Br nsted Evans Polanyi Linear Activation Energy Free-Energy Analysis, Chem. Rev.,2009,110:2005-2048
    [107] Kramer G. J., Van Santen R. A., Emeis C. A., et al. Understanding the acid behaviour ofzeolites from theory and experiment, Nature,1993,363:529-531
    [108] Van Santen R. A., Neurock M. Concepts in Theoretical Heterogeneous Catalytic Reactivity,Catal. Rev.,1995,37:557-698
    [109] Van Santen R. A., Niemantsverdriet J. W. Chemical kinetics and catalysis. New York: PlenumPress,1995.
    [110] Thomas L. H. The calculation of atomic fields., Proc. Camb. Phil. Soc.,1927,23:542-548
    [111] Fermi E. Un metodo statistice per la determinazione di alcune proprieta dell'atomo, Rend.Accad. Naz. Lincei,1927,6:602-607
    [112] March N. H. The Thomas-Fermi approximation in quantum mechanics, Adv. Phys,1957,6:1-101
    [113] Hohenberg P., Kohn W. Inhomogeneous Electron Gas, Phys. Rev.,1964,136: B864-B871
    [114] Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects,Phys. Rev.,1965,140: A1133-A1138
    [115] Perdew J. P., Kurth S., Zupan A., et al. Accurate Density Functional with Correct FormalProperties: A Step Beyond the Generalized Gradient Approximation, Phys. Rev. Lett.,1999,82:2544-2547
    [116] Gunnarsson O., Hjelmberg H., Lundqvist B. I. Binding Energies for Different AdsorptionSites of Hydrogen on Simple Metals, Phys. Rev. Lett.,1976,37:292-295
    [117] Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy, Phys. Rev. B,1992,45:13244-13249
    [118] Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple,Phys. Rev. Lett.,1996,77:3865-3868
    [119] Hammer B., Hansen L. B., N rskov J. K. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B,1999,59:7413-7421
    [120]黄昆,韩汝琦.固体能带理论.北京:高等教育出版社,1988.
    [121]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,2007.
    [122] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,Phys. Rev. B,1990,41:7892-7895
    [123] Bloch F. Z. Phys.,1928,52:555
    [124] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [125] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [126] Henkelman G., Uberuaga B. P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [127] Jónsson H., Mills G., Jacobsen K. W. Nudged Elastic Band Method for Finding MinimumEnergy Paths of Transitions. In: B.J. Berne, G. Ciccotti, D.F. Coker (Eds.) Classical and QuantumDynamics in Condensed Phase Simulations, Singapore, World Scientific,1998
    [128] Olsen R. A., Kroes G. J., Henkelman G., et al. Comparison of methods for finding saddlepoints without knowledge of the final states, J. Chem. Phys.,2004,121:9776-9792
    [129] Henkelman G., Uberuaga B. P., Dunham S., et al, in:2nd International Conference onComputational Nanoscience and Nanotechnology,2002, pp.144-147.
    [130] Henkelman G., Jonsson H. A dimer method for finding saddle points on high dimensionalpotential surfaces using only first derivatives, J. Chem. Phys.,1999,111:7010-7022
    [1] Hickman D. A., Schmidt L. D. Synthesis gas formation by direct oxidation of methane over Ptmonoliths, J. Catal.,1992,138:267-282
    [2] Hickman D. A., Schmidt L. D. Production of Syngas by Direct Catalytic Oxidation of Methane,Science,1993,259:343-346
    [3] Hickman D. A., Schmidt L. D. Steps in CH4oxidation on Pt and Rh surfaces: High-temperaturereactor simulations, AIChE J.,1993,39:1164-1177
    [4] Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set, Comp. Mater. Sci.,1996,6:15-50
    [5] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations usinga plane-wave basis set, Phys. Rev. B,1996,54:11169-11186
    [6] Morikawa Y., Iwata K., Terakura K. Theoretical study of hydrogenation process of formate onclean and Zn deposited Cu(111) surfaces, Appl. Surf. Sci.,2001,169–170:11-15
    [7] Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals, Phys. Rev. B,1993,47:558-561
    [8] Bl chl P. E. Projector augmented-wave method, Phys. Rev. B,1994,50:17953-17979
    [9] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method,Phys. Rev. B,1999,59:1758-1775
    [10] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [11] Mills G., Jónsson H., Schenter G. K. Reversible work transition state theory: application todissociative adsorption of hydrogen, Surf. Sci.,1995,324:305-337
    [12] Schenter G. K., Mills G., Jonsson H. Reversible work based quantum transition state theory, J.Chem. Phys.,1994,101:8964-8971
    [13] Henkelman G., Uberuaga B. P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [14] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [15] Maragakis P., Andreev S. A., Brumer Y., et al. Adaptive nudged elastic band approach fortransition state calculation, J. Chem. Phys.,2002,117:4651-4658
    [16] Beens H. The nature of the surface chemical bond edited by T. N. Rhodin and G. Ertl, ActaCrystallogr., Sect. A: Found. Crystallogr.,1980,36:1093
    [17] Koper M. T. M., Van Santen R. A. Interaction of H, O and OH with metal surfaces, J.Electroanal. Chem.,1999,472:126-136
    [18] Pang X.-Y., Xue L.-Q., Wang G.-C. Adsorption of Atoms on Cu Surfaces: A DensityFunctional Theory Study, Langmuir,2007,23:4910-4917
    [19] Xue L.-Q., Pang X.-Y., Wang G.-C. Is the Preadsorbed Sulfur Atom Always Acting as a Poisonfor the Surface Reaction?, J. Phys. Chem. C,2007,111:2223-2228
    [20] Goursot A., Mele F., Russo N., et al. Geometrical, spectroscopic, and magnetic properties of anoxygen atom adsorbed on the Ni(100) surface, Int. J. Quant. Chem.,1993,48:277-286
    [21] Siegbahn P. E. M., Wahlgren U. A theoretical study of atomic oxygen chemisorption on theNi(100) and Ni(111) surfaces, Int. J. Quant. Chem.,1992,42:1149-1169
    [22] Hammer B., N rskov J. K. Theoretical surface science and catalysis—calculations andconcepts. In: H.K. Bruce C. Gates (Ed.) Advances in Catalysis, Academic Press,2000
    [23] Lee M. B., Yang Q. Y., Ceyer S. T. Dynamics of the activated dissociative chemisorption ofCH4and implication for the pressure gap in catalysis: A molecular beam--high resolution electronenergy loss study, J. Chem. Phys.,1987,87:2724-2741
    [24] Kaminsky M. P., Winograd N., Geoffroy G. L., et al. Direct SIMS observation of methylidyne,methylene, and methyl intermediates on a nickel(III) methanation catalyst, J. Am. Chem. Soc.,1986,108:1315-1316
    [25] Zhu Y.-A., Dai Y.-C., Chen D., et al. First-principles calculations of CH4dissociation onNi(100) surface along different reaction pathways, J. Mol. Catal. A: Chem.,2007,264:299-308
    [26] Lai W., Xie D., Zhang D. H. First-principles study of adsorption of methyl, coadsorption ofmethyl and hydrogen, and methane dissociation on Ni(100), Surf. Sci.,2005,594:83-92
    [27] Wonchoba S. E., Truhlar D. G. Embedded Diatomics-in-Molecules Potential Energy Functionfor Methyl Radical and Methane on Nickel Surfaces, J. Phys. Chem. B,1998,102:6842-6860
    [28] Abild-Pedersen F., Greeley J., Studt F., et al. Scaling Properties of Adsorption Energies forHydrogen-Containing Molecules on Transition-Metal Surfaces, Phys. Rev. Lett.,2007,99:016105
    [29] Papoian G., N rskov J. K., Hoffmann R. A Comparative Theoretical Study of the Hydrogen,Methyl, and Ethyl Chemisorption on the Pt(111) Surface, J. Am. Chem. Soc.,2000,122:4129-4144
    [30]万惠霖,翁维正.甲烷部分氧化制合成气反应机理的原位时间分辨IR光谱和Raman光谱表征,复旦学报:自然科学版,2002,41:243-250
    [31]金荣超,陈燕馨.甲烷催化部分氧化制合成气的反应机理,物理化学学报,1999,15:313-318
    [32] Au C.-T., Ng C.-F., Liao M.-S. Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir,Pd, Pt, Cu, Ag, and Au: A Theoretical Study, J. Catal.,1999,185:12-22
    [33] Yang H., Whitten J. L. Reaction of chemisorbed CH and H on nickel, J. Chem. Phys.,1989,91:126-136
    [34] Watwe R. M., Bengaard H. S., Rostrup-Nielsen J. R., et al. Theoretical Studies of Stability andReactivity of CHx Species on Ni(111), J. Catal.,2000,189:16-30
    [35] Ciob C I. M., Frechard F., Van Santen R. A., et al. A theoretical study of CHx chemisorptionon the Ru(0001) surface, Chem. Phys. Lett.,1999,311:185-192
    [36] Ciob ca I. M., Frechard F., Van Santen R. A., et al. A DFT Study of Transition States for C HActivation on the Ru(0001) Surface, J. Phys. Chem. B,2000,104:3364-3369
    [37] Ciob ca I. M., Van Santen R. A. A DFT Study of CHx Chemisorption and Transition States forC H Activation on the Ru(1120) Surface, J. Phys. Chem. B,2002,106:6200-6205
    [38] Paul J. F., Sautet P. Chemisorption and Transformation of CHx Fragments (x=03) on aPd(111) Surface: A Periodic Density Functional Study, J. Phys. Chem. B,1998,102:1578-1585
    [39] Bertani V., Cavallotti C., Masi M., et al. Density Functional Study of the Interaction ofPalladium Clusters with Hydrogen and CHx Species, J. Phys. Chem. A,2000,104:11390-11397
    [40] Zhang C. J., Hu P. Methane transformation to carbon and hydrogen on Pd(100): Pathways andenergetics from density functional theory calculations, J. Chem. Phys.,2002,116:322-327
    [41] Petersen M. A., Jenkins S. J., King D. A. Theory of Methane Dehydrogenation on Pt(110)(1×2). Part II: Microscopic Reaction Pathways for CHx→CHx-1(x=13), J. Phys. Chem. B,2004,108:5920-5929
    [42] Henkelman G., Jónsson H. Theoretical Calculations of Dissociative Adsorption of CH4on anIr(111) Surface, Phys. Rev. Lett.,2001,86:664-667
    [43] Liu Z.-P., Hu P. General trends in the barriers of catalytic reactions on transition metal surfaces,J. Chem. Phys.,2001,115:4977-4980
    [44] Michaelides A., Liu Z. P., Zhang C. J., et al. Identification of General Linear Relationshipsbetween Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces, J. Am.Chem. Soc.,2003,125:3704-3705
    [45] Lv C.-Q., Ling K.-C., Wang G.-C. Methane combustion on Pd-based model catalysts: Structuresensitive or insensitive?, J. Chem. Phys.,2009,131:144704-144709
    [46] Li H.-Y., Guo Y.-L., Guo Y., et al. C--H bond activation over metal oxides: A new insight intothe dissociation kinetics from density functional theory, J. Chem. Phys.,2008,128:051101-051104
    [47] Van Santen R. A., Neurock M., Shetty S. G. Reactivity Theory of Transition-Metal Surfaces: ABr nsted Evans Polanyi Linear Activation Energy Free-Energy Analysis, Chem. Rev.,2009,110:2005-2048
    [48] Kramer G. J., Van Santen R. A., Emeis C. A., et al. Understanding the acid behaviour ofzeolites from theory and experiment, Nature,1993,363:529-531
    [49] Van Santen R. A., Neurock M. Concepts in Theoretical Heterogeneous Catalytic Reactivity,Catal. Rev.,1995,37:557-698
    [50] Van Santen R. A., Niemantsverdriet J. W. Chemical kinetics and catalysis. New York: PlenumPress,1995.
    [51] Hammond G. S. A Correlation of Reaction Rates, J. Am. Chem. Soc.,1955,77:334-338
    [52] Ge Q., Neurock M. Adsorption and Activation of CO over Flat and Stepped Co Surfaces:First Principles Analysis, J. Phys. Chem. B,2006,110:15368-15380
    [53] Alcalá R., Mavrikakis M., Dumesic J. A. DFT studies for cleavage of C-C and C-O bonds insurface species derived from ethanol on Pt(111), J. Catal.,2003,218:178-190
    [54] Bickelhaupt F. M. Understanding reactivity with Kohn–Sham molecular orbital theory:E2–SN2mechanistic spectrum and other concepts, J. Comput. Chem.,1999,20:114-128
    [55] Van Zeist W.-J., Bickelhaupt F. M. The activation strain model of chemical reactivity, Org.Biomol. Chem.,2010,8:3118-3127
    [56] Torniainen P. M., Chu X., Schmidt L. D. Comparison of monolith-supported metals for thedirect oxidation of methane to syngas, J. Catal.,1994,146:1-10
    [57] Qin D., Lapszewicz J. Study of mixed steam and CO2reforming of CH4to syngas onMgO-supported metals, Catal. Today,1994,21:551-560
    [58] Rostrupnielsen J. R., Hansen J. H. B. CO2-Reforming of Methane over Transition Metals, J.Catal.,1993,144:38-49
    [59] Au C. T., Wang H. Y., Wan H. L. Mechanistic Studies of CH4/O2Conversion overSiO2-Supported Nickel and Copper Catalysts, J. Catal.,1996,158:343-348
    [60] Au C. T., Hu Y. H., Wan H. L. Methane activation over unsupported and La2O3-supportedcopper and nickel catalysts, Catal. Lett.,1996,36:159-163
    [61] Li F.-X., Armentrout P. B. Activation of methane by gold cations: Guided ion beam andtheoretical studies, J. Chem. Phys.,2006,125:133114-133113
    [62] lgaard Nielsen B., Luntz A. C., Holmblad P. M., et al. Activated dissociative chemisorption ofmethane on Ni(100): a direct mechanism under thermal conditions?, Catal. Lett.,1995,32:15-30
    [63] Alstrup I., Chorkendorff I., Ullmann S. The interaction of CH4at high temperatures with cleanand oxygen precovered Cu(100), Surf. Sci.,1992,264:95-102
    [64] Valden M., Pere J., Xiang N., et al. Influence of preadsorbed oxygen on activatedchemisorption of methane on Pd(110), Chem. Phys. Lett.,1996,257:289-296
    [65] Hu Y., Ruckenstein E. Isotopic study of the reaction of methane with the lattice oxygen of aNiO/MgO solid solution, Catal. Lett.,1999,57:167-169
    [66] Buyevskaya O. V., Walter K., Wolf D., et al. Primary reaction steps and active surface sites inthe rhodium-catalyzed partial oxidation of methane to CO and H2, Catal. Lett.,1996,38:81-88
    [67] Elmasides C., Kondarides D. I., Neophytides S. G., et al. Partial Oxidation of Methane toSynthesis Gas over Ru/TiO2Catalysts: Effects of Modification of the Support on Oxidation Stateand Catalytic Performance, J. Catal.,2001,198:195-207
    [68] Wang G.-C., Tao S.-X., Bu X.-H. A systematic theoretical study of water dissociation on cleanand oxygen-preadsorbed transition metals, J. Catal.,2006,244:10-16
    [69] Feibelman P. J., Hamann D. R. Electronic Structure of a "Poisoned" Transition-Metal Surface,Phys. Rev. Lett.,1984,52:61-64
    [70] Kung H. H. Transition Metal Oxides: Surface Chemistry and Catalysis. In: H.K. Harold (Ed.)Studies in Surface Science and Catalysis, New York, Elsevier,1989
    [71] Hammer B., N rskov J. K. Electronic factors determining the reactivity of metal surfaces, Surf.Sci.,1995,343:211-220
    [72] Mavrikakis M., Hammer B., N rskov J. K. Effect of Strain on the Reactivity of Metal Surfaces,Phys. Rev. Lett.,1998,81:2819-2822
    [73] Wang H.-F., Liu Z.-P. Comprehensive Mechanism and Structure-Sensitivity of EthanolOxidation on Platinum: New Transition-State Searching Method for Resolving the ComplexReaction Network, J. Am. Chem. Soc.,2008,130:10996-11004
    [74] Hammer B. Adsorption, diffusion, and dissociation of NO, N and O on flat and steppedRu(0001), Surf. Sci.,2000,459:323-348
    [75] Hammer B. Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001),Phys. Rev. Lett.,1999,83:3681-3684
    [76] Liu Z.-P., Hu P. General Rules for Predicting Where a Catalytic Reaction Should Occur onMetal Surfaces: A Density Functional Theory Study of C H and C O Bond Breaking/Making onFlat, Stepped, and Kinked Metal Surfaces, J. Am. Chem. Soc.,2003,125:1958-1967
    [77] Liu Z.-P., Hu P. General trends in CO dissociation on transition metal surfaces, J. Chem. Phys.,2001,114:8244-8247
    [78] Liu Z.-P., Hu P. An Insight into Alkali Promotion: A Density Functional Theory Study of CODissociation on K/Rh(111), J. Am. Chem. Soc.,2001,123:12596-12604
    [79] Cao Y., Chen Z.-X. Slab model studies of water adsorption and decomposition on clean and X-(X=C, N and O) contaminated Pd(111) surfaces, Phys. Chem. Chem. Phys.,2007,9:739-746
    [80] Mortensen J. J., Hammer B., N rskovi J. K. A theoretical study of adsorbate–adsorbateinteractions on Ru(0001), Surf. Sci.,1998,414:315-329
    [81] Alavi A., Hu P., Deutsch T., et al. CO Oxidation on Pt(111): An Ab Initio Density FunctionalTheory Study, Phys. Rev. Lett.,1998,80:3650-3653Equation Section (Next)
    [1] Neurock M., Van Santen R. A., Biemolt W., et al. Atomic and Molecular Oxygen as ChemicalPrecursors in the Oxidation of Ammonia by Copper, J. Am. Chem. Soc.,1994,116:6860-6872
    [2] Yamagishi S., Jenkins S. J., King D. A. Driving Forces for Self-Organized Coadsorption:C6H6/2O and C6H6/2CO on Ni{111}, J. Am. Chem. Soc.,2004,126:10962-10971
    [3] Wachs I. E., Madix R. J. The selective oxidation of CH3OH to H2CO on a copper(110) catalyst,J. Catal.,1978,53:208-227
    [4] Sakong S., Gro A. Density functional theory study of the partial oxidation of methanol oncopper surfaces, J. Catal.,2005,231:420-429
    [5] Barros R. B., Garcia A. R., Ilharco L. M. Effect of Oxygen Precoverage on the Reactivity ofMethanol on Ru(001) Surfaces, J. Phys. Chem. B,2004,108:4831-4839
    [6] Au C.-T., Ng C.-F., Liao M.-S. Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir,Pd, Pt, Cu, Ag, and Au: A Theoretical Study, J. Catal.,1999,185:12-22
    [7] Henderson M. A. The interaction of water with solid surfaces: fundamental aspects revisited,Surf. Sci. Rep.,2002,46:1-308
    [8] Thiel P. A., Madey T. E. The interaction of water with solid surfaces: Fundamental aspects, Surf.Sci. Rep.,1987,7:211-385
    [9] Phatak A. A., Delgass W. N., Ribeiro F. H., et al. Density Functional Theory Comparison ofWater Dissociation Steps on Cu, Au, Ni, Pd, and Pt, J. Phys. Chem. C,2009,113:7269-7276
    [10] Christensen C. H., Johannessen T., S rensen R. Z., et al. Towards an ammonia-mediatedhydrogen economy?, Catal. Today,2006,111:140-144
    [11] Yin S. F., Xu B. Q., Zhou X. P., et al. A mini-review on ammonia decomposition catalysts foron-site generation of hydrogen for fuel cell applications, Appl. Catal., A,2004,277:1-9
    [12] Choudhary T. V., Sivadinarayana C., Goodman D. W. Catalytic ammonia decomposition:COx-free hydrogen production for fuel cell applications, Catal. Lett.,2001,72:197-201
    [13] Shustorovich E., Bell A. T. Oxygen-assisted cleavage of O-H, N-H, and C-H bonds ontransition metal surfaces: bond-order-conservation-Morse-potential analysis, Surf. Sci.,1992,268:397-405
    [14] Au C. T., Roberts M. W. Photoelectron spectroscopic evidence for the activation of adsorbatebonds by chemisorbed oxygen, Chem. Phys. Lett.,1980,74:472-474
    [15] Sexton B. A., Hughes A. E., Avery N. R. A spectroscopic study of the adsorption and reactionsof methanol, formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces, Surf.Sci.,1985,155:366-386
    [16] Afsin B., Davies P. R., Pashuski A., et al. The role of a dioxygen precursor in the selectiveformation of imide NH(a) species at a Cu(110) surface, Surf. Sci. Lett.,1991,259: L724-L728
    [17] Afsin B., Davies P. R., Pashusky A., et al. Reaction pathways in the oxydehydrogenation ofammonia at Cu(110) surfaces, Surf. Sci.,1993,284:109-120
    [18] Boronin A., Pashusky A., Roberts M. W. A new approach to the mechanism ofheterogeneously catalysed reactions: the oxydehydrogenation of ammonia at a Cu(111) surface,Catal. Lett.,1992,16:345-350
    [19] Gong J., Mullins C. B. Surface Science Investigations of Oxidative Chemistry on Gold, Acc.Chem. Res.,2009,42:1063-1073
    [20] Xing B., Pang X.-Y., Wang G.-C. C–H bond activation of methane on clean and oxygenpre-covered metals: A systematic theoretical study, J. Catal.,2011,282:74-82
    [21] Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set, Comp. Mater. Sci.,1996,6:15-50
    [22] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set, Phys. Rev. B,1996,54:11169-11186
    [23] Morikawa Y., Iwata K., Terakura K. Theoretical study of hydrogenation process of formate onclean and Zn deposited Cu(111) surfaces, Appl. Surf. Sci.,2001,169–170:11-15
    [24] Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals, Phys. Rev. B,1993,47:558-561
    [25] Bl chl P. E. Projector augmented-wave method, Phys. Rev. B,1994,50:17953-17979
    [26] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod, Phys. Rev. B,1999,59:1758-1775
    [27] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [28] Mills G., Jónsson H., Schenter G. K. Reversible work transition state theory: application todissociative adsorption of hydrogen, Surf. Sci.,1995,324:305-337
    [29] Schenter G. K., Mills G., Jonsson H. Reversible work based quantum transition state theory, J.Chem. Phys.,1994,101:8964-8971
    [30] Henkelman G., Uberuaga B. P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [31] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [32] Maragakis P., Andreev S. A., Brumer Y., et al. Adaptive nudged elastic band approach fortransition state calculation, J. Chem. Phys.,2002,117:4651-4658
    [33] Abild-Pedersen F., Greeley J., Studt F., et al. Scaling Properties of Adsorption Energies forHydrogen-Containing Molecules on Transition-Metal Surfaces, Phys. Rev. Lett.,2007,99:016105
    [34] Desai S. K., Neurock M., Kourtakis K. A Periodic Density Functional Theory Study of theDehydrogenation of Methanol over Pt(111), J. Phys. Chem. B,2002,106:2559-2568
    [35] Valden M., Pere J., Xiang N., et al. Influence of preadsorbed oxygen on activatedchemisorption of methane on Pd(110), Chem. Phys. Lett.,1996,257:289-296
    [36] Alstrup I., Chorkendorff I., Ullmann S. The interaction of CH4at high temperatures with cleanand oxygen precovered Cu(100), Surf. Sci.,1992,264:95-102
    [37] Rostrupnielsen J. R., Hansen J. H. B. CO2-Reforming of Methane over Transition Metals, J.Catal.,1993,144:38-49
    [38] Elmasides C., Kondarides D. I., Neophytides S. G., et al. Partial Oxidation of Methane toSynthesis Gas over Ru/TiO2Catalysts: Effects of Modification of the Support on Oxidation Stateand Catalytic Performance, J. Catal.,2001,198:195-207
    [39] Li F.-X., Armentrout P. B. Activation of methane by gold cations: Guided ion beam andtheoretical studies, J. Chem. Phys.,2006,125:133114-133113
    [40] Au C. T., Hu Y. H., Wan H. L. Methane activation over unsupported and La2O3-supportedcopper and nickel catalysts, Catal. Lett.,1996,36:159-163
    [41] Buyevskaya O. V., Walter K., Wolf D., et al. Primary reaction steps and active surface sites inthe rhodium-catalyzed partial oxidation of methane to CO and H2, Catal. Lett.,1996,38:81-88
    [42] Carabineiro S. a. C., Matveev A. V., Gorodetskii V. V., et al. Selective oxidation of ammoniaover Ru(0001), Surf. Sci.,2004,555:83-93
    [43] Pradier C.-M., Adamski A., Méthivier C., et al. Interaction of NH3and oxygen with Cu(110),investigated by FT-IRAS, J. Mol. Catal. A: Chem.,2002,186:193-201
    [44] Van Hardeveld R. M., Van Santen R. A., Niemantsverdriet J. W. The adsorption of NH3onRh(111), Surf. Sci.,1996,369:23-35
    [45] Bradley J. M., Hopkinson A., King D. A. Control of a Biphasic Surface Reaction by OxygenCoverage: The Catalytic Oxidation of Ammonia over Pt{100}, J. Phys. Chem.,1995,99:17032-17042
    [46] Bradley J. M., Hopkinson A., King D. A. A molecular beam study of ammonia adsorption onPt{100}, Surf. Sci.,1997,371:255-263
    [47] Weststrate C. J., Bakker J. W., Rienks E. D. L., et al. Selective NH3oxidation on (110) and(111) iridium surfaces, J. Catal.,2005,235:92-102
    [48] Santra A. K., Min B. K., Yi C. W., et al. Decomposition of NH3on Ir(100): A TemperatureProgrammed Desorption Study, J. Phys. Chem. B,2001,106:340-344
    [49] Thornburg D. M., Madix R. J. Cleavage of N-H bonds by active oxygen on Ag(110): I.Ammonia, Surf. Sci.,1989,220:268-294
    [50] Gong J., Ojifinni R. A., Kim T. S., et al. Selective Catalytic Oxidation of Ammonia to Nitrogenon Atomic Oxygen Precovered Au(111), J. Am. Chem. Soc.,2006,128:9012-9013
    [51] Au C.-T., Breza J., Roberts M. W. Hydroxylation and dehydroxylation at Cu(III) surfaces,Chem. Phys. Lett.,1979,66:340-343
    [52] Mundt C., Benndorf C. H2O adsorption on alkali (Li, Na and K) precovered Ni(775), Surf. Sci.,1998,405:121-137
    [53] Benndorf C., Mundt C., in, AVS, Seattle, Washington (USA),1992, pp.3026-3031.
    [54] Mundt C., Benndorf C. Influence of steps on the H2O adsorption on Ni(s)(111), Surf. Sci.,1993,287–288, Part1:119-124
    [55] Mundt C., Benndorf C. The coadsorption of Na and H2O on Ni(s)(111), Surf. Sci.,1994,307–309, Part A:28-33
    [56] Held G., Menzel D. Isotope effects in structure and kinetics of water adsorbates on Ru(001),Surf. Sci.,1995,327:301-320
    [57] Carley A. F., Davies P. R., Roberts M. W., et al. The hydroxylation of Cu(111) and Zn(0001)surfaces, Appl. Surf. Sci.,1994,81:265-272
    [58] Bao X., Muhler M., Pettinger B., et al. The effect of water on the formation of strongly boundoxygen on silver surfaces, Catal. Lett.,1995,32:171-183
    [59] Fisher G. B., Sexton B. A. Identification of an Adsorbed Hydroxyl Species on the Pt(111)Surface, Phys. Rev. Lett.,1980,44:683-686
    [60] Wolf M., Nettesheim S., White J. M., et al. Dynamics of the ultraviolet photochemistry ofwater adsorbed on Pd(111), J. Chem. Phys.,1991,94:4609-4619
    [61] Lazaga Mark A., Wickham David T., Parker Deborah H., et al. Reactivity of Oxygen Adatomson the Au(111) Surface. In: Catalytic Selective Oxidation, American Chemical Society,1993
    [62] Wagner F. T., Moylan T. E. A comparison between water adsorbed on Rh(111) and Pt(111),with and without predosed oxygen, Surf. Sci.,1987,191:121-146
    [63] Madey T. E., Yates Jr J. T. Evidence for the conformation of H2O adsorbed on Ru(001), Chem.Phys. Lett.,1977,51:77-83
    [64] Wittrig T. S., Ibbotson D. E., Weinberg W. H. The adsorption of water on the reconstructedIr(110)-(1×2) surface, Surf. Sci.,1981,102:506-517
    [65] Picaud S., Hoang P. N. M., Girardet C. Geometry of (NH3)n and (H2O)n aggregates adsorbedon well characterized MgO(100) and Si(111)-(1×1)H substrates, Surf. Sci.,1992,278:339-352
    [66] Klaua M., Madey T. E. The adsorption of H2O on clean and oxygen-dosed silver single crystalsurfaces, Surf. Sci.,1984,136: L42-L50
    [67] Zhu X. Y., White J. M., Wolf M., et al. Photochemical pathways of water on palladium (111) at6.4eV, J. Phys. Chem.,1991,95:8393-8402
    [68] Zinck J. J., Weinberg W. H. Summary Abstract: Chemisorption of water on Rh(111), J. Vac. Sci.Technol.,1980,17:188-189
    [69] Gibson K. D., Viste M., Sibener S. J. The adsorption of water on clean and oxygen predosedRh(111): Surface templating via (1x1)-O/Rh(111) induces formation of a novel high-densityinterfacial ice structure, J. Chem. Phys.,2000,112:9582-9589
    [70] Koch H. P., Krenn G., Bako I., et al. A reflection absorption infrared spectroscopy anddensity-functional theory investigation of methanol dehydrogenation on Rh(111)/V alloy surfaces,J. Chem. Phys.,2005,122:244720-244729
    [71] Mavrikakis M., Barteau M. A. Oxygenate reaction pathways on transition metal surfaces, J.Mol. Catal. A: Chem.,1998,131:135-147
    [72] Schennach R., Eichler A., Rendulic K. D. Adsorption and Desorption of Methanol on Pd (111)and on a Pd/V Surface Alloy, J. Phys. Chem. B,2003,107:2552-2558
    [73] Cao D., Lu G. Q., Wieckowski A., et al. Mechanisms of Methanol Decomposition on Platinum:A Combined Experimental and ab Initio Approach, J. Phys. Chem. B,2005,109:11622-11633
    [74] Rebholz M., Matolin V., Prins R., et al. Methanol decomposition on oxygen precovered andatomically clean Pd(111) single crystal surfaces, Surf. Sci.,1991,251–252:1117-1122
    [75] Sexton B. A. Methanol decomposition on platinum (111), Surf. Sci.,1981,102:271-281
    [76] Kizhakevariam N., Stuve E. M. Promotion and poisoning of the reaction of methanol on cleanand modified platinum (100), Surf. Sci.,1993,286:246-260
    [77] Houtman C., Barteau M. A. Reactions of methanol on rhodium(111) andrhodium(111)-(2x2)oxygen surfaces: Spectroscopic identification of adsorbed methoxideand.eta.1-formaldehyde, Langmuir,1990,6:1558-1566
    [78] Davis J. L., Barteau M. A. Decarbonylation and decomposition pathways of alcohol's onPd(111), Surf. Sci.,1987,187:387-406
    [79] Camplin J. P., Mccash E. M. A RAIRS study of methoxy and ethoxy on oxidised Cu(100), Surf.Sci.,1996,360:229-241
    [80] Sim W. S., Gardner P., King D. A. Structure and Reactivity of the Surface Methoxy Species onAg{111}, J. Phys. Chem.,1995,99:16002-16010
    [81] Hrbek J., Depaola R. A., Hoffmann F. M. The interaction of methanol with Ru(001), J. Chem.Phys.,1984,81:2818-2827
    [82] Outka D. A., Madix R. J. Broensted basicity of atomic oxygen on the gold(110) surface:reactions with methanol, acetylene, water, and ethylene, J. Am. Chem. Soc.,1987,109:1708-1714
    [83] Yu Y., Dixon-Warren S. J., Astle N. Molecular-beam study of the adsorption and desorption ofhydrogen sulfide on Ag{111}, Chem. Phys. Lett.,1999,312:455-460
    [84] Leavitt A. J., Beebe Jr T. P. Chemical reactivity studies of hydrogen sulfide on Au(111), Surf.Sci.,1994,314:23-33
    [85] Rovida G., Pratesi F. Sulfur overlayers on the low-index faces of silver, Surf. Sci.,1981,104:609-624
    [86] Huntley D. R. The decomposition of H2S on Ni(110), Surf. Sci.,1990,240:13-23
    [87] Hegde R. I., White J. M. Chemisorption and decomposition of hydrogen sulfide onrhodium(100), J. Phys. Chem.,1986,90:296-300
    [88] Berndt W., Hora R., Scheffler M. A LEED analysis of c(2×2)S on Pd(100), Surf. Sci.,1982,117:188-195
    [89] Fisher G. B. Photoemission studies of H2S, H2and S adsorbed on Ru(110): Evidence for anadsorbed SH species, Surf. Sci.,1979,87:215-227
    [90] Bondzie V., Dixon-Warren S. J., Yu Y. Molecular beam study of the adsorption and desorptionof hydrogen sulfide on Au{100}, J. Chem. Phys.,1999,111:10670-10680
    [91] Koestner R. J., Salmerón M., Kollin E. B., et al. Formation of sulfhydryl (SH) species on theclean and (2×2)-S covered Pt(111) surfaces by H2S decomposition, Chem. Phys. Lett.,1986,125:134-138
    [92] Campbell C. T., Koel B. E. H2S/Cu(111): A model study of sulfur poisoning of water-gas shiftcatalysts, Surf. Sci.,1987,183:100-112
    [93] Hammer B., N rskov J. K. Theoretical surface science and catalysis—calculations andconcepts. In: H.K. Bruce C. Gates (Ed.) Advances in Catalysis, Academic Press,2000
    [94] Hammer B., N rskov J. K. Electronic factors determining the reactivity of metal surfaces, Surf.Sci.,1995,343:211-220
    [95] Mavrikakis M., Hammer B., N rskov J. K. Effect of Strain on the Reactivity of Metal Surfaces,Phys. Rev. Lett.,1998,81:2819-2822
    [96] Van Santen R. A., Neurock M., Shetty S. G. Reactivity Theory of Transition-Metal Surfaces: ABr nsted Evans Polanyi Linear Activation Energy Free-Energy Analysis, Chem. Rev.,2009,110:2005-2048
    [97] Kramer G. J., Van Santen R. A., Emeis C. A., et al. Understanding the acid behaviour ofzeolites from theory and experiment, Nature,1993,363:529-531
    [98] Van Santen R. A., Neurock M. Concepts in Theoretical Heterogeneous Catalytic Reactivity,Catal. Rev.,1995,37:557-698
    [99] Van Santen R. A., Niemantsverdriet J. W. Chemical kinetics and catalysis. New York: PlenumPress,1995.
    [100] Michaelides A., Liu Z. P., Zhang C. J., et al. Identification of General Linear Relationshipsbetween Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces, J. Am.Chem. Soc.,2003,125:3704-3705
    [101] Hammond G. S. A Correlation of Reaction Rates, J. Am. Chem. Soc.,1955,77:334-338
    [102] Ge Q., Neurock M. Adsorption and Activation of CO over Flat and Stepped Co Surfaces:First Principles Analysis, J. Phys. Chem. B,2006,110:15368-15380
    [103] Alcalá R., Mavrikakis M., Dumesic J. A. DFT studies for cleavage of C-C and C-O bonds insurface species derived from ethanol on Pt(111), J. Catal.,2003,218:178-190
    [104] Li H.-Y., Guo Y.-L., Guo Y., et al. C--H bond activation over metal oxides: A new insight intothe dissociation kinetics from density functional theory, J. Chem. Phys.,2008,128:051101-051104
    [105] Kung H. H. Transition Metal Oxides: Surface Chemistry and Catalysis. In: H.K. Harold (Ed.)Studies in Surface Science and Catalysis, New York, Elsevier,1989
    [106] Feibelman P. J., Hamann D. R. Electronic Structure of a "Poisoned" Transition-Metal Surface,Phys. Rev. Lett.,1984,52:61-64
    [107] Hammer B. Adsorption, diffusion, and dissociation of NO, N and O on flat and steppedRu(0001), Surf. Sci.,2000,459:323-348
    [108] Hammer B. Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001),Phys. Rev. Lett.,1999,83:3681-3684
    [109] Liu Z.-P., Hu P. General Rules for Predicting Where a Catalytic Reaction Should Occur onMetal Surfaces: A Density Functional Theory Study of C H and C O Bond Breaking/Making onFlat, Stepped, and Kinked Metal Surfaces, J. Am. Chem. Soc.,2003,125:1958-1967
    [110] Liu Z.-P., Hu P. General trends in CO dissociation on transition metal surfaces, J. Chem. Phys.,2001,114:8244-8247
    [111] Liu Z.-P., Hu P. An Insight into Alkali Promotion: A Density Functional Theory Study of CODissociation on K/Rh(111), J. Am. Chem. Soc.,2001,123:12596-12604
    [112] Cao Y., Chen Z.-X. Slab model studies of water adsorption and decomposition on clean andX-(X=C, N and O) contaminated Pd(111) surfaces, Phys. Chem. Chem. Phys.,2007,9:739-746
    [113] Mortensen J. J., Hammer B., N rskovi J. K. A theoretical study of adsorbate–adsorbateinteractions on Ru(0001), Surf. Sci.,1998,414:315-329
    [114] Alavi A., Hu P., Deutsch T., et al. CO Oxidation on Pt(111): An Ab Initio Density FunctionalTheory Study, Phys. Rev. Lett.,1998,80:3650-3653
    [1] Van Santen R. A., Kuipers H. P. C. E. The Mechanism of Ethylene Epoxidation. In: H.P. D.D.Eley, B.W. Paul (Eds.) Advances in Catalysis, Academic Press,1987
    [2] Sachtler W. M. H. THE MECHANISM OF THE CATALYTIC OXIDATION OF SOMEORGANIC MOLECULES, Catal. Rev.,1971,4:27-52
    [3] Min B. K., Friend C. M. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation, Chem. Rev.,2007,107:2709-2724
    [4] Deng X., Friend C. M. Selective Oxidation of Styrene on an Oxygen-Covered Au(111), J. Am.Chem. Soc.,2005,127:17178-17179
    [5] Quiller R. G., Liu X., Friend C. M. Mechanistic Insights into Selectivity Control forHeterogeneous Olefin Oxidation: Styrene Oxidation on Au(111), Chemistry–An Asian Journal,2010,5:78-86
    [6] Zhou L., Madix R. J. Strong structure sensitivity in the partial oxidation of styrene on silversingle crystals, Surf. Sci.,2009,603:1751-1755
    [7] Liu X., Klust A., Madix R. J., et al. Structure Sensitivity in the Partial Oxidation of Styrene,Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals, J. Phys. Chem. C,2007,111:3675-3679
    [8] Zhou L., Madix R. J. Oxidation of Styrene and Phenylacetaldehyde on Ag(111): Evidence forTransformation of Surface Oxametallacycle, J. Phys. Chem. C,2008,112:4725-4734
    [9] Klust A., Madix R. J. Selectivity Limitations in the Heterogeneous Epoxidation of Olefins:Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene, J. Am.Chem. Soc.,2006,128:1034-1035
    [10] Klust A., Madix R. J. Partial oxidation of higher olefins on Ag(111): Conversion of styrene tostyrene oxide, benzene, and benzoic acid, Surf. Sci.,2006,600:5025-5040
    [11] Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set, Comp. Mater. Sci.,1996,6:15-50
    [12] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set, Phys. Rev. B,1996,54:11169-11186
    [13] Morikawa Y., Iwata K., Terakura K. Theoretical study of hydrogenation process of formate onclean and Zn deposited Cu(111) surfaces, Appl. Surf. Sci.,2001,169–170:11-15
    [14] Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals, Phys. Rev. B,1993,47:558-561
    [15] Bl chl P. E. Projector augmented-wave method, Phys. Rev. B,1994,50:17953-17979
    [16] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod, Phys. Rev. B,1999,59:1758-1775
    [17] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [18] Mills G., Jónsson H., Schenter G. K. Reversible work transition state theory: application todissociative adsorption of hydrogen, Surf. Sci.,1995,324:305-337
    [19] Schenter G. K., Mills G., Jonsson H. Reversible work based quantum transition state theory, J.Chem. Phys.,1994,101:8964-8971
    [20] Henkelman G., Uberuaga B. P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [21] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [22] Maragakis P., Andreev S. A., Brumer Y., et al. Adaptive nudged elastic band approach fortransition state calculation, J. Chem. Phys.,2002,117:4651-4658
    [23] Li W.-X., Stampfl C., Scheffler M. Oxygen adsorption on Ag(111): A density-functional theoryinvestigation, Phys. Rev. B,2002,65:075407
    [24] Shi H., Stampfl C. First-principles investigations of the structure and stability of oxygenadsorption and surface oxide formation at Au(111), Phys. Rev. B,2007,76:075327
    [25] Bocquet M.-L., Michaelides A., Loffreda D., et al. New Insights into Ethene Epoxidation onTwo Oxidized Ag{111} Surfaces, J. Am. Chem. Soc.,2003,125:5620-5621
    [26] Henkelman G., Jónsson H. Theoretical Calculations of Dissociative Adsorption of CH4on anIr(111) Surface, Phys. Rev. Lett.,2001,86:664-667
    [27] Grimme S. Semiempirical GGA-type density functional constructed with a long-rangedispersion correction, J. Comput. Chem.,2006,27:1787-1799
    [28] Grimme S., Antony J., Ehrlich S., et al. A consistent and accurate ab initio parametrization ofdensity functional dispersion correction (DFT-D) for the94elements H-Pu, J. Chem. Phys.,2010,132:154104-154119
    [29] Lukaski A. C., Enever M. C. N., Barteau M. A. Structure and reaction of oxametallacyclesderived from styrene oxide on Ag(110), Surf. Sci.,2007,601:3372-3382
    [30] Torres D., Lopez N., Illas F., et al. Low-Basicity Oxygen Atoms: A Key in the Search forPropylene Epoxidation Catalysts, Angew. Chem. Int. Ed.,2007,46:2055-2058
    [31] Pang X.-Y., Xing B., Xue L.-Q., et al. Selective oxidation of styrene on an oxygen-adsorbedCu(111): A comparison with Au(111), J. Comput. Chem.,2010,31:1618-1624
    [32] Xue L.-Q., Pang X.-Y., Wang G.-C. Selective oxidation of styrene on an oxygen-adsorbedAu(111): A density functional theory study, J. Comput. Chem.,2009,30:438-446
    [33] Wang H.-F., Liu Z.-P. Comprehensive Mechanism and Structure-Sensitivity of EthanolOxidation on Platinum: New Transition-State Searching Method for Resolving the ComplexReaction Network, J. Am. Chem. Soc.,2008,130:10996-11004
    [34] Tonigold K., Gross A. Adsorption of small aromatic molecules on the (111) surfaces of noblemetals: A density functional theory study with semiempirical corrections for dispersion effects, J.Chem. Phys.,2010,132:224701-224710
    [1] Min B. K., Friend C. M. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation, Chem. Rev.,2007,107:2709-2724
    [2] Deng X., Friend C. M. Selective Oxidation of Styrene on an Oxygen-Covered Au(111), J. Am.Chem. Soc.,2005,127:17178-17179
    [3] Zhou L., Madix R. J. Strong structure sensitivity in the partial oxidation of styrene on silversingle crystals, Surf. Sci.,2009,603:1751-1755
    [4] Pinnaduwage D. S., Zhou L., Gao W., et al. Chlorine Promotion of Styrene Epoxidation onAu(111), J. Am. Chem. Soc.,2007,129:1872-1873
    [5] Zhou L., Gorin C. F., Madix R. J. Cesium Promotion in Styrene Epoxidation on Silver Catalysts,J. Am. Chem. Soc.,2009,132:434-435
    [6] Chimentao R., Medina F., Sueiras J., et al. Effects of morphology and cesium promotion oversilver nanoparticles catalysts in the styrene epoxidation, J. Mater. Sci.,2007,42:3307-3314
    [7] Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set, Comp. Mater. Sci.,1996,6:15-50
    [8] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations usinga plane-wave basis set, Phys. Rev. B,1996,54:11169-11186
    [9] Morikawa Y., Iwata K., Terakura K. Theoretical study of hydrogenation process of formate onclean and Zn deposited Cu(111) surfaces, Appl. Surf. Sci.,2001,169–170:11-15
    [10] Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals, Phys. Rev. B,1993,47:558-561
    [11] Bl chl P. E. Projector augmented-wave method, Phys. Rev. B,1994,50:17953-17979
    [12] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod, Phys. Rev. B,1999,59:1758-1775
    [13] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [14] Mills G., Jónsson H., Schenter G. K. Reversible work transition state theory: application todissociative adsorption of hydrogen, Surf. Sci.,1995,324:305-337
    [15] Schenter G. K., Mills G., Jonsson H. Reversible work based quantum transition state theory, J.Chem. Phys.,1994,101:8964-8971
    [16] Henkelman G., Uberuaga B. P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [17] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [18] Maragakis P., Andreev S. A., Brumer Y., et al. Adaptive nudged elastic band approach fortransition state calculation, J. Chem. Phys.,2002,117:4651-4658
    [19] Bocquet M.-L., Michaelides A., Loffreda D., et al. New Insights into Ethene Epoxidation onTwo Oxidized Ag{111} Surfaces, J. Am. Chem. Soc.,2003,125:5620-5621
    [20] Shi H., Stampfl C. First-principles investigations of the structure and stability of oxygenadsorption and surface oxide formation at Au(111), Phys. Rev. B,2007,76:075327
    [21] Torres D., Lopez N., Illas F., et al. Why Copper Is Intrinsically More Selective than Silver inAlkene Epoxidation: Ethylene Oxidation on Cu(111) versus Ag(111), J. Am. Chem. Soc.,2005,127:10774-10775
    [22] Torres D., Lopez N., Illas F. A theoretical study of coverage effects for ethylene epoxidation onCu(111) under low oxygen pressure, J. Catal.,2006,243:404-409
    [23] Xue L.-Q., Pang X.-Y., Wang G.-C. Selective oxidation of styrene on an oxygen-adsorbedAu(111): A density functional theory study, J. Comput. Chem.,2009,30:438-446
    [24] Pang X.-Y., Xing B., Xue L.-Q., et al. Selective oxidation of styrene on an oxygen-adsorbedCu(111): A comparison with Au(111), J. Comput. Chem.,2010,31:1618-1624
    [25] Wang H.-F., Liu Z.-P. Comprehensive Mechanism and Structure-Sensitivity of EthanolOxidation on Platinum: New Transition-State Searching Method for Resolving the ComplexReaction Network, J. Am. Chem. Soc.,2008,130:10996-11004
    [1] Choudhary V.R., Rajput A.M., Prabhakar B. Nonequilibrium Oxidative Conversion of Methaneto CO and H2with High Selectivity and Productivity over Ni/Al2O3at Low Temperatures, J. Catal.,1993,139:326-328
    [2] Dissanayake D., Rosynek M.P., Kharas K.C.C., Lunsford J.H. Partial oxidation of methane tocarbon monoxide and hydrogen over a Ni/Al2O3catalyst, J. Catal.,1991,132:117-127
    [3] Hickman D.A., Schmidt L.D. Synthesis gas formation by direct oxidation of methane over Ptmonoliths, J. Catal.,1992,138:267-282
    [4] Hickman D.A., Schmidt L.D. Production of Syngas by Direct Catalytic Oxidation of Methane,Science,1993,259:343-346
    [5] Hickman D.A., Schmidt L.D. Steps in CH4oxidation on Pt and Rh surfaces: High-temperaturereactor simulations, AIChE J.,1993,39:1164-1177
    [6] Otsuka K., Kobayashi S., Takenaka S. Decomposition and regeneration of methane in theabsence and the presence of a hydrogen-absorbing alloy CaNi5, Appl. Catal., A,2000,190:261-268
    [7] Boskovic G., Smith K.J. Methane homologation and reactivity of carbon species on supportedCo catalysts, Catal. Today,1997,37:25-32
    [8] Song X., Guo Z. A new process for synthesis gas by co-gasifying coal and natural gas, Fuel,2005,84:525-531
    [9]金荣超,陈燕馨甲烷催化部分氧化制合成气的反应机理,物理化学学报,1999,15:313-318
    [10]李春义,沈师孔甲烷催化部分氧化制合成气反应机理,石油大学学报:自然科学版,2000,24:113-117
    [11] Ciob c I.M., Frechard F., van Santen R.A., Kleyn A.W., Hafner J. A theoretical study of CHxchemisorption on the Ru(0001) surface, Chem. Phys. Lett.,1999,311:185-192
    [12] Ciob ca I.M., Frechard F., van Santen R.A., Kleyn A.W., Hafner J. A DFT Study of TransitionStates for C H Activation on the Ru(0001) Surface, J. Phys. Chem. B,2000,104:3364-3369
    [13] Ciobica I.M., van Santen R.A. A DFT Study of CHx Chemisorption and Transition States forC H Activation on the Ru(1120) Surface, J. Phys. Chem. B,2002,106:6200-6205
    [14] Paul J.F., Sautet P. Chemisorption and Transformation of CHx Fragments (x=03) on aPd(111) Surface: A Periodic Density Functional Study, J. Phys. Chem. B,1998,102:1578-1585
    [15] Bertani V., Cavallotti C., Masi M., Carrà S. Density Functional Study of the Interaction ofPalladium Clusters with Hydrogen and CHx Species, J. Phys. Chem. A,2000,104:11390-11397
    [16] Zhang C.J., Hu P. Methane transformation to carbon and hydrogen on Pd(100): Pathways andenergetics from density functional theory calculations, J. Chem. Phys.,2002,116:322-327
    [17] Petersen M.A., Jenkins S.J., King D.A. Theory of Methane Dehydrogenation on Pt(110)(1×2).Part II: Microscopic Reaction Pathways for CHx→CHx-1(x=13), J. Phys. Chem. B,2004,108:5920-5929
    [18] Yang H., Whitten J.L. Ab initio chemisorption studies of methyl on nickel(111), J. Am. Chem.Soc.,1991,113:6442-6449
    [19] Siegbahn P.E.M., Panas I. A theoretical study of CHx chemisorption on the Ni(100) and Ni(111)surfaces, Surf. Sci.,1990,240:37-49
    [20] Michaelides A., Hu P. A first principles study of CH3dehydrogenation on Ni(111), J. Chem.Phys.,2000,112:8120-8125
    [21] Yang H.-Q., Chen Y.-Q., Hu C.-W., Hu H.-R., Gong M.-C., Tian A.-M., Wong N.B. C–H bondactivation: Ni(d101S)+CH4→NiCH2+H2. A DFT study, J. Mol. Struct.: THEO,2001,574:57-74
    [22] Burghgraef H., Jansen A.P.J., van Santen R.A. Methane activation and dehydrogenation onnickel and cobalt: a computational study, Surf. Sci.,1995,324:345-356
    [23] Au C.T., Liao M.-S., Ng C.F. A theoretical investigation of methane dissociation on Rh(111),Chem. Phys. Lett.,1997,267:44-50
    [24] Blomberg M.R.A., Brandemark U., Siegbahn P.E.M. Theoretical investigation of theelimination and addition reactions of methane and ethane with nickel, J. Am. Chem. Soc.,1983,105:5557-5563
    [25] Robert C.W., Handbook of Chemistry and Physics, New York,1983.
    [26]董森, in:天津大学,天津大学,天津,2007.
    [27] Choudhary T.V., Sivadinarayana C., Goodman D.W. Catalytic ammonia decomposition:COx-free hydrogen production for fuel cell applications, Catal. Lett.,2001,72:197-201
    [28] Yin S.-F., Zhang Q.-H., Xu B.-Q., Zhu W.-X., Ng C.-F., Au C.-T. Investigation on the catalysisof COx-free hydrogen generation from ammonia, J. Catal.,2004,224:384-396
    [29] Ganley J.C., Thomas F.S., Seebauer E.G., Masel R.I. A Priori Catalytic Activity Correlations:The Difficult Case of Hydrogen Production from Ammonia, Catal. Lett.,2004,96:117-122
    [30] Sun Y.K., Wang Y.Q., Mullins C.B., Weinberg W.H. Interaction of ammonia with chemicallymodified ruthenium (001) surfaces, Langmuir,1991,7:1689-1694
    [31] Qin J., Aika K.-i. Catalytic wet air oxidation of ammonia over alumina supported metals, Appl.Catal., B,1998,16:261-268
    [32] Heras J.M., Viscido L. The Behavior of Water on Metal Surfaces, Catal. Rev.,1988,30:281-338
    [33] Henrich V.E., Cox P.A. Fundamentals of gas-surface interactions on metal oxides, Appl. Surf.Sci.,1993,72:277-284
    [34] Brown G.E., Henrich V.E., Casey W.H., Clark D.L., Eggleston C., Felmy A., Goodman D.W.,Gr tzel M., Maciel G., McCarthy M.I., Nealson K.H., Sverjensky D.A., Toney M.F., Zachara J.M.Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms,Chem. Rev.,1998,99:77-174
    [35] Schaefer J.A. Microscopic structure of semiconductor surfaces, Appl. Phys. A: Mater. Sci.Process.,1990,51:305-316
    [36] Henderson M.A. The interaction of water with solid surfaces: fundamental aspects revisited,Surf. Sci. Rep.,2002,46:1-308
    [37] Thiel P.A., Madey T.E. The interaction of water with solid surfaces: Fundamental aspects, Surf.Sci. Rep.,1987,7:211-385
    [38] Mavrikakis M., Barteau M.A. Oxygenate reaction pathways on transition metal surfaces, J.Mol. Catal. A: Chem.,1998,131:135-147
    [39] Fisher I.A., Bell A.T. A Mechanistic Study of Methanol Decomposition over Cu/SiO2,ZrO2/SiO2, and Cu/ZrO2/SiO2, J. Catal.,1999,184:357-376
    [40] Hrbek J., DePaola R.A., Hoffmann F.M. The interaction of methanol with Ru(001), J. Chem.Phys.,1984,81:2818-2827
    [41] Imamura S., Higashihara T., Saito Y., Aritani H., Kanai H., Matsumura Y., Tsuda N.Decomposition of methanol on Pt-loaded ceria, Catal. Today,1999,50:369-380
    [42] Trimm D.L., nsan Z.I. ONBOARD FUEL CONVERSION FORHYDROGEN-FUEL-CELL-DRIVEN VEHICLES, Catal. Rev.,2001,43:31-84
    [43] Sun Q., Shen B., Fan K., Deng J. Roles of surface and subsurface oxygen in thedehydrogenation of methanol on silver surface, Chem. Phys. Lett.,2000,322:1-8
    [44] Fan K., Shen B., Wang W., Deng J. Ab initio study on the adsorption and dissociation processof methanol on a silver surface, J. Mol. Struct.: THEO,1998,422:191-195
    [45] Steinbach F., Spengler H.-J. Temperature jump method in molecular beam relaxationspectrometry applied to catalytic decomposition of CH3OH on polycrystalline Ni foil, Surf. Sci.,1981,104:318-340
    [46] Wang G.-C., Zhou Y.-H., Morikawa Y., Nakamura J., Cai Z.-S., Zhao X.-Z. Kinetic Mechanismof Methanol Decomposition on Ni(111) Surface: A Theoretical Study, J. Phys. Chem. B,2005,109:12431-12442
    [47] Zhou Y.-H., Lv P.-H., Wang G.-C. DFT studies of methanol decomposition on Ni(100) surface:Compared with Ni(111) surface, J. Mol. Catal. A: Chem.,2006,258:203-215
    [48] Kruse N., Rebholz M., Matolin V., Chuah G.K., Block J.H. Methanol decomposition on Pd(111)single crystal surfaces, Surf. Sci.,1990,238: L457-L462
    [49] Houtman C., Barteau M.A. Reactions of methanol on rhodium(111) andrhodium(111)-(2x2)oxygen surfaces: Spectroscopic identification of adsorbed methoxideand.eta.1-formaldehyde, Langmuir,1990,6:1558-1566
    [50] Leavitt A.J., Beebe Jr T.P. Chemical reactivity studies of hydrogen sulfide on Au(111), Surf.Sci.,1994,314:23-33
    [51] Campbell C.T., Koel B.E. H2S/Cu(111): A model study of sulfur poisoning of water-gas shiftcatalysts, Surf. Sci.,1987,183:100-112
    [52] Hammer B., Norskov J.K. Why gold is the noblest of all the metals, Nature,1995,376:238-240
    [53] Alfonso D.R., Cugini A.V., Sorescu D. Density Functional Theory Study of Adsorption andDecomposition of H2S on Pd(111), Cu(111) and PdCu(110) Prepr. Pap.-Am. Chem. Soc., Div. FuelChem.,2003,48:512-513
    [54] Shustorovich E., Bell A.T. Oxygen-assisted cleavage of O-H, N-H, and C-H bonds ontransition metal surfaces: bond-order-conservation-Morse-potential analysis, Surf. Sci.,1992,268:397-405
    [55] Au C.T., Roberts M.W. Photoelectron spectroscopic evidence for the activation of adsorbatebonds by chemisorbed oxygen, Chem. Phys. Lett.,1980,74:472-474
    [56] Sexton B.A., Hughes A.E., Avery N.R. A spectroscopic study of the adsorption and reactionsof methanol, formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces, Surf.Sci.,1985,155:366-386
    [57] Afsin B., Davies P.R., Pashuski A., Roberts M.W. The role of a dioxygen precursor in theselective formation of imide NH(a) species at a Cu(110) surface, Surf. Sci. Lett.,1991,259:L724-L728
    [58] Afsin B., Davies P.R., Pashusky A., Roberts M.W., Vincent D. Reaction pathways in theoxydehydrogenation of ammonia at Cu(110) surfaces, Surf. Sci.,1993,284:109-120
    [59] Boronin A., Pashusky A., Roberts M.W. A new approach to the mechanism of heterogeneouslycatalysed reactions: the oxydehydrogenation of ammonia at a Cu(111) surface, Catal. Lett.,1992,16:345-350
    [60] Greeley J., Mavrikakis M. On the Role of Subsurface Oxygen and Ethylenedioxy in EthyleneEpoxidation on Silver, J. Phys. Chem. C,2007,111:7992-7999
    [61] Kokalj A., Gava P., de Gironcoli S., Baroni S. What determines the catalyst's selectivity in theethylene epoxidation reaction, J. Catal.,2008,254:304-309
    [62] Serafin J.G., Liu A.C., Seyedmonir S.R. Surface science and the silver-catalyzed epoxidationof ethylene: an industrial perspective, J. Mol. Catal. A: Chem.,1998,131:157-168
    [63] Lambert R.M., Williams F.J., Cropley R.L., Palermo A. Heterogeneous alkene epoxidation:past, present and future, J. Mol. Catal. A: Chem.,2005,228:27-33
    [64] Barteau M.A. Surface science and the advancement of direct olefin epoxidation: A perspectiveon the article,“Partial oxidation of higher olefins on Ag(111) and Ag(110): Conversion of styrene tostyrene oxide, benzene, and benzoic acid”, by Andreas Klust and Robert J. Madix, Surf. Sci.,2006,600:5021-5023
    [65] Satterfield C.N., Heterogeneous catalysis in industrial practice2nd ed ed., Krieger PulishingCompany, Malabar,1996.
    [66] Chorkendorff I., Niemantsverdriet H., Concepts of Modern Catalysis and Kinetics,1st ed ed.,Wiley-VCH, Weinheim,2003.
    [67] Somorjai G.A., Introduction to Surface Chemistry and Catalysis, John Wiley&Sons, NewYork,1994.
    [68] Van Santen R.A., Kuipers H.P.C.E., in: H.P. D.D. Eley, B.W. Paul (Eds.) Advances in Catalysis,Academic Press,1987, pp.265-321.
    [69] Sachtler W.M.H. THE MECHANISM OF THE CATALYTIC OXIDATION OF SOMEORGANIC MOLECULES, Catal. Rev.,1971,4:27-52
    [70] Wang J.-H., Dai W.-L., Deng J.-F., Wei X.-M., Cao Y.-M., Zhai R.-S. Interaction of oxygenwith silver surface at high temperature, Appl. Surf. Sci.,1998,126:148-152
    [71] Carter E.A., Goddard Iii W.A. The surface atomic oxyradical mechanism for Ag-catalyzedolefin epoxidation, J. Catal.,1988,112:80-92
    [72] Campbell C.T. The selective epoxidation of ethylene catalyzed by Ag(111): A comparison withAg(110), J. Catal.,1985,94:436-444
    [73] Linic S., Barteau M.A. Control of Ethylene Epoxidation Selectivity by SurfaceOxametallacycles, J. Am. Chem. Soc.,2003,125:4034-4035
    [74] Linic S., Barteau M.A. Formation of a Stable Surface Oxametallacycle that Produces EthyleneOxide, J. Am. Chem. Soc.,2001,124:310-317
    [75] Linic S., Piao H., Adib K., Barteau M.A. Ethylene Epoxidation on Ag: Identification of theCrucial Surface Intermediate by Experimental and Theoretical Investigation of its ElectronicStructure, Angew. Chem. Int. Ed.,2004,43:2918-2921
    [76] Linic S., Barteau M.A. Construction of a reaction coordinate and a microkinetic modelfor ethylene epoxidation on silver from DFT calculations and surface science experiments, J. Catal.,2003,214:200-212
    [77] Grant R.B., Lambert R.M. A single crystal study of the silver-catalysed selective oxidation andtotal oxidation of ethylene, J. Catal.,1985,92:364-375
    [78] Bal'zhinimaev B.S. Ethylene epoxidation over silver catalysts, Kinet. Catal.,1999,40:795-810
    [79] Carter E.A., Goddard Iii W.A. Chemisorption of oxygen, chlorine, hydrogen, hydroxide, andethylene on silver clusters: A model for the olefin epoxidation reaction, Surf. Sci.,1989,209:243-289
    [80] Bukhtiyarov V.I., Prosvirin I.P., Kvon R.I. Study of reactivity of oxygen states adsorbed at asilver surface towards C2H4by XPS, TPD and TPR, Surf. Sci.,1994,320: L47-L50
    [81] Bukhtiyarov V.I., H vecker M., Kaichev V.V., Knop-Gericke A., Mayer R.W., Schl gl R.Atomic oxygen species on silver: Photoelectron spectroscopy and x-ray absorption studies, Phys.Rev. B,2003,67:235422
    [82] Bukhtiyarov V.I., Nizovskii A.I., Bluhm H., H vecker M., Kleimenov E., Knop-Gericke A.,Schl gl R. Combined in situ XPS and PTRMS study of ethylene epoxidation over silver, J. Catal.,2006,238:260-269
    [83] van Santen R.A., de Groot C.P.M. The mechanism of ethylene epoxidation, J. Catal.,1986,98:530-539
    [84] Temkin M.I., in: H.P. D.D. Eley, B.W. Paul (Eds.) Advances in Catalysis, Academic Press,1979, pp.173-291.
    [85] Carlisle C.I., King D.A., Bocquet M.L., Cerdá J., Sautet P. Imaging the Surface and theInterface Atoms of an Oxide Film on Ag{111} by Scanning Tunneling Microscopy: Experimentand Theory, Phys. Rev. Lett.,2000,84:3899-3902
    [86] Bocquet M.-L., Michaelides A., Loffreda D., Sautet P., Alavi A., King D.A. New Insights intoEthene Epoxidation on Two Oxidized Ag{111} Surfaces, J. Am. Chem. Soc.,2003,125:5620-5621
    [87] Michaelides A., Bocquet M.L., Sautet P., Alavi A., King D.A. Structures and thermodynamicphase transitions for oxygen and silver oxide phases on Ag{111}, Chem. Phys. Lett.,2003,367:344-350
    [88] Li W.-X., Stampfl C., Scheffler M. Why is a Noble Metal Catalytically Active? The Role of theO-Ag Interaction in the Function of Silver as an Oxidation Catalyst, Phys. Rev. Lett.,2003,90:256102
    [89] Schnadt J., Michaelides A., Knudsen J., Vang R.T., Reuter K., L gsgaard E., Scheffler M.,Besenbacher F. Revisiting the Structure of the p(4×4) Surface Oxide on Ag(111), Phys. Rev. Lett.,2006,96:146101
    [90] Schmid M., Reicho A., Stierle A., Costina I., Klikovits J., Kostelnik P., Dubay O., Kresse G.,Gustafson J., Lundgren E., Andersen J.N., Dosch H., Varga P. Structure of Ag(111)-p(4×4)-O: NoSilver Oxide, Phys. Rev. Lett.,2006,96:146102
    [91] Min B.K., Friend C.M. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation, Chem. Rev.,2007,107:2709-2724
    [92] Deng X., Friend C.M. Selective Oxidation of Styrene on an Oxygen-Covered Au(111), J. Am.Chem. Soc.,2005,127:17178-17179
    [93] Christopher P., Linic S. Engineering Selectivity in Heterogeneous Catalysis: Ag Nanowires asSelective Ethylene Epoxidation Catalysts, J. Am. Chem. Soc.,2008,130:11264-11265
    [94] Chen H.-T., Chang J.-G., Ju S.-P., Chen H.-L. Ethylene Epoxidation on a Au Nanoparticleversus a Au(111) Surface: A DFT Study, J. Phys. Chem. Lett.,2010,1:739-742
    [95] Barteau M.A., Madix R.J. Low pressure oxidation of ethylene on Ag(110): Possibleexperimental complications, Surf. Sci.,1981,103: L171-L178
    [96] Roberts J.T., Madix R.J. Epoxidation of olefins on silver: conversion of norbornene tonorbornene oxide by atomic oxygen on silver(110), J. Am. Chem. Soc.,1988,110:8540-8541
    [97] Hawker S., Mukoid C., Badyal J.P.S., Lambert R.M. Molecular mechanism of heterogeneousalkene epoxidation: A model study with styrene on Ag(111), Surf. Sci. Lett.,1989,219: L615-L622
    [98] Williams F.J., Bird D.P.C., Palermo A., Santra A.K., Lambert R.M. Mechanism, SelectivityPromotion, and New Ultraselective Pathways in Ag-Catalyzed Heterogeneous Epoxidation, J. Am.Chem. Soc.,2004,126:8509-8514
    [99] Klust A., Madix R.J. Selectivity Limitations in the Heterogeneous Epoxidation of Olefins:Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene, J. Am.Chem. Soc.,2006,128:1034-1035
    [100] Liu X., Klust A., Madix R.J., Friend C.M. Structure Sensitivity in the Partial Oxidation ofStyrene, Styrene Oxide, and Phenylacetaldehyde on Silver Single Crystals, J. Phys. Chem. C,2007,111:3675-3679
    [101] Zhou L., Madix R.J. Oxidation of Styrene and Phenylacetaldehyde on Ag(111): Evidence forTransformation of Surface Oxametallacycle, J. Phys. Chem. C,2008,112:4725-4734
    [102] Mukoid C., Hawker S., Badyal J.P.S., Lambert R.M. Molecular mechanism of alkeneepoxidation: A model study with3,3-dimethyl-1-butene on Ag(111), Catal. Lett.,1990,4:57-61
    [103] Quiller R.G., Liu X., Friend C.M. Mechanistic Insights into Selectivity Control forHeterogeneous Olefin Oxidation: Styrene Oxidation on Au(111), Chemistry–An Asian Journal,2010,5:78-86
    [104] Hammer B., N rskov J.K., in: H.K. Bruce C. Gates (Ed.) Advances in Catalysis, AcademicPress,2000, pp.71-129.
    [105] Michaelides A., Liu Z.P., Zhang C.J., Alavi A., King D.A., Hu P. Identification of GeneralLinear Relationships between Activation Energies and Enthalpy Changes for DissociationReactions at Surfaces, J. Am. Chem. Soc.,2003,125:3704-3705
    [106] van Santen R.A., Neurock M., Shetty S.G. Reactivity Theory of Transition-Metal Surfaces: ABr nsted Evans Polanyi Linear Activation Energy Free-Energy Analysis, Chem. Rev.,2009,110:2005-2048
    [107] Kramer G.J., van Santen R.A., Emeis C.A., Nowak A.K. Understanding the acid behaviour ofzeolites from theory and experiment, Nature,1993,363:529-531
    [108] Van Santen R.A., Neurock M. Concepts in Theoretical Heterogeneous Catalytic Reactivity,Catal. Rev.,1995,37:557-698
    [109] van Santen R.A., Niemantsverdriet J.W., Chemical kinetics and catalysis, Plenum Press, NewYork,1995.
    [110] Thomas L.H. The calculation of atomic fields., Proc. Camb. Phil. Soc.,1927,23:542-548
    [111] Fermi E. Un metodo statistice per la determinazione di alcune proprieta dell'atomo, Rend.Accad. Naz. Lincei,1927,6:602-607
    [112] March N.H. The Thomas-Fermi approximation in quantum mechanics, Adv. Phys,1957,6:1-101
    [113] Hohenberg P., Kohn W. Inhomogeneous Electron Gas, Phys. Rev.,1964,136: B864-B871
    [114] Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects,Phys. Rev.,1965,140: A1133-A1138
    [115] Perdew J.P., Kurth S., Zupan A., Blaha P. Accurate Density Functional with Correct FormalProperties: A Step Beyond the Generalized Gradient Approximation, Phys. Rev. Lett.,1999,82:2544-2547
    [116] Gunnarsson O., Hjelmberg H., Lundqvist B.I. Binding Energies for Different AdsorptionSites of Hydrogen on Simple Metals, Phys. Rev. Lett.,1976,37:292-295
    [117] Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy, Phys. Rev. B,1992,45:13244-13249
    [118] Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple,Phys. Rev. Lett.,1996,77:3865-3868
    [119] Hammer B., Hansen L.B., N rskov J.K. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B,1999,59:7413-7421
    [120]黄昆,韩汝琦,固体能带理论,高等教育出版社,北京,1988.
    [121]谢希德,陆栋,固体能带理论,第二版ed.,复旦大学出版社,上海,2007.
    [122] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,Phys. Rev. B,1990,41:7892-7895
    [123] Bloch F.Z. Phys.,1928,52:555
    [124] Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations, Phys. Rev. B,1976,13:5188-5192
    [125] Henkelman G., Jonsson H. Improved tangent estimate in the nudged elastic band method forfinding minimum energy paths and saddle points, J. Chem. Phys.,2000,113:9978-9985
    [126] Henkelman G., Uberuaga B.P., Jonsson H. A climbing image nudged elastic band method forfinding saddle points and minimum energy paths, J. Chem. Phys.,2000,113:9901-9904
    [127] Jónsson H., Mills G., Jacobsen K.W., in: B.J. Berne, G. Ciccotti, D.F. Coker (Eds.) Classicaland Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore,1998, pp.385-404.
    [128] Olsen R.A., Kroes G.J., Henkelman G., Arnaldsson A., Jonsson H. Comparison of methodsfor finding saddle points without knowledge of the final states, J. Chem. Phys.,2004,121:9776-9792
    [129] Henkelman G., Uberuaga B.P., Dunham S., Jónsson H., in:2nd International Conference onComputational Nanoscience and Nanotechnology,2002, pp.144-147.
    [130] Henkelman G., Jonsson H. A dimer method for finding saddle points on high dimensionalpotential surfaces using only first derivatives, J. Chem. Phys.,1999,111:7010-7022
    [131] Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set, Comp. Mater. Sci.,1996,6:15-50
    [132] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set, Phys. Rev. B,1996,54:11169-11186
    [133] Morikawa Y., Iwata K., Terakura K. Theoretical study of hydrogenation process of formate onclean and Zn deposited Cu(111) surfaces, Appl. Surf. Sci.,2001,169–170:11-15
    [134] Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals, Phys. Rev. B,1993,47:558-561
    [135] Bl chl P.E. Projector augmented-wave method, Phys. Rev. B,1994,50:17953-17979
    [136] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod, Phys. Rev. B,1999,59:1758-1775
    [137] Mills G., Jónsson H., Schenter G.K. Reversible work transition state theory: application todissociative adsorption of hydrogen, Surf. Sci.,1995,324:305-337
    [138] Schenter G.K., Mills G., Jonsson H. Reversible work based quantum transition state theory, J.Chem. Phys.,1994,101:8964-8971
    [139] Maragakis P., Andreev S.A., Brumer Y., Reichman D.R., Kaxiras E. Adaptive nudged elasticband approach for transition state calculation, J. Chem. Phys.,2002,117:4651-4658
    [140] Beens H. The nature of the surface chemical bond edited by T. N. Rhodin and G. Ertl, ActaCrystallogr., Sect. A: Found. Crystallogr.,1980,36:1093
    [141] Koper M.T.M., van Santen R.A. Interaction of H, O and OH with metal surfaces, J.Electroanal. Chem.,1999,472:126-136
    [142] Pang X.-Y., Xue L.-Q., Wang G.-C. Adsorption of Atoms on Cu Surfaces: A DensityFunctional Theory Study, Langmuir,2007,23:4910-4917
    [143] Xue L.-Q., Pang X.-Y., Wang G.-C. Is the Preadsorbed Sulfur Atom Always Acting as aPoison for the Surface Reaction?, J. Phys. Chem. C,2007,111:2223-2228
    [144] Goursot A., Mele F., Russo N., Salahub D.R., Toscano M. Geometrical, spectroscopic, andmagnetic properties of an oxygen atom adsorbed on the Ni(100) surface, Int. J. Quant. Chem.,1993,48:277-286
    [145] Siegbahn P.E.M., Wahlgren U. A theoretical study of atomic oxygen chemisorption on theNi(100) and Ni(111) surfaces, Int. J. Quant. Chem.,1992,42:1149-1169
    [146] Lee M.B., Yang Q.Y., Ceyer S.T. Dynamics of the activated dissociative chemisorption ofCH4and implication for the pressure gap in catalysis: A molecular beam--high resolution electronenergy loss study, J. Chem. Phys.,1987,87:2724-2741
    [147] Kaminsky M.P., Winograd N., Geoffroy G.L., Vannice M.A. Direct SIMS observation ofmethylidyne, methylene, and methyl intermediates on a nickel(III) methanation catalyst, J. Am.Chem. Soc.,1986,108:1315-1316
    [148] Zhu Y.-A., Dai Y.-C., Chen D., Yuan W.-K. First-principles calculations of CH4dissociationon Ni(100) surface along different reaction pathways, J. Mol. Catal. A: Chem.,2007,264:299-308
    [149] Lai W., Xie D., Zhang D.H. First-principles study of adsorption of methyl, coadsorption ofmethyl and hydrogen, and methane dissociation on Ni(100), Surf. Sci.,2005,594:83-92
    [150] Wonchoba S.E., Truhlar D.G. Embedded Diatomics-in-Molecules Potential Energy Functionfor Methyl Radical and Methane on Nickel Surfaces, J. Phys. Chem. B,1998,102:6842-6860
    [151] Abild-Pedersen F., Greeley J., Studt F., Rossmeisl J., Munter T.R., Moses P.G., Skúlason E.,Bligaard T., N rskov J.K. Scaling Properties of Adsorption Energies for Hydrogen-ContainingMolecules on Transition-Metal Surfaces, Phys. Rev. Lett.,2007,99:016105
    [152] Papoian G., N rskov J.K., Hoffmann R. A Comparative Theoretical Study of the Hydrogen,Methyl, and Ethyl Chemisorption on the Pt(111) Surface, J. Am. Chem. Soc.,2000,122:4129-4144
    [153]万惠霖,翁维正甲烷部分氧化制合成气反应机理的原位时间分辨IR光谱和Raman光谱表征,复旦学报:自然科学版,2002,41:243-250
    [154] Au C.-T., Ng C.-F., Liao M.-S. Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir,Pd, Pt, Cu, Ag, and Au: A Theoretical Study, J. Catal.,1999,185:12-22
    [155] Yang H., Whitten J.L. Reaction of chemisorbed CH and H on nickel, J. Chem. Phys.,1989,91:126-136
    [156] Watwe R.M., Bengaard H.S., Rostrup-Nielsen J.R., Dumesic J.A., N rskov J.K. TheoreticalStudies of Stability and Reactivity of CHx Species on Ni(111), J. Catal.,2000,189:16-30
    [157] Henkelman G., Jónsson H. Theoretical Calculations of Dissociative Adsorption of CH4on anIr(111) Surface, Phys. Rev. Lett.,2001,86:664-667
    [158] Liu Z.-P., Hu P. General trends in the barriers of catalytic reactions on transition metalsurfaces, J. Chem. Phys.,2001,115:4977-4980
    [159] Lv C.-Q., Ling K.-C., Wang G.-C. Methane combustion on Pd-based model catalysts:Structure sensitive or insensitive?, J. Chem. Phys.,2009,131:144704-144709
    [160] Li H.-Y., Guo Y.-L., Guo Y., Lu G.-Z., Hu P. C--H bond activation over metal oxides: A newinsight into the dissociation kinetics from density functional theory, J. Chem. Phys.,2008,128:051101-051104
    [161] Hammond G.S. A Correlation of Reaction Rates, J. Am. Chem. Soc.,1955,77:334-338
    [162] Ge Q., Neurock M. Adsorption and Activation of CO over Flat and Stepped Co Surfaces:First Principles Analysis, J. Phys. Chem. B,2006,110:15368-15380
    [163] Alcalá R., Mavrikakis M., Dumesic J.A. DFT studies for cleavage of C-C and C-O bonds insurface species derived from ethanol on Pt(111), J. Catal.,2003,218:178-190
    [164] Bickelhaupt F.M. Understanding reactivity with Kohn–Sham molecular orbital theory:E2–SN2mechanistic spectrum and other concepts, J. Comput. Chem.,1999,20:114-128
    [165] van Zeist W.-J., Bickelhaupt F.M. The activation strain model of chemical reactivity, Org.Biomol. Chem.,2010,8:3118-3127
    [166] Torniainen P.M., Chu X., Schmidt L.D. Comparison of monolith-supported metals for thedirect oxidation of methane to syngas, J. Catal.,1994,146:1-10
    [167] Qin D., Lapszewicz J. Study of mixed steam and CO2reforming of CH4to syngas onMgO-supported metals, Catal. Today,1994,21:551-560
    [168] Rostrupnielsen J.R., Hansen J.H.B. CO2-Reforming of Methane over Transition Metals, J.Catal.,1993,144:38-49
    [169] Au C.T., Wang H.Y., Wan H.L. Mechanistic Studies of CH4/O2Conversion overSiO2-Supported Nickel and Copper Catalysts, J. Catal.,1996,158:343-348
    [170] Au C.T., Hu Y.H., Wan H.L. Methane activation over unsupported and La2O3-supportedcopper and nickel catalysts, Catal. Lett.,1996,36:159-163
    [171] Li F.-X., Armentrout P.B. Activation of methane by gold cations: Guided ion beam andtheoretical studies, J. Chem. Phys.,2006,125:133114-133113
    [172] lgaard Nielsen B., Luntz A.C., Holmblad P.M., Chorkendorff I. Activated dissociativechemisorption of methane on Ni(100): a direct mechanism under thermal conditions?, Catal. Lett.,1995,32:15-30
    [173] Alstrup I., Chorkendorff I., Ullmann S. The interaction of CH4at high temperatures withclean and oxygen precovered Cu(100), Surf. Sci.,1992,264:95-102
    [174] Valden M., Pere J., Xiang N., Pessa M. Influence of preadsorbed oxygen on activatedchemisorption of methane on Pd(110), Chem. Phys. Lett.,1996,257:289-296
    [175] Hu Y., Ruckenstein E. Isotopic study of the reaction of methane with the lattice oxygen of aNiO/MgO solid solution, Catal. Lett.,1999,57:167-169
    [176] Buyevskaya O.V., Walter K., Wolf D., Baerns M. Primary reaction steps and active surfacesites in the rhodium-catalyzed partial oxidation of methane to CO and H2, Catal. Lett.,1996,38:81-88
    [177] Elmasides C., Kondarides D.I., Neophytides S.G., Verykios X.E. Partial Oxidation ofMethane to Synthesis Gas over Ru/TiO2Catalysts: Effects of Modification of the Support onOxidation State and Catalytic Performance, J. Catal.,2001,198:195-207
    [178] Wang G.-C., Tao S.-X., Bu X.-H. A systematic theoretical study of water dissociation on cleanand oxygen-preadsorbed transition metals, J. Catal.,2006,244:10-16
    [179] Feibelman P.J., Hamann D.R. Electronic Structure of a "Poisoned" Transition-Metal Surface,Phys. Rev. Lett.,1984,52:61-64
    [180] Kung H.H., in: H.K. Harold (Ed.) Studies in Surface Science and Catalysis, Elsevier, NewYork,1989.
    [181] Hammer B., N rskov J.K. Electronic factors determining the reactivity of metal surfaces,Surf. Sci.,1995,343:211-220
    [182] Mavrikakis M., Hammer B., N rskov J.K. Effect of Strain on the Reactivity of Metal Surfaces,Phys. Rev. Lett.,1998,81:2819-2822
    [183] Wang H.-F., Liu Z.-P. Comprehensive Mechanism and Structure-Sensitivity of EthanolOxidation on Platinum: New Transition-State Searching Method for Resolving the ComplexReaction Network, J. Am. Chem. Soc.,2008,130:10996-11004
    [184] Hammer B. Adsorption, diffusion, and dissociation of NO, N and O on flat and steppedRu(0001), Surf. Sci.,2000,459:323-348
    [185] Hammer B. Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001),Phys. Rev. Lett.,1999,83:3681-3684
    [186] Liu Z.-P., Hu P. General Rules for Predicting Where a Catalytic Reaction Should Occur onMetal Surfaces: A Density Functional Theory Study of C H and C O Bond Breaking/Making onFlat, Stepped, and Kinked Metal Surfaces, J. Am. Chem. Soc.,2003,125:1958-1967
    [187] Liu Z.-P., Hu P. General trends in CO dissociation on transition metal surfaces, J. Chem. Phys.,2001,114:8244-8247
    [188] Liu Z.-P., Hu P. An Insight into Alkali Promotion: A Density Functional Theory Study of CODissociation on K/Rh(111), J. Am. Chem. Soc.,2001,123:12596-12604
    [189] Cao Y., Chen Z.-X. Slab model studies of water adsorption and decomposition on clean andX-(X=C, N and O) contaminated Pd(111) surfaces, Phys. Chem. Chem. Phys.,2007,9:739-746
    [190] Mortensen J.J., Hammer B., N rskovi J.K. A theoretical study of adsorbate–adsorbateinteractions on Ru(0001), Surf. Sci.,1998,414:315-329
    [191] Alavi A., Hu P., Deutsch T., Silvestrelli P.L., Hutter J. CO Oxidation on Pt(111): An Ab InitioDensity Functional Theory Study, Phys. Rev. Lett.,1998,80:3650-3653
    [192] Neurock M., van Santen R.A., Biemolt W., Jansen A.P.J. Atomic and Molecular Oxygen asChemical Precursors in the Oxidation of Ammonia by Copper, J. Am. Chem. Soc.,1994,116:6860-6872
    [193] Yamagishi S., Jenkins S.J., King D.A. Driving Forces for Self-Organized Coadsorption:C6H6/2O and C6H6/2CO on Ni{111}, J. Am. Chem. Soc.,2004,126:10962-10971
    [194] Wachs I.E., Madix R.J. The selective oxidation of CH3OH to H2CO on a copper(110) catalyst,J. Catal.,1978,53:208-227
    [195] Sakong S., Gro A. Density functional theory study of the partial oxidation of methanol oncopper surfaces, J. Catal.,2005,231:420-429
    [196] Barros R.B., Garcia A.R., Ilharco L.M. Effect of Oxygen Precoverage on the Reactivity ofMethanol on Ru(001) Surfaces, J. Phys. Chem. B,2004,108:4831-4839
    [197] Phatak A.A., Delgass W.N., Ribeiro F.H., Schneider W.F. Density Functional TheoryComparison of Water Dissociation Steps on Cu, Au, Ni, Pd, and Pt, J. Phys. Chem. C,2009,113:7269-7276
    [198] Christensen C.H., Johannessen T., S rensen R.Z., N rskov J.K. Towards anammonia-mediated hydrogen economy?, Catal. Today,2006,111:140-144
    [199] Yin S.F., Xu B.Q., Zhou X.P., Au C.T. A mini-review on ammonia decomposition catalystsfor on-site generation of hydrogen for fuel cell applications, Appl. Catal., A,2004,277:1-9
    [200] Gong J., Mullins C.B. Surface Science Investigations of Oxidative Chemistry on Gold, Acc.Chem. Res.,2009,42:1063-1073
    [201] Xing B., Pang X.-Y., Wang G.-C. C–H bond activation of methane on clean and oxygenpre-covered metals: A systematic theoretical study, J. Catal.,2011,282:74-82
    [202] Desai S.K., Neurock M., Kourtakis K. A Periodic Density Functional Theory Study of theDehydrogenation of Methanol over Pt(111), J. Phys. Chem. B,2002,106:2559-2568
    [203] Carabineiro S.A.C., Matveev A.V., Gorodetskii V.V., Nieuwenhuys B.E. Selective oxidationof ammonia over Ru(0001), Surf. Sci.,2004,555:83-93
    [204] Pradier C.-M., Adamski A., Méthivier C., Louis-Rose I. Interaction of NH3and oxygen withCu(110), investigated by FT-IRAS, J. Mol. Catal. A: Chem.,2002,186:193-201
    [205] van Hardeveld R.M., van Santen R.A., Niemantsverdriet J.W. The adsorption of NH3onRh(111), Surf. Sci.,1996,369:23-35
    [206] Bradley J.M., Hopkinson A., King D.A. Control of a Biphasic Surface Reaction by OxygenCoverage: The Catalytic Oxidation of Ammonia over Pt{100}, J. Phys. Chem.,1995,99:17032-17042
    [207] Bradley J.M., Hopkinson A., King D.A. A molecular beam study of ammonia adsorption onPt{100}, Surf. Sci.,1997,371:255-263
    [208] Weststrate C.J., Bakker J.W., Rienks E.D.L., Martinez J.R., Vinod C.P., Lizzit S., Petaccia L.,Baraldi A., Nieuwenhuys B.E. Selective NH3oxidation on (110) and (111) iridium surfaces, J.Catal.,2005,235:92-102
    [209] Santra A.K., Min B.K., Yi C.W., Luo K., Choudhary T.V., Goodman D.W. Decomposition ofNH3on Ir(100): A Temperature Programmed Desorption Study, J. Phys. Chem. B,2001,106:340-344
    [210] Thornburg D.M., Madix R.J. Cleavage of N-H bonds by active oxygen on Ag(110): I.Ammonia, Surf. Sci.,1989,220:268-294
    [211] Gong J., Ojifinni R.A., Kim T.S., White J.M., Mullins C.B. Selective Catalytic Oxidation ofAmmonia to Nitrogen on Atomic Oxygen Precovered Au(111), J. Am. Chem. Soc.,2006,128:9012-9013
    [212] Au C.-t., Breza J., Roberts M.W. Hydroxylation and dehydroxylation at Cu(III) surfaces,Chem. Phys. Lett.,1979,66:340-343
    [213] Mundt C., Benndorf C. H2O adsorption on alkali (Li, Na and K) precovered Ni(775), Surf.Sci.,1998,405:121-137
    [214] Benndorf C., Mundt C., in, AVS, Seattle, Washington (USA),1992, pp.3026-3031.
    [215] Mundt C., Benndorf C. Influence of steps on the H2O adsorption on Ni(s)(111), Surf. Sci.,1993,287–288, Part1:119-124
    [216] Mundt C., Benndorf C. The coadsorption of Na and H2O on Ni(s)(111), Surf. Sci.,1994,307–309, Part A:28-33
    [217] Held G., Menzel D. Isotope effects in structure and kinetics of water adsorbates on Ru(001),Surf. Sci.,1995,327:301-320
    [218] Carley A.F., Davies P.R., Roberts M.W., Shukla N., Song Y., Thomas K.K. The hydroxylationof Cu(111) and Zn(0001) surfaces, Appl. Surf. Sci.,1994,81:265-272
    [219] Bao X., Muhler M., Pettinger B., Uchida Y., Lehmpfuhl G., Schl gl R., Ertl G. The effect ofwater on the formation of strongly bound oxygen on silver surfaces, Catal. Lett.,1995,32:171-183
    [220] Fisher G.B., Sexton B.A. Identification of an Adsorbed Hydroxyl Species on the Pt(111)Surface, Phys. Rev. Lett.,1980,44:683-686
    [221] Wolf M., Nettesheim S., White J.M., Hasselbrink E., Ertl G. Dynamics of the ultravioletphotochemistry of water adsorbed on Pd(111), J. Chem. Phys.,1991,94:4609-4619
    [222] Lazaga Mark A., Wickham David T., Parker Deborah H., Kastanas George N., Koel Bruce E.,in: Catalytic Selective Oxidation, American Chemical Society,1993, pp.90-109.
    [223] Wagner F.T., Moylan T.E. A comparison between water adsorbed on Rh(111) and Pt(111),with and without predosed oxygen, Surf. Sci.,1987,191:121-146
    [224] Madey T.E., Yates Jr J.T. Evidence for the conformation of H2O adsorbed on Ru(001), Chem.Phys. Lett.,1977,51:77-83
    [225] Wittrig T.S., Ibbotson D.E., Weinberg W.H. The adsorption of water on the reconstructedIr(110)-(1×2) surface, Surf. Sci.,1981,102:506-517
    [226] Picaud S., Hoang P.N.M., Girardet C. Geometry of (NH3)n and (H2O)n aggregates adsorbedon well characterized MgO(100) and Si(111)-(1×1)H substrates, Surf. Sci.,1992,278:339-352
    [227] Klaua M., Madey T.E. The adsorption of H2O on clean and oxygen-dosed silver single crystalsurfaces, Surf. Sci.,1984,136: L42-L50
    [228] Zhu X.Y., White J.M., Wolf M., Hasselbrink E., Ertl G. Photochemical pathways of water onpalladium (111) at6.4eV, J. Phys. Chem.,1991,95:8393-8402
    [229] Zinck J.J., Weinberg W.H. Summary Abstract: Chemisorption of water on Rh(111), J. Vac.Sci. Technol.,1980,17:188-189
    [230] Gibson K.D., Viste M., Sibener S.J. The adsorption of water on clean and oxygen predosedRh(111): Surface templating via (1x1)-O/Rh(111) induces formation of a novel high-densityinterfacial ice structure, J. Chem. Phys.,2000,112:9582-9589
    [231] Koch H.P., Krenn G., Bako I., Schennach R. A reflection absorption infrared spectroscopy anddensity-functional theory investigation of methanol dehydrogenation on Rh(111)/V alloy surfaces,J. Chem. Phys.,2005,122:244720-244729
    [232] Schennach R., Eichler A., Rendulic K.D. Adsorption and Desorption of Methanol on Pd (111)and on a Pd/V Surface Alloy, J. Phys. Chem. B,2003,107:2552-2558
    [233] Cao D., Lu G.Q., Wieckowski A., Wasileski S.A., Neurock M. Mechanisms of MethanolDecomposition on Platinum: A Combined Experimental and ab Initio Approach, J. Phys. Chem. B,2005,109:11622-11633
    [234] Rebholz M., Matolin V., Prins R., Kruse N. Methanol decomposition on oxygen precoveredand atomically clean Pd(111) single crystal surfaces, Surf. Sci.,1991,251–252:1117-1122
    [235] Sexton B.A. Methanol decomposition on platinum (111), Surf. Sci.,1981,102:271-281
    [236] Kizhakevariam N., Stuve E.M. Promotion and poisoning of the reaction of methanol on cleanand modified platinum (100), Surf. Sci.,1993,286:246-260
    [237] Davis J.L., Barteau M.A. Decarbonylation and decomposition pathways of alcohol's onPd(111), Surf. Sci.,1987,187:387-406
    [238] Camplin J.P., McCash E.M. A RAIRS study of methoxy and ethoxy on oxidised Cu(100),Surf. Sci.,1996,360:229-241
    [239] Sim W.S., Gardner P., King D.A. Structure and Reactivity of the Surface Methoxy Species onAg{111}, J. Phys. Chem.,1995,99:16002-16010
    [240] Outka D.A., Madix R.J. Broensted basicity of atomic oxygen on the gold(110) surface:reactions with methanol, acetylene, water, and ethylene, J. Am. Chem. Soc.,1987,109:1708-1714
    [241] Yu Y., Dixon-Warren S.J., Astle N. Molecular-beam study of the adsorption and desorption ofhydrogen sulfide on Ag{111}, Chem. Phys. Lett.,1999,312:455-460
    [242] Rovida G., Pratesi F. Sulfur overlayers on the low-index faces of silver, Surf. Sci.,1981,104:609-624
    [243] Huntley D.R. The decomposition of H2S on Ni(110), Surf. Sci.,1990,240:13-23
    [244] Hegde R.I., White J.M. Chemisorption and decomposition of hydrogen sulfide onrhodium(100), J. Phys. Chem.,1986,90:296-300
    [245] Berndt W., Hora R., Scheffler M. A LEED analysis of c(2×2)S on Pd(100), Surf. Sci.,1982,117:188-195
    [246] Fisher G.B. Photoemission studies of H2S, H2and S adsorbed on Ru(110): Evidence for anadsorbed SH species, Surf. Sci.,1979,87:215-227
    [247] Bondzie V., Dixon-Warren S.J., Yu Y. Molecular beam study of the adsorption and desorptionof hydrogen sulfide on Au{100}, J. Chem. Phys.,1999,111:10670-10680
    [248] Koestner R.J., Salmerón M., Kollin E.B., Gland J.L. Formation of sulfhydryl (SH) species onthe clean and (2×2)-S covered Pt(111) surfaces by H2S decomposition, Chem. Phys. Lett.,1986,125:134-138
    [249] Zhou L., Madix R.J. Strong structure sensitivity in the partial oxidation of styrene on silversingle crystals, Surf. Sci.,2009,603:1751-1755
    [250] Klust A., Madix R.J. Partial oxidation of higher olefins on Ag(111): Conversion of styrene tostyrene oxide, benzene, and benzoic acid, Surf. Sci.,2006,600:5025-5040
    [251] Li W.-X., Stampfl C., Scheffler M. Oxygen adsorption on Ag(111): A density-functionaltheory investigation, Phys. Rev. B,2002,65:075407
    [252] Shi H., Stampfl C. First-principles investigations of the structure and stability of oxygenadsorption and surface oxide formation at Au(111), Phys. Rev. B,2007,76:075327
    [253] Grimme S. Semiempirical GGA-type density functional constructed with a long-rangedispersion correction, J. Comput. Chem.,2006,27:1787-1799
    [254] Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initioparametrization of density functional dispersion correction (DFT-D) for the94elements H-Pu, J.Chem. Phys.,2010,132:154104-154119
    [255] Lukaski A.C., Enever M.C.N., Barteau M.A. Structure and reaction of oxametallacyclesderived from styrene oxide on Ag(110), Surf. Sci.,2007,601:3372-3382
    [256] Torres D., Lopez N., Illas F., Lambert R.M. Low-Basicity Oxygen Atoms: A Key in theSearch for Propylene Epoxidation Catalysts, Angew. Chem. Int. Ed.,2007,46:2055-2058
    [257] Pang X.-Y., Xing B., Xue L.-Q., Wang G.-C. Selective oxidation of styrene on anoxygen-adsorbed Cu(111): A comparison with Au(111), J. Comput. Chem.,2010,31:1618-1624
    [258] Xue L.-Q., Pang X.-Y., Wang G.-C. Selective oxidation of styrene on an oxygen-adsorbedAu(111): A density functional theory study, J. Comput. Chem.,2009,30:438-446
    [259] Tonigold K., Gross A. Adsorption of small aromatic molecules on the (111) surfaces of noblemetals: A density functional theory study with semiempirical corrections for dispersion effects, J.Chem. Phys.,2010,132:224701-224710
    [260] Pinnaduwage D.S., Zhou L., Gao W., Friend C.M. Chlorine Promotion of StyreneEpoxidation on Au(111), J. Am. Chem. Soc.,2007,129:1872-1873
    [261] Zhou L., Gorin C.F., Madix R.J. Cesium Promotion in Styrene Epoxidation on SilverCatalysts, J. Am. Chem. Soc.,2009,132:434-435
    [262] Chimentao R., Medina F., Sueiras J., Fierro J., Cesteros Y., Salagre P. Effects of morphologyand cesium promotion over silver nanoparticles catalysts in the styrene epoxidation, J. Mater. Sci.,2007,42:3307-3314
    [263] Torres D., Lopez N., Illas F., Lambert R.M. Why Copper Is Intrinsically More Selective thanSilver in Alkene Epoxidation: Ethylene Oxidation on Cu(111) versus Ag(111), J. Am. Chem. Soc.,2005,127:10774-10775
    [264] Torres D., Lopez N., Illas F. A theoretical study of coverage effects for ethylene epoxidationon Cu(111) under low oxygen pressure, J. Catal.,2006,243:404-409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700